Graduate Time Series Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 28, at the beginning of class.

Homework 3

Exercise 1. Let H be a real Hilbert space. Verify the polarization identity:
2 2
Ah, g) = |[h+gII” = |[h — glI".
Now, assume that H is a complex Hilbert space. Verify the polarization identity
3
i G2
Ah.g) =Y ¥ ||h+ilg||".
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Exercise 2. Let x: R/Z — {z € C: |z] = 1} be a character. (Recall: x is a continuous
function such that x(s+t) = x(s)x(t) for all s,t € R/Z.)

e Show that x'(0) exists.
e Show that x'(t) = x(¢)x'(0) for all t € R/Z.
e Conclude that (t) = > for some y € R, and conclude that in fact y € Z.

Exercise 3 (Uniqueness of Fourier Seriesin L;). Let f: R/Z — C with ||f]|, := fol |f(z)]dx <

~

oo. Show: if f(n) =0 for all n € Z, then f = 0. (Hint: show that limy_ ||f * Fx — f||; =
0.) Since ||f||; < ||f]| by e.g. Jensen’s inequality, conclude the uniqueness of Fourier series
in L1(R/Z, B, dz) as well.

Exercise 4. Let f: R/Z — C with ||f||, := fol |f(z)|dz < co. In this Exercise, you are
asked to show that R
lim f(n)=0,

n—+oo

using the following plan.

e Show the assertion holds for any f € Lo(R/Z, B, dx) as a consequence of Plancherel’s
Theorem. In particular, the assertion holds for any continuous f.

e Approximate f by a continuous g: R/Z — C. That is, for any ¢ > 0, find a
continuous g satisfying ||f — g||, <e.

~

e Finally, use: if ||f — g]|, <e, then |f(n) —g(n)| < e for all n € Z.

Show also that: if f is k£ times continuously differentiable, then there exists a constant ¢ such
that R
[f(n)] < en™.

Exercise 5 (Sunspot Data, Version 2). This exercise deals with sunspot data from the
following files (the same data appears in different formats)



2
txt file csv (excel) file
These files are taken from http://www.sidc.be/silso/datafiles#total

To work with this data, e.g. in Matlab you can use the command
x=importdata(’SN_d_tot_V2.0.txt’)

to import the .txt file.

The format of the data is as follows.

e Columns 1-3: Gregorian calendar date (Year, Month, then Day)

e Column 4: Date in fraction of year

e Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates
that no number is available for that day (missing value).

e Column 6: Daily standard deviation of the input sunspot numbers from individual
stations.

e Column 7: Number of observations used to compute the daily value.

e Column 8: Definitive/provisional indicator. A blank indicates that the value is de-
finitive. A ’*’ symbol indicates that the value is still provisional and is subject to a
possible revision (Usually the last 3 to 6 months)

In a previous Exercise, we modelled the number of sunspots U; at time ¢, where t is measured
in years, by

U = my + acos(2mt/11) + bsin(27t/11) + Y5, Vt e R,

where a,b, 0, w € R are unknown (deterministic) parameters, m; is an unknown deterministic
function of ¢ that is assumed to be a “slowly varying” function of ¢, and {Y;},cr are i.i.d.
mean zero random variables. The quantity m; is called the trend and the quantity s, :=
acos(2mt/11) + bsin(2nt/11) is called the seasonal component of the time series {U; }er.-

This model was perhaps too simplistic, since it did not seem to fit the data well in some
respects. This time, let’s not make an a priori assumptions about known periodicities in the
data. Consequently, we will just examine the Fourier coefficients of the data U; directly. If
we want to make plots of Fourier CoefﬁcientAs, it is easier to take absolute values. If the units
of ¢ were in integers, then we would define U(s) = >°, 5 U™ for any s € R/Z, as the n'"
frequency component of the time series. Since the units of ¢ are in integers divided by 365
(or by 365.25), we instead define

Ulr)== > U™, VreR/365Z.

teZ/365

e Plot |ﬁ(7“)| versus 7, where r € [0, 1] and also when r € [0,365]. Do you observe any large
absolute values of U(r) for any values of r near 1/117


http://www.sidc.be/silso/DATA/SN_d_tot_V2.0.txt
http://www.sidc.be/silso/INFO/sndtotcsv.php
http://www.sidc.be/silso/datafiles#total
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You should observe some large values of U (r) when r takes the values: .0842,.0921, and
.0995, corresponding to frequencies of 11.87,10.858, and 10.05, respectively. This large signal
should correspond to r € [.08,.105] (and to r € [—.105, —.08]).

e Plot the inverse Fourier transform of this part of the frequency spectrum U (r). That is,
plot the following function of t € Z/365
1 105 1 08

U(r)e > rtdr + - U(r)e " dr.

Sy =
"7365 J s 365 J_ 105

(Since the time series is real valued, [7(7“) = (7(—7“) for all r € R/Z. Also, for any x,y € R,

Re(z +yv/—1) :=x.)

How does S; compare to U; when you put them in the same plot? (Instead of plotting U,
itself for this comparison, consider plotting a moving average of U;.)

When you plotted S; versus U, S; should follow the oscillations of U; fairly closely.

When you plotted U (r) versus r, you should have also noticed large values for r near 0.
These low frequencies correspond to the long term “trend” in the data. The low frequency
signal should correspond roughly to r € [0, .016]

e Plot the inverse Fourier transform of this part of the frequency spectrum U (r). That is,
plot the following function of ¢ € Z/365
1 06

M, = —— U(r)e ™"dr.
CE 56 ) gl

Plot U;, M; and S; in the same plot. Then plot U; — S; — M;. Does U; — S; — M; “resemble”
a stationary process? Is this procedure better or worse than what we did on the previous
homework?

o If {U; —S; — M;}iez/365 were a sequence of ii.d. random variables with mean zero and
variance one, what would its Fourier transform look like? That is, if {Z;}icz/365 Were a
sequence of i.i.d. random variables with mean zero and variance one, and if

Z(r):= Y Ze™",  ¥YreR/365Z,
teZ/365

then what would this function look like? Does it have mean zero (when r is fixed)? Can

you compute the variance of Z(r) (when r is fixed)? Are the quantities Z(r) and Z(s)
independent when s # r, s,r € R/365Z? If they are not independent, could you compute
their covariance?



