
Graduate Statistical Learning Theory Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due September 13, at the beginning of class.

Homework 1

Exercise 1. Let x(1), . . . , x(m) be m vectors in Rn with
∣∣∣∣x(i)

∣∣∣∣ = 1 for all 1 ≤ i ≤ m. Let
ε > 0. Assume that m > (1 + 2/ε)n. Show that there exists i, j ∈ {1, . . . ,m} such that∣∣∣∣x(i) − x(j)

∣∣∣∣ < ε.

Consequently, the vectors x(i) and x(j) are highly correlated, so that 〈x(i), x(j)〉 > 1 − ε2/2.
That is, if you have enough vectors on a unit sphere, at least two of them will be correlated
with each other.

(If you want a hint, read about ε-nets in the notes.)

Exercise 2. Let A be an m × n real matrix with m ≥ n. Show that A has rank n if and
only if ATA is positive definite.

(Hint: ATA is always positive semidefinite.)

Exercise 3. Let x(1), . . . , x(m) ∈ Rn. Let y ∈ Rn. Show that

m∑
j=1

∥∥∥x(j) − 1

m

m∑
p=1

x(p)
∥∥∥2 ≤ m∑

j=1

∥∥∥x(j) − y
∥∥∥2.

That is, the barycenter is the point in Rn that minimizes the sum of squared distances.

Exercise 4. Let n ≥ 2 be a positive integer. Let x = (x1, . . . , xn) ∈ Rn. For any x, y ∈ Rn,
define 〈x, y〉 :=

∑n
i=1 xiyi and ||x|| := 〈x, x〉1/2. Let Sn−1 := {x ∈ Rn : ||x|| = 1} be the

sphere of radius 1 centered at the origin. Let x ∈ Sn−1 be fixed. Let v be a random vector
that is uniformly distributed in Sn−1. Prove:

E |〈x, v〉| ≥ 1

10
√
n
.

Exercise 5. Run PCA on a “planted” data set on a computer, consisting of 100 samples
in R10 of the random variable (X, Y, Z3, . . . , Z10) ∈ R10 where X, Y are standard Gaussian
random variables, Zi is a mean i Gaussian random variable with variance 10−2, for all
3 ≤ i ≤ 10, and X, Y, Z3, . . . , Z10 are all independent. (You can use your favorite computer
program to simulate the random variables.)

Then, run PCA on Airline Safety Information, and try to find out something interesting
(this part of the question is intentionally open ended). The data is here, with accompanying
article here. (See also here.)

https://github.com/fivethirtyeight/data/tree/master/airline-safety
https://fivethirtyeight.com/features/should-travelers-avoid-flying-airlines-that-have-had-crashes-in-the-past/
https://data.fivethirtyeight.com/
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Exercise 6. Run a k-means clustering algorithm (e.g. Lloyd’s algorithm) on a “planted”
data set in R2 consisting of 50 samples from (X, Y ) and another 50 samples from (Z,W )
where X, Y, Z,W are all independent Gaussians with variance 1, X,W have mean zero, Y
has mean 1 and Z has mean 2. Try at least the values k = 2, 3, 4, 5.

Then, run a k-means clustering algorithm on Airline Safety Information, and try to find out
something interesting (this part of the question is intentionally open ended).

Exercise 7. Let n be a positive integer. Let cn be the number of boolean functions
f : {−1, 1}n → {−1, 1} that are linear threshold functions. This quantity is of interest since
it roughly quantifies the “expressive power” of linear threshold functions for the supervised
learning problem. It is known that

cn = 2n2(1+o(1))

So, the supervised learning problem asks for the linear threshold function that fits the given
data among a family of functions of super-exponential size. For another perspective on the
“expressive power” of linear threshold functions, we will look into the VC-dimension later in
the course.

Using an inductive argument prove the weaker lower bound

cn ≥ 2n(n−1)/2.

(Hint: induct on n. If f : {−1, 1}n → {−1, 1}, consider f : {−1, 1}n+1 → {−1, 1} defined
(partially for now) so that f(x1, . . . , xn,−1) := f(x1, . . . , xn) for all (x1, . . . , xn) ∈ {−1, 1}n.
How many ways can we define f on the remaining “half” of the hypercube {−1, 1}n+1 such
that f is a linear threshold function?)

As we will discuss later, it is of interest to state the general learning problem for compositions
of linear threshold functions (i.e. neural networks). In this case, asymptotics for the number
of such functions were recently found in https://arxiv.org/pdf/1901.00434.pdf.

Exercise 8. Let a > 0. Let X(1), . . . , X(k) ∈ Rn be independent identically distributed
samples from a Gaussian random vector with mean (a, 0, . . . , 0) and identity covariance
matrix). Let X(k+1), X(k+2), . . . , X(2k) ∈ Rn be independent identically distributed samples
from a Gaussian random vector with mean (−a, 0, . . . , 0), where a > 0 is known. As in our
analysis of the perceptron algorithm, define

B := max
i=1,...,2k

∣∣∣∣X(i)
∣∣∣∣

Θ := min
{
||w|| : ∀ 1 ≤ i ≤ 2k yi〈w,X(i)〉 ≥ 1

}
.

Define y1 = · · · = yk := 1, and yk+1 = · · · = y2k := −1.

Give some reasonable estimates for EB and EΘ as a function of a.

https://arxiv.org/pdf/1901.00434.pdf

