
Graduate Statistical Learning Theory Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 8, 9AM PST, to be uploaded as a single PDF document to blackboard (under
the Assignments tab).

Homework 2

Exercise 1. Let M be a k × k real symmetric matrix. Then M is positive semidefinite if
and only if there exists a real k × k matrix R such that

M = RRT .

In either case, if r(i) denotes the ith row of R, we have

mij = 〈r(i), r(j)〉, ∀ 1 ≤ i, j ≤ k.

Exercise 2. Let µ be a Borel measure on Rn such that the measure of any open set in Rn

is positive. Let m : Rn ×Rn → R be continuous with
∫
Rn

∫
Rn |m(x, y)|2 dµ(x)dµ(y) < ∞.

Show that the following two positive semidefinite conditions on m are equivalent:

• ∀ p ≥ 1, for all z(1), . . . , z(p) ∈ Rn, for all β1, . . . , βp ∈ R we have
p∑

i,j=1

βiβjm(z(i), z(j)) ≥ 0.

• ∀ f ∈ L2(µ), we have∫
Rn

∫
Rn

f(x)f(y)m(x, y)dµ(x)dµ(y) ≥ 0.

From either condition, we should see that the converse of Mercer’s Theorem holds. We
should also be able to deduce various properties of positive semidefinite (PSD) kernels. For
example, a nonnegative linear combination of PSD kernels is PSD.

Exercise 3. For each kernel function m : Rn×Rn → R below, find an inner product space
C and a map φ : Rn → C such that

m(x, y) = 〈φ(x), φ(y)〉C , ∀x, y ∈ Rn.

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer’s
Theorem.

• m(x, y) := 1 + 〈x, y〉 ∀ x, y ∈ Rn.
• m(x, y) := (1 + 〈x, y〉)d ∀ x, y ∈ Rn, where d is a fixed positive integer.
• m(x, y) := exp(− ||x− y||2).

Hint: it might be helpful to consider d-fold iterated tensor products of the form x⊗d =
x⊗ x⊗ · · · ⊗ x, along with their corresponding inner products.
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Exercise 4. Show that the set of conjunctions is contained in the set of linear threshold
functions. That is, given a boolean conjunction f : {0, 1}n → {0, 1}, find w ∈ Rn, t ∈ R
such that

f(x) = 1{〈w,x〉>t}, ∀x = (x1, . . . , xn) ∈ {0, 1}n.

Exercise 5. Here is an elementary example of “boosting” for random variables.

Suppose X is a real-valued random variable, and X1, X2, . . . are independent copies of X.
Let a < b, a, b ∈ R. Suppose it is known that

P(a ≤ X ≤ b) > 3/4.

Fix a positive integer n. Let Yn be a median of X1, . . . , Xn. Then Yn is a “boosted” version
of X in the sense that

P(a ≤ Yn ≤ b) ≥ 1−
n∑

j=bn/2c

(
n

j

)
αj,

where α := P(X /∈ [a, b]).

(Optional:) Show additionally that

P(a ≤ Yn ≤ b) ≥ 1− (1 + o(1))

√
π

2

1√
n

2nαbn/2c

1− α
≥ 1− (4α)bn/2c ·O(1).

Exercise 6. Explain why taking the expected value of the inequality for the average number
of mis-classifications of Adaboost does not guarantee PAC learning.

Exercise 7. Show that the Sauer-Shelah lemma is sharp for all n, d. That is, find F with
d := VCdim(F) such that

|F| =
d∑

i=0

(
n

i

)
.

(Hint: consider the set of x ∈ {0, 1}n such that x has at most d entries equal to 1.)

Exercise 8. Show that both our notions of ε-net agree (up to changing the constant ε)
in the following case: A is a metric space, P is a probability law on A, Ω is the set of
balls of arbitrary center and radius, so that Ω = {B(x, r) : x ∈ Ω, r > 0} and there exist
a, b, c1, c2 > 0 such that c1r

a ≤ P(B(x, r)) ≤ c2r
b for all x ∈ Ω, r > 0. Then S is a measure

theoretic ε-net for Ω if and only if it is an ε′-net for Ω, with respect to the metric d on A
(where ε, ε′ > 0 are not necessarily the same).

Exercise 9. For any f ∈ F , show that

VCdim(F) = VCdim(D(f)).

(Recall: F is a subset of {0, 1}-valued functions on a set A. Let f, g ∈ F . Since f = 1{f=1},
we can identify f with the set where it is 1 and extend set operations to functions in F . For
example, f∆g := 1{f=1}∆{g=1}, where ∆ denotes symmetric difference. And we define

D(f) := {f∆g : g ∈ F}.)


