60850 Midterm 1 Solutions¹

1. Question 1

• Let $X: \Omega \to \mathbf{R}$ be a random variable such that

Show that there exists a positive integer n such that P(X > 1/n) > 0.

• Let $X_1, X_2, \dots \Omega \to \mathbf{R}$ be random variables such that $\mathbf{E}X_i = 0$ and $\mathbf{E}X_i^2 = 1$ for all $i \geq 1$. Show that

$$\mathbf{P}(X_n > n \text{ for infinitely many } n \ge 1) = 0.$$

Solution. Note that $\{X>1\}\supseteq\{X>1/2\}\supseteq\{X>1/3\}\supseteq\cdots$. So, from Continuity of the Probability Law,

$$\lim_{n \to \infty} \mathbf{P}(X > 1/n) = \mathbf{P}(\cap_{n=1}^{\infty} \{X > 1/n\}) = \mathbf{P}(X > 0) > 0.$$

In the last line, we used our assumption. So, by definition of the limit, there exists a positive integer n such that $\mathbf{P}(X > 1/n) > 0$.

We now do the second part. Note that $var(X_n) = \mathbf{E}X_n^2 - (\mathbf{E}X_n)^2 = 1$ for all $n \ge 1$. From Chebyshev's inequality,

$$\mathbf{P}(X_n > n) \le \frac{\operatorname{var}(X_n)}{n^2} = \frac{1}{n^2}, \quad \forall n \ge 1.$$

Therefore,

$$\sum_{n\geq 1} \mathbf{P}(X_n > n) \leq \sum_{n\geq 1} \frac{1}{n^2} < \infty.$$

So, from the Borel-Cantelli Lemma, the second claim follows.

2. Question 2

Let $X_1, X_2, ...$ be independent identically distributed random variables with $\mathbf{P}(X_1 = 1) = \mathbf{P}(X_1 = -1) = 1/2$. Let $a_1, a_2, ... \in \mathbf{R}$. Show that, for any $n \ge 1$,

$$\mathbf{P}\left(\sum_{i=1}^{n} a_i X_i \ge t\right) \le e^{-\frac{t^2}{2\sum_{i=1}^{n} a_i^2}}, \qquad \forall t \ge 0.$$

(You can use the following inequality without proof: $\cosh(x) \le e^{x^2/2}$, $\forall x \in \mathbf{R}$.)

Solution. By dividing a_1, \ldots, a_n by a constant, we may assume $\sum_{i=1}^n a_i^2 = 1$. Let $\alpha > 0$. Using the (exponential) moment method as in Markov's inequality, and $\alpha t \geq 0$,

$$\mathbf{P}(\sum_{i=1}^{n} a_{i} X_{i} \ge t) = \mathbf{P}(e^{\alpha \sum_{i=1}^{n} a_{i} X_{i}} \ge e^{\alpha t}) \le e^{-\alpha t} \mathbf{E} e^{\alpha \sum_{i=1}^{n} a_{i} X_{i}} = e^{-\alpha t} \prod_{i=1}^{n} \mathbf{E} e^{\alpha a_{i} X_{i}}.$$

The last equality used independence of X_1, X_2, \ldots Using an explicit computation and the above cosh inequality,

$$\mathbf{E}e^{\alpha a_i X_i} = (1/2)(e^{\alpha a_i} + e^{-\alpha a_i}) = \cosh(\alpha a_i) \le e^{\alpha^2 a_i^2/2}, \qquad \forall i \ge 1.$$

¹March 10, 2018, © 2018 Steven Heilman, All Rights Reserved.

In summary, for any $t \geq 0$

$$\mathbf{P}(\sum_{i=1}^{n} a_i X_i \ge t) \le e^{-\alpha t} e^{\alpha^2 \sum_{i=1}^{n} a_i^2/2} = e^{-\alpha t + \alpha^2/2}.$$

Since $\alpha > 0$ is arbitrary, we choose α to minimize the right side. This minimum occurs when $\alpha = t$, so that $-\alpha t + \alpha^2/2 = -t^2/2$, giving the desired bound.

