Graduate Time Series Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due March 13, at the beginning of class.

Homework 4

Exercise 1. Let $\{Z_n\}_{n\in\mathbb{Z}}$ be a sequence of pairwise uncorrelated, mean zero random variables all with the same variance. Let a be 1 or -1. Show that there does not exist a weakly stationary time series $\{X_n\}_{n\in\mathbb{Z}}$ such that

$$X_n = aX_{n-1} + Z_n, \quad \forall n \in \mathbf{Z}.$$

(Note that the associated function ϕ is $\phi(z) = 1 - az$ which has a zero on the unit circle |z| = 1.)

Exercise 2. Let p,q be positive integers. Let $a_1,\ldots,a_p,b_1,\ldots,b_q$ be real numbers. For any $z\in \mathbf{C}$, define $\phi(z):=1-\sum_{j=1}^p a_jz^j, \qquad \theta(z):=1+\sum_{j=1}^q b_jz^j$. Let $\{X_n\}_{n\in \mathbf{Z}}$ be a real-valued stochastic process. We define the shift operator S so that $SX_n:=SX_{n-1}, \ \forall \ n\in \mathbf{Z}$. Let $\{Z_n\}_{n\in \mathbf{Z}}$ be a sequence of pairwise uncorrelated, mean zero random variables all with the same variance. Recall that the ARMA(p,q) process can be rewritten as

$$\phi(S)X_n = \theta(S)Z_n, \quad \forall n \in \mathbf{Z}.$$
 (*)

(i) Suppose ϕ , θ have no common zeros and $\phi(z) \neq 0$ on $\{z \in \mathbf{C} : |z| = 1\}$. Let $\xi : \mathbf{C} \to \mathbf{C}$ be a polynomial that is nonzero on $\{z \in \mathbf{C} : |z| = 1\}$. If $\{X_n\}_{n \in \mathbf{Z}}$ is the unique weakly stationary solution to (*), then $\{X_n\}_{n \in \mathbf{Z}}$ is also the unique weakly stationary solution to

$$\xi(S)\phi(S)X_n = \xi(S)\theta(S)Z_n, \quad \forall n \in \mathbf{Z}.$$

(ii) Suppose ϕ , θ do have a common zero on the unit circle $\{z \in \mathbf{C} \colon |z| = 1\}$. Show that the equations (*) can have more than one weakly stationary solution. (Hint: consider the equation $X_n = X_{n-1} + Z_n - Z_{n-1} \ \forall \ n \in \mathbf{Z}$.)

Exercise 3. Let $\{Z_n\}_{n\in\mathbb{Z}}$ be a sequence of pairwise uncorrelated, mean zero random variables all with the same variance. Consider the equation

$$X_n = .4X_{n-1} + .21X_{n-2} + Z_n + .6Z_{n-1} + .09Z_{n-2}, \quad \forall n \in \mathbf{Z}.$$

- Show that the associated polynomials ϕ , θ have a common root of -10/3.
- Recall that $\phi(S)X_n = \theta(S)Z_n$ for all $n \in \mathbf{Z}$. Define $\widetilde{\phi}(z) := \phi(z)/(1+.3z)$, $\widetilde{\theta}(z) := \theta(z)/(1+.3z)$, for all $z \in \mathbf{C}$. Show that

$$\widetilde{\phi}(S)X_n = \widetilde{\theta}(S)Z_n, \quad \forall n \in \mathbf{Z}.$$
 (*)

• Deduce from the previous results that there exists a unique weakly stationary solution $\{X_n\}_{n\in\mathbb{Z}}$ to (*). Moreover, the ARMA process is causal and invertible, and

$$X_n = Z_n + \sum_{j=1}^{\infty} (.7)^{j-1} Z_{n-j}, \qquad Z_n = X_n + \sum_{j=1}^{\infty} (-1)^j (.3)^{j-1} X_{n-j}, \qquad \forall n \in \mathbf{Z}.$$

Exercise 4. Let $\{X_n\}_{n\in\mathbb{Z}}$ be a weakly stationary, real-valued time series. For any $n\in\mathbb{Z}$, define the difference operator by

$$DX_n := X_n - X_{n-1}, \quad \forall n \in \mathbf{Z}.$$

Define $D^1 := D$. And for any $k \ge 2$, define inductively

$$D^k X_n := D^{k-1}(DX_n), \qquad \forall \, n \in \mathbf{Z}.$$

- For any $k \geq 1$, is $\{D^k X_n\}_{n \in \mathbb{Z}}$ weakly stationary? If so, prove it.
- Let $\{a_n\}_{n\in\mathbf{Z}}$ be a sequence of real numbers with $\sum_{n\in\mathbf{Z}}|a_n|^2<\infty$. Let $f(x):=\sum_{n\in\mathbf{Z}}a_ne^{2\pi inx}\ \forall\ x\in\mathbf{R}/\mathbf{Z}$ be its Fourier transform. Recall that $a_n=\int_0^1e^{-2\pi inx}f(x)dx$ $\forall\ n\in\mathbf{Z}$. Write a similar integral expression for D^ka_n for all $k\geq 1,\ n\in\mathbf{Z}$. That is, find $g_k\colon\mathbf{R}/\mathbf{Z}\to\mathbf{C}$ such that

$$D^k a_n = \int_0^1 g_k(x) e^{-2\pi i n x} f(x) dx, \qquad \forall k \ge 1, \ n \in \mathbf{Z}.$$

• What happens to g_k when k is large? For the sunspot data, examine $D^k X_n$ for all $1 \le k \le 5$, and examine the Fourier transforms. Are your observations consistent with the behavior of g_k when k is large?.