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1. Question 1

• Let X : Ω→ R be a random variable such that

P(X > 0) > 0.

Show that there exists a positive integer n such that P(X > 1/n) > 0.
• Let X1, X2, . . .Ω → R be random variables such that EXi = 0 and EX2

i = 1 for all
i ≥ 1. Show that

P(Xn > n for infinitely many n ≥ 1) = 0.

Solution. Note that {X > 1} ⊇ {X > 1/2} ⊇ {X > 1/3} ⊇ · · · . So, from Continuity of
the Probability Law,

lim
n→∞

P(X > 1/n) = P(∩∞n=1{X > 1/n}) = P(X > 0) > 0.

In the last line, we used our assumption. So, by definition of the limit, there exists a positive
integer n such that P(X > 1/n) > 0.

We now do the second part. Note that var(Xn) = EX2
n− (EXn)2 = 1 for all n ≥ 1. From

Chebyshev’s inequality,

P(Xn > n) ≤ var(Xn)

n2
=

1

n2
, ∀n ≥ 1.

Therefore, ∑
n≥1

P(Xn > n) ≤
∑
n≥1

1

n2
<∞.

So, from the Borel-Cantelli Lemma, the second claim follows.

2. Question 2

Let X1, X2, . . . be independent identically distributed random variables with P(X1 = 1) =
P(X1 = −1) = 1/2. Let a1, a2, . . . ∈ R. Show that, for any n ≥ 1,

P
( n∑
i=1

aiXi ≥ t
)
≤ e

− t2

2
∑n

i=1
a2
i , ∀ t ≥ 0.

(You can use the following inequality without proof: cosh(x) ≤ ex
2/2, ∀ x ∈ R.)

Solution. By dividing a1, . . . , an by a constant, we may assume
∑n

i=1 a
2
i = 1. Let α > 0.

Using the (exponential) moment method as in Markov’s inequality, and αt ≥ 0,

P(
n∑
i=1

aiXi ≥ t) = P(eα
∑n

i=1 aiXi ≥ eαt) ≤ e−αtEeα
∑n

i=1 aiXi = e−αt
n∏
i=1

EeαaiXi .

The last equality used independence of X1, X2, . . .. Using an explicit computation and the
above cosh inequality,

EeαaiXi = (1/2)(eαai + e−αai) = cosh(αai) ≤ eα
2a2i /2, ∀ i ≥ 1.
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In summary, for any t ≥ 0

P(
n∑
i=1

aiXi ≥ t) ≤ e−αteα
2
∑n

i=1 a
2
i /2 = e−αt+α

2/2.

Since α > 0 is arbitrary, we choose α to minimize the right side. This minimum occurs when
α = t, so that −αt+ α2/2 = −t2/2, giving the desired bound.

3. Question 3

Let n be a positive integer. Suppose X1, X2, . . . are independent random variables that
are uniformly distributed in the set {1, 2, . . . , n}. We can think of {1, 2, . . . , n} as a set of
baseball cards, and for any i ≥ 1, Xi is a uniformly random baseball card that you have
found. Your goal is to collect all of the n baseball cards.

For any 0 ≤ j ≤ n, let Tj be the first time that you have collected exactly j baseball cards.
That is, Tj is the smallest integer k such that {X1, . . . , Xk} consists of exactly k distinct
elements. For example, T0 = 0, T1 = 1, T2 is 2 when X2 6= X1, T2 is 3 when X2 = X1 and
X3 6= X1, and so on. (You may assume that P(Tj <∞) = 1 for all 0 ≤ j ≤ n.)

For any 1 ≤ j ≤ n, let Yj := Tj − Tj−1 be the time it takes to go from a collection of j− 1
distinct baseball cards to a collection of j distinct baseball cards.

Show that Y2 and Y3 are independent, geometric random variables with parameters n−1
n

and n−2
n

, respectively.
(Recall that a geometric random variable Y with parameter 0 < p < 1 is a positive-integer

valued random variable such that P(Y = k) = (1− p)k−1p for any k ≥ 1.)
Solution. Let a, b be positive integers. To prove independence, we need to show that

P(Y2 = a, Y3 = b) = P(Y2 = a)P(Y3 = b).

In fact, to complete the problem, it suffices to show that

P(Y2 = a, Y3 = b) =
(n− 1)(n− 2)

n2

1

na−1

( 2

n

)b−1
,

since summing over b ≥ 1 shows that Y2 is geometric, and similarly for summing over a ≥ 1.
Note that

{Y2 = a, Y3 = b} = {Xj = X1 ∀ 1 ≤ j ≤ a− 1, Xa 6= X1,

Xk ∈ {X1, Xa} ∀a < k < b+ a, Xa+b /∈ {X1, Xa}}.