3. Question 3

Let n be a positive integer. Suppose X_1, X_2, \ldots are independent random variables that are uniformly distributed in the set $\{1, 2, \ldots, n\}$. We can think of $\{1, 2, \ldots, n\}$ as a set of baseball cards, and for any $i \geq 1$, X_i is a uniformly random baseball card that you have found. Your goal is to collect all of the n baseball cards.

For any $0 \le j \le n$, let T_j be the first time that you have collected exactly j baseball cards. That is, T_j is the smallest integer k such that $\{X_1, \ldots, X_k\}$ consists of exactly k distinct elements. For example, $T_0 = 0$, $T_1 = 1$, T_2 is 2 when $X_2 \ne X_1$, T_2 is 3 when $X_2 = X_1$ and $X_3 \ne X_1$, and so on. (You may assume that $\mathbf{P}(T_j < \infty) = 1$ for all $0 \le j \le n$.)

For any $1 \le j \le n$, let $Y_j := T_j - T_{j-1}$ be the time it takes to go from a collection of j-1 distinct baseball cards to a collection of j distinct baseball cards.

Show that Y_2 and Y_3 are independent, geometric random variables with parameters $\frac{n-1}{n}$ and $\frac{n-2}{n}$, respectively.

(Recall that a geometric random variable Y with parameter $0 is a positive-integer valued random variable such that <math>\mathbf{P}(Y = k) = (1 - p)^{k-1}p$ for any $k \ge 1$.)

Solution. Let a, b be positive integers. To prove independence, we need to show that

$$\mathbf{P}(Y_2 = a, Y_3 = b) = \mathbf{P}(Y_2 = a)\mathbf{P}(Y_3 = b).$$

In fact, to complete the problem, it suffices to show that

$$\mathbf{P}(Y_2 = a, Y_3 = b) = \frac{(n-1)(n-2)}{n^2} \frac{1}{n^{a-1}} \left(\frac{2}{n}\right)^{b-1},$$

since summing over $b \ge 1$ shows that Y_2 is geometric, and similarly for summing over $a \ge 1$. Note that

$$\{Y_2 = a, Y_3 = b\} = \{X_j = X_1 \, \forall \, 1 \le j \le a - 1, \ X_a \ne X_1, \\ X_k \in \{X_1, X_a\} \, \forall a < k < b + a, \ X_{a+b} \notin \{X_1, X_a\} \}.$$

Since the random variables X_1, X_2, \ldots are independent and uniformly distributed in $\{1, \ldots, n\}$, we then have

$$\mathbf{P}(Y_2 = a, Y_3 = b) = \left(\prod_{j=1}^{a-1} \mathbf{P}(X_j = 1)\right) \mathbf{P}(X_a \neq 1) \left(\prod_{j=a+1}^{a+b-1} \mathbf{P}(X_j \in \{1, 2\})\right) \mathbf{P}(X_b \notin \{1, 2\})$$
$$= \left(\prod_{j=1}^{a-1} \frac{1}{n}\right) \frac{n-1}{n} \left(\prod_{j=a+1}^{a+b-1} \frac{2}{n}\right) \frac{n-2}{n} = \frac{1}{n^{a-1}} \left(\frac{2}{n}\right)^{b-1} \frac{(n-1)(n-2)}{n^2}.$$

4. Question 4

We continue the definitions and notation from the previous problem. In this problem, you may assume that Y_1, \ldots, Y_n are independent random variables and for any $1 \leq j \leq n, Y_j$ is a geometric random variable with parameter $\frac{n-j+1}{n}$.

You may use the following fact: a geometric random variable Y with parameter $0 has mean <math>\frac{1}{p}$ and variance $\frac{1-p}{p}$. Note that $T_n = Y_1 + \cdots + Y_n$.

- Show that $\mathbf{E}T_n = n \log n + O(n)$ and $\operatorname{var}(T_n) = O(n^2)$.
- Conclude that

$$\frac{T_n}{n\log n}$$

converges in probability to 1 as $n \to \infty$.

