Graduate Statistical Learning Theory Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due November 8, at the beginning of class.

Homework 3

Exercise 1. Let @ > 0. Let X, ..., X® < R™ be independent identically distributed
samples from a Gaussian random vector with mean (a,0,...,0) and identity covariance
matrix). Let X*+D X*+2) Xk ¢ R” be independent identically distributed samples
from a Gaussian random vector with mean (—a,0,...,0), where @ > 0 is known. Define
Yyp ==y =1, and yp11 = - - - = Yo, 1= —1. With this “planted” data with a = 5,n =
3, k = 20, run the perceptron algorithm. (You will have to modify the algorithm to terminate
in case a separating hyperplane does not exist). Then, run a support-vector machine, and
compare the quality of the results and the run-time.

Exercise 2. Show that any boolean function f: {0,1}" — {0,1} can be written as a DNF
formula of size at most n2". (Here the size of the DNF formula f refers to the number
of AND and OR operations that are used to construct f.) (Hint: consider the function
f:{0,1}* — {0,1} defined by f := 1(,. ). This function can be written as a conjunction
with n — 1 AND operations.)

Exercise 3. Give an efficient PAC learning algorithm for the class of axis-aligned rectangles
in the plane. (So, in this case, F is the function class consisting of all functions of the form
1z where R C R? is a rectangle whose edges are parallel to the z and y axes, respectively.)
(Note: if you want you can compute the VC-dimension of this class, but simply appealing
to a VC-dimension bound does not give an efficient algorithm a priori.) (Hint: consider
the smallest rectangle containing all points that are known, via random sampling, to be
contained in the unknown rectangle.)

(Optional: can you generalize your results to axis-aligned boxes in R"?)

Exercise 4.

e Give an example of a class of boolean functions F such that the VC-dimension of F
is 1, while F contains infinitely many functions.

e Give an example of a class of boolean functions F such that the VC-dimension of F
is not finite.

e For any I C {1,...,n}, define the parity function h;: {0,1}" — {0,1} by

hi(z) = (le) mod 2, Vo= (x,...,z,) €{0,1}".
iel
Find the VC-dimension of the class F = {h;: I C {1,...,n}} of all parity functions.
Exercise 5. Suppose x,a > 1. Assume that

r < alog(x).
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Then
xr < 2aloga.

Exercise 6. High-dimensional geometry is much different than low-dimensional geometry,
as this exercise demonstrates.

e Show that “most” of the mass of an n-dimensional Gaussian is concentrated on the
sphere of radius \/n centered at the origin. That is, if X1,..., X, are n i.i.d. standard
Gaussian random variables, then

lim P(X?+ -+ X2 € (n—V3n,n+V3n) > 2/3.

n—oo

In fact, you should be able to compute the limit exactly.

e Generally, “most” of the mass of a high-dimensional convex body is concentrated
near the surface of the body. Let Vol, denote the usual volume in R™ (so that the
volume of a unit square [0, 1]™ is 1.) For example, show that, for any € > 0,

lim voln([—%u — o), %(1 - 5)]”) — 0.

n—oo
o Let B, :={x € R™: ||z|| < 1} be the unit ball centered at the origin. Show that
lim Vol,(B,) = 0.
n—o0
o Let Cp, ={z e {[—1/2,1/2]": Jy € {—1/2,1/2}" such that ||z —y|| < 1/2}} be the
union of balls of radius 1/2 centered at the corners of the hypercube [—1/2,1/2]".
Let D, :={xz € R™: ||z|| < r} be a ball of radius r centered at the origin, where r

is chosen to be as large as possible so that D,, does not intersect the interior of C),.
(Put another way, D, is tangent to the balls C,,.) Find

lim Vol, (D).
n—oo
Before you do the computation, try to guess what the answer should be.

Exercise 7. Let X be a real-valued random variable with mean zero. Then the following
are equivalent

e 3 > 0 such that, for all ¢ € R, EetX < ¢t*0®/2,

e 3b > 0 such that, for all t > 0, P(|X]| > t) < 2e7".
e J ¢ > 0 such that EesX” < 2.

e 3d > 0 such that (E|X|")'/? <d\/p,Vp>1.

(If you need hints look at Proposition 2.5.2 in Vershynin’s book.)

Exercise 8. Show that |[-[|,, is a norm on the set of sub-Gaussian random variables.

Exercise 9. Let Y7, Y5, ... be a sequence of sub-Gaussian random variables. (These random
variables are not assumed to be independent.) Prove that
Y;
E max ¥l

< 100sup ||Y; .
il \/14log(i+1) iz? I¥ll,,



Conclude that, for any integer n > 2, we have
| < : ;
E max |¥;| < 100v/logn - max [[Yil|,, -

(Hint: there are a few related ways to do this. Your first step could use the union bound of
the form P(max;>, X; > ¢) < > .o P(X; > 1).)

Exercise 10. Using the argument for Dudley’s inequality, deduce the following concentration
inequality. For any u > 0,

]P’(sup X, < 1030/ V9og N (A, d,e)de + u - diam(A)) >1 -2,
acA 0

Here diam(A) := sup, ye 4 d(a,a’). (Hint: show sup,e 4 |Xoe, (@) — Xopo)| < 274/ 10g [Nis1 [+
uy, with probability at least 1 — 2¢~“. Then sum over k, use the union bound, and choose
the uy appropriately, e.g. try ux = u + Vk —m.)

Exercise 11 (Optional). Show that Empirical Risk Minimization of Linear Threshold Func-
tions in R" is computationally hard. More precisely, we consider the sequence of problems
in which the dimension n is large, ¢ is a fixed positive integer, and the number of samples
m is equal to cn.

Hint: You can prove the hardness by a reduction from the following problem, known as MAX
FS: We are given a system of linear inequalities, Az > b with A an m x n matrix, b € R™.
That is, we are given a set of m linear inequalities in n variables (x1,...,2,) =: . The
goal is to find the largest possible subset of {1,...,m} that has a solution (i.e. a feasible
solution). That is, the goal is to find

max{|S|: S C{l,...,m}, Iz € R", (Ax); > b;, Vie S}

It has been shown (Sankaran 1993) that the problem MAX FS is NP-hard. That is, if one
could solve MAX FS in polynomial time (in n), then P=NP.

Show that any algorithm that minimizes the empirical risk for any training sample S €
(R™ x {—1,1})™ can be used to solve the MAX FS problem with parameters m,n. Hint:
Define a mapping that transforms linear inequalities in n variables into labeled points in R",
and a mapping that transforms vectors in R™ to halfspaces, such that a vector w satisfies an
inequality ¢ if and only if the labeled point that corresponds to ¢ is classified correctly by
the halfspace corresponding to w. Conclude that the problem of empirical risk minimization
for halfspaces in also NP-hard (that is, if it can be solved in time polynomial in the sample
size, m, and the Euclidean dimension, n, then P=NP).



