
Graduate Statistical Learning Theory Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 5, 9AM PST, to be uploaded as a single PDF document to blackboard (under
the Assignments tab).

Homework 3

Exercise 1. Let a > 0. Let X(1), . . . , X(k) ∈ Rn be independent identically distributed
samples from a Gaussian random vector with mean (a, 0, . . . , 0) and identity covariance
matrix). Let X(k+1), X(k+2), . . . , X(2k) ∈ Rn be independent identically distributed samples
from a Gaussian random vector with mean (−a, 0, . . . , 0), where a > 0 is known. Define
y1 = · · · = yk := 1, and yk+1 = · · · = y2k := −1. With this “planted” data with a = 5, n =
3, k = 20, run the perceptron algorithm. (You will have to modify the algorithm to terminate
in case a separating hyperplane does not exist). Then, run a support-vector machine, and
compare the quality of the results and the run-time.

Exercise 2. Show that any boolean function f : {0, 1}n → {0, 1} can be written as a DNF
formula of size at most n2n. (Here the size of the DNF formula f refers to the number
of AND and OR operations that are used to construct f .) (Hint: consider the function
f : {0, 1}n → {0, 1} defined by f := 1(0,...,0). This function can be written as a conjunction
with n− 1 AND operations.)

Exercise 3. Give an efficient PAC learning algorithm for the class of axis-aligned rectangles
in the plane. (So, in this case, F is the function class consisting of all functions of the form
1R where R ⊆ R2 is a rectangle whose edges are parallel to the x and y axes, respectively.)
(Note: if you want you can compute the VC-dimension of this class, but simply appealing
to a VC-dimension bound does not give an efficient algorithm a priori.) (Hint: consider
the smallest rectangle containing all points that are known, via random sampling, to be
contained in the unknown rectangle.)

(Optional: can you generalize your results to axis-aligned boxes in Rn?)

Exercise 4.

• Give an example of a class of boolean functions F such that the VC-dimension of F
is 1, while F contains infinitely many functions.
• Give an example of a class of boolean functions F such that the VC-dimension of F

is not finite.
• For any I ⊆ {1, . . . , n}, define the parity function hI : {0, 1}n → {0, 1} by

hI(x) :=
(∑

i∈I

xi

)
mod 2, ∀x = (x1, . . . , xn) ∈ {0, 1}n.

Find the VC-dimension of the class F = {hI : I ⊆ {1, . . . , n}} of all parity functions.
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Exercise 5. Suppose x, a ≥ 1. Assume that

x < a log(x).

Then
x < 2a log a.

Exercise 6. High-dimensional geometry is much different than low-dimensional geometry,
as this exercise demonstrates.

• Show that “most” of the mass of an n-dimensional Gaussian is concentrated on the
sphere of radius

√
n centered at the origin. That is, if X1, . . . , Xn are n i.i.d. standard

Gaussian random variables, then

lim
n→∞

P(X2
1 + · · ·+ X2

n ∈ (n−
√

3n, n +
√

3n) ≥ 2/3.

In fact, you should be able to compute the limit exactly.
• Generally, “most” of the mass of a high-dimensional convex body is concentrated

near the surface of the body. Let Voln denote the usual volume in Rn (so that the
volume of a unit square [0, 1]n is 1.) For example, show that, for any ε > 0,

lim
n→∞

Voln

(
[−1

2
(1− ε),

1

2
(1− ε)]n

)
= 0.

• Let Bn := {x ∈ Rn : ||x|| ≤ 1} be the unit ball centered at the origin. Show that

lim
n→∞

Voln(Bn) = 0.

• Let Cn = {x ∈ {[−1/2, 1/2]n : ∃ y ∈ {−1/2, 1/2}n such that ||x− y|| ≤ 1/2}} be the
union of balls of radius 1/2 centered at the corners of the hypercube [−1/2, 1/2]n.
Let Dn := {x ∈ Rn : ||x|| ≤ r} be a ball of radius r centered at the origin, where r
is chosen to be as large as possible so that Dn does not intersect the interior of Cn.
(Put another way, Dn is tangent to the balls Cn.) Find

lim
n→∞

Voln(Dn).