(Hint: Can you bound $\mathbf{P}(|T_n - n \log n + O(n)| > tn)$?)

So, if you want to complete a set of 100 distinct baseball cards, you would need to randomly sample about $100 \log 100 \approx 460$ baseball cards.

(As usual, O(a) denotes any quantity whose absolute value is bounded by a constant multiple ca of a.)

Solution. By integral Comparison (as in Calculus 2), we have

$$\mathbf{E}T_n = \sum_{i=1}^n \mathbf{E}Y_i = \sum_{i=1}^n \frac{n}{n-i+1} = \sum_{i=1}^n \frac{n}{i} = n \sum_{i=1}^n \frac{1}{i}$$
$$= n \left(\int_1^n \frac{1}{x} dx + O(1) \right) = n \log(n) + O(n).$$

Also, by independence, we have

$$varT_n = \sum_{i=1}^n varY_i = \sum_{i=1}^n \frac{i-1}{n} \frac{n}{n-i+1} = \sum_{i=1}^n \frac{i-1}{n-i+1} \le \sum_{i=1}^n n = O(n^2).$$

So, from Chebyshev's Inequality, for any t > 0

$$\mathbf{P}(|T_n - n\log n + O(n)| > tn) \le \frac{\text{var}(T_n)}{t^2n^2} \le O(t^{-2}).$$

That is,

$$\mathbf{P}\left(\left|\frac{T_n}{n\log n} - 1 + O(1/\log n)\right| > \frac{t}{\log n}\right) \le O(t^{-2}).$$

Or, replacing t with $t \log n$,

$$\mathbf{P}\left(\left|\frac{T_n}{n\log n} - 1 + O(1/\log n)\right| > t\right) \le O((t\log n)^{-2}).$$

In particular, for any t > 0, $\lim_{n \to \infty} \mathbf{P}(|\frac{T_n}{n \log n} - 1| > t) = 0$.

5. Question 5

Find a sequence of random variables $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ such that

- X_1, X_2, \ldots converges in probability to 0.
- X_1, X_2, \ldots does **not** converge almost surely to 0.
- X_1, X_2, \ldots does **not** converge in L_2 to 0.

Prove that your example of X_1, X_2, \ldots satisfies the above three properties.

(As usual, it might be easiest to use $\Omega = [0, 1]$ with **P** Lebesgue measure on Ω .)

Solution. We use a traveling bump with growing height. Let $n \ge 1$ and let $j = j(n) \ge 0$ be the unique integer such that $2^j \le n < 2^{j+1}$. Define

$$X_n := 2^j 1_{\left[\frac{n-2^j}{2^j}, \frac{n-2^j+1}{2^j}\right]}.$$

Note that $\{X_n \neq 0\} = \left[\frac{n-2^j}{2^j}, \frac{n-2^j+1}{2^j}\right]$, and this interval has width 2^{-j} . Since $j(n) \to \infty$ as $n \to \infty$, we therefore have

$$\lim_{n \to \infty} \mathbf{P}(X_n \neq 0) = \lim_{j \to \infty} 2^{-j} = 0.$$

Therefore, X_1, X_2, \ldots converges in probability to 0.

Now, X_1, X_2, \ldots does not converge in L_2 to 0 since

$$\mathbf{E}X_n^2 = 2^{2j}2^{-j} = 2^j \to \infty \text{ as } n \to \infty.$$

Finally, X_1, X_2, \ldots does not almost surely to 0 since $\bigcup_{2^k \le n < 2^{k+1}} \left[\frac{n-2^k}{2^k}, \frac{n-2^k+1}{2^k} \right] = [0, 1]$. So, if $t \in [0, 1]$ is fixed, the sequence of numbers $X_1(t), X_2(t), \ldots$ has an infinite number of 0's and an infinite number of integers larger than 1. That is, $\lim_{n \to \infty} X_n(t)$ does not exist, for all $t \in [0, 1]$, so that

$$\mathbf{P}(\lim_{n\to\infty} X_n = 0) = 0 \neq 1.$$