Since the random variablesX1, X2, . . . are independent and uniformly distributed in {1, . . . , n},
we then have

P(Y2 = a, Y3 = b) =
( a−1∏
j=1

P(Xj = 1)
)
P(Xa 6= 1)

( a+b−1∏
j=a+1

P(Xj ∈ {1, 2})
)
P(Xb /∈ {1, 2})

=
( a−1∏
j=1

1

n

)n− 1

n

( a+b−1∏
j=a+1

2

n

)n− 2

n
=

1

na−1

( 2

n

)b−1 (n− 1)(n− 2)

n2
.
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4. Question 4

We continue the definitions and notation from the previous problem. In this problem, you
may assume that Y1, . . . , Yn are independent random variables and for any 1 ≤ j ≤ n, Yj is
a geometric random variable with parameter n−j+1

n
.

You may use the following fact: a geometric random variable Y with parameter 0 < p < 1
has mean 1

p
and variance 1−p

p
.

Note that Tn = Y1 + · · ·+ Yn.

• Show that ETn = n log n+O(n) and var(Tn) = O(n2).
• Conclude that

Tn
n log n

converges in probability to 1 as n→∞.

(Hint: Can you bound P(|Tn − n log n+O(n)| > tn)?)
So, if you want to complete a set of 100 distinct baseball cards, you would need to randomly

sample about 100 log 100 ≈ 460 baseball cards.
(As usual, O(a) denotes any quantity whose absolute value is bounded by a constant

multiple ca of a.)
Solution. By integral Comparison (as in Calculus 2), we have

ETn =
n∑
i=1

EYi =
n∑
i=1

n

n− i+ 1
=

n∑
i=1

n

i
= n

n∑
i=1

1

i

= n(

∫ n

1

1

x
dx+O(1)) = n log(n) +O(n).

Also, by independence, we have

varTn =
n∑
i=1

varYi =
n∑
i=1

i− 1

n

n

n− i+ 1
=

n∑
i=1

i− 1

n− i+ 1
≤

n∑
i=1

n = O(n2).

So, from Chebyshev’s Inequality, for any t > 0

P (|Tn − n log n+O(n)| > tn) ≤ var(Tn)

t2n2
≤ O(t−2).

That is,

P

(∣∣∣∣ Tn
n log n

− 1 +O(1/ log n)

∣∣∣∣ > t

log n

)
≤ O(t−2).

Or, replacing t with t log n,

P

(∣∣∣∣ Tn
n log n

− 1 +O(1/ log n)

∣∣∣∣ > t

)
≤ O((t log n)−2).

In particular, for any t > 0, limn→∞P(| Tn
n logn

− 1| > t) = 0.
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5. Question 5

Find a sequence of random variables X1, X2, . . . : Ω→ R such that

• X1, X2, . . . converges in probability to 0.
• X1, X2, . . . does not converge almost surely to 0.
• X1, X2, . . . does not converge in L2 to 0.

Prove that your example of X1, X2, . . . satisfies the above three properties.
(As usual, it might be easiest to use Ω = [0, 1] with P Lebesgue measure on Ω.)
Solution. We use a traveling bump with growing height. Let n ≥ 1 and let j = j(n) ≥ 0

be the unique integer such that 2j ≤ n < 2j+1. Define

Xn := 2j1
[n−2j

2j
,n−2j+1

2j
]
.

Note that {Xn 6= 0} = [n−2
j

2j
, n−2

j+1
2j

], and this interval has width 2−j. Since j(n) → ∞ as
n→∞, we therefore have

lim
n→∞

P(Xn 6= 0) = lim
j→∞

2−j = 0.

Therefore, X1, X2, . . . converges in probability to 0.
Now, X1, X2, . . . does not converge in L2 to 0 since

EX2
n = 22j2−j = 2j →∞ as n→∞.

Finally, X1, X2, . . . does not almost surely to 0 since ∪2k≤n<2k+1 [n−2
k

2k
, n−2

k+1
2k

] = [0, 1]. So, if
t ∈ [0, 1] is fixed, the sequence of numbers X1(t), X2(t), . . . has an infinite number of 0′s and
an infinite number of integers larger than 1. That is, limn→∞Xn(t) does not exist, for all
t ∈ [0, 1], so that

P( lim
n→∞

Xn = 0) = 0 6= 1.
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