Before you do the computation, try to guess what the answer should be.

Exercise 7. Let X be a real-valued random variable with mean zero. Then the following
are equivalent

• ∃ a > 0 such that, for all t ∈ R, EetX ≤ et
2a2/2.

• ∃ b > 0 such that, for all t > 0, P(|X| > t) ≤ 2e−bt
2
.

• ∃ c > 0 such that EecX2 ≤ 2.
• ∃ d > 0 such that (E |X|p)1/p ≤ d

√
p, ∀ p ≥ 1.

(If you need hints look at Proposition 2.5.2 in Vershynin’s book.)

Exercise 8. Show that ||·||ψ2
is a norm on the set of sub-Gaussian random variables.

Exercise 9. Let Y1, Y2, . . . be a sequence of sub-Gaussian random variables. (These random
variables are not assumed to be independent.) Prove that

Emax
i≥1

|Yi|√
1 + log(i + 1)

≤ 100 sup
i≥1
||Yi||ψ2

.
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Conclude that, for any integer n ≥ 2, we have

E max
1≤i≤n

|Yi| ≤ 100
√

log n · max
1≤i≤n

||Yi||ψ2
.

(Hint: there are a few related ways to do this. Your first step could use the union bound of
the form P(maxi≥1Xi > t) ≤

∑
i≥1 P(Xi > t).)

Exercise 10. Using the argument for Dudley’s inequality, deduce the following concentration
inequality. For any u > 0,

P
(

sup
a∈A

Xa ≤ 103c

∫ ∞
0

√
logN (A, d, ε)dε + u · diam(A)

)
≥ 1− 2e−u

2

.

Here diam(A) := supa,a′∈A d(a, a′). (Hint: show supa∈A
∣∣Xbk+1(a) −Xbk(a)

∣∣ ≤ 2−k
√

log |Nk+1|+
uk with probability at least 1 − 2e−u

2
k . Then sum over k, use the union bound, and choose

the uk appropriately, e.g. try uk = u +
√
k −m.)

Exercise 11 (Optional). Show that Empirical Risk Minimization of Linear Threshold Func-
tions in Rn is computationally hard. More precisely, we consider the sequence of problems
in which the dimension n is large, c is a fixed positive integer, and the number of samples
m is equal to cn.

Hint: You can prove the hardness by a reduction from the following problem, known as MAX
FS: We are given a system of linear inequalities, Ax > b with A an m× n matrix, b ∈ Rm.
That is, we are given a set of m linear inequalities in n variables (x1, . . . , xn) =: x. The
goal is to find the largest possible subset of {1, . . . ,m} that has a solution (i.e. a feasible
solution). That is, the goal is to find

max{|S| : S ⊆ {1, . . . ,m}, ∃x ∈ Rn, (Ax)i > bi, ∀ i ∈ S}.
It has been shown (Sankaran 1993) that the problem MAX FS is NP-hard. That is, if one
could solve MAX FS in polynomial time (in n), then P=NP.

Show that any algorithm that minimizes the empirical risk for any training sample S ∈
(Rn × {−1, 1})m can be used to solve the MAX FS problem with parameters m,n. Hint:
Define a mapping that transforms linear inequalities in n variables into labeled points in Rn,
and a mapping that transforms vectors in Rn to halfspaces, such that a vector w satisfies an
inequality q if and only if the labeled point that corresponds to q is classified correctly by
the halfspace corresponding to w. Conclude that the problem of empirical risk minimization
for halfspaces in also NP-hard (that is, if it can be solved in time polynomial in the sample
size, m, and the Euclidean dimension, n, then P=NP).


