Please provide complete and well-written solutions to the following exercises.

Due October 11, at the beginning of class.

Homework 2

Exercise 1. Let M be a $k \times k$ real symmetric matrix. Then M is positive semidefinite if and only if there exists a real $k \times k$ matrix R such that

$$M = RR^T$$
.

In either case, if $r^{(i)}$ denotes the i^{th} row of R, we have

$$m_{ij} = \langle r^{(i)}, r^{(j)} \rangle, \quad \forall 1 \le i, j \le k.$$

Exercise 2. Let μ be a Borel measure on \mathbf{R}^n such that the measure of any open set in \mathbf{R}^n is positive. Let $m \colon \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ be continuous with $\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} |m(x,y)|^2 d\mu(x) d\mu(y) < \infty$. Show that the following two positive semidefinite conditions on m are equivalent:

• $\forall p \geq 1$, for all $z^{(1)}, \ldots, z^{(p)} \in \mathbf{R}^n$, for all $\beta_1, \ldots, \beta_p \in \mathbf{R}$ we have

$$\sum_{i,j=1}^{p} \beta_i \beta_j m(z^{(i)}, z^{(j)}) \ge 0.$$

• $\forall f \in L_2(\mu)$, we have

$$\int_{\mathbf{R}^n} \int_{\mathbf{R}^n} f(x)f(y)m(x,y)d\mu(x)d\mu(y) \ge 0.$$

From either condition, we should see that the converse of Mercer's Theorem holds. We should also be able to deduce various properties of positive semidefinite (PSD) kernels. For example, a nonnegative linear combination of PSD kernels is PSD.

Exercise 3. For each kernel function $m: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ below, find an inner product space C and a map $\phi: \mathbf{R}^n \to C$ such that

$$m(x,y) = \langle \phi(x), \phi(y) \rangle_C, \quad \forall x, y \in \mathbf{R}^n.$$

Conclude that each such m is a positive semidefinite function, in the sense stated in Mercer's Theorem.

- $m(x,y) := 1 + \langle x,y \rangle \ \forall \ x,y \in \mathbf{R}^n$.
- $m(x,y) := (1+\langle x,y\rangle)^d \ \forall \ x,y \in \mathbf{R}^n$, where d is a fixed positive integer.
- $m(x, y) := \exp(-||x y||^2)$.

Hint: it might be helpful to consider d-fold iterated tensor products of the form $x^{\otimes d} = x \otimes x \otimes \cdots \otimes x$, along with their corresponding inner products.

Exercise 4. Show that the set of conjunctions is contained in the set of linear threshold functions. That is, given a boolean conjunction $f: \{0,1\}^n \to \{0,1\}$, find $w \in \mathbf{R}^n, t \in \mathbf{R}$ such that

$$f(x) = 1_{\{\langle w, x \rangle > t\}}, \quad \forall x = (x_1, \dots, x_n) \in \{0, 1\}^n.$$

Exercise 5. Here is an elementary example of "boosting" for random variables.

Suppose X is a real-valued random variable, and X_1, X_2, \ldots are independent copies of X. Let $a < b, a, b \in \mathbf{R}$. Suppose it is known that

$$\mathbb{P}(a \le X \le b) > 3/4.$$

Fix a positive integer n. Let Y_n be a median of X_1, \ldots, X_n . Then Y_n is a "boosted" version of X in the sense that

$$\mathbb{P}(a \le Y_n \le b) \ge 1 - \sum_{j=\lfloor n/2 \rfloor}^{n} \binom{n}{j} \alpha^j,$$

where $\alpha := \mathbb{P}(X \notin [a, b])$.

(Optional:) Show additionally that

$$\mathbb{P}(a \le Y_n \le b) \ge 1 - (1 + o(1))\sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{n}} \frac{2^n \alpha^{\lfloor n/2 \rfloor}}{1 - \alpha} \ge 1 - (4\alpha)^{\lfloor n/2 \rfloor} \cdot O(1).$$

Exercise 6. Explain why taking the expected value of the inequality for the average number of mis-classifications of Adaboost does not guarantee PAC learning.

Exercise 7. Show that the Sauer-Shelah lemma is sharp for all n, d. That is, find \mathcal{F} with $d := \text{VCdim}(\mathcal{F})$ such that

$$|\mathcal{F}| = \sum_{i=0}^{d} \binom{n}{i}.$$

(Hint: consider the set of $x \in \{0,1\}^n$ such that x has at most d entries equal to 1.)

Exercise 8. Show that both our notions of ε -net agree (up to changing the constant ε) in the following case: Ω is a metric space, \mathbb{P} is a probability law on Ω , $A = \{B(x,r): x \in \Omega, r > 0\}$ and there exist $a, b, c_1, c_2 > 0$ such that $c_1 r^a \leq \mathbb{P}(B(x,r)) \leq c_2 r^b$ for all $x \in \Omega, r > 0$.

Exercise 9. For any $f \in \mathcal{F}$, show that

$$VCdim(\mathcal{F}) = VCdim(D(f)).$$

(Recall: \mathcal{F} is a subset of $\{0,1\}$ -valued functions on a set A. Let $f,g \in \mathcal{F}$. Since $f=1_{\{f=1\}}$, we can identify f with the set where it is 1 and extend set operations to functions in \mathcal{F} . For example, $f\Delta g := 1_{\{f=1\}\Delta\{g=1\}}$, where Δ denotes symmetric difference. And we define

$$D(f) := \{ f \Delta g \colon g \in \mathcal{F} \}.)$$