Graduate Probability, 60850, Sprin	g 2018, Notre Dame	Instructor: Steven Heilman
Name:	ND ID:	Date:
Signature:(By signing here, I certify that I ha		refraining from cheating.)

Final Exam

This exam contains 6 pages (including this cover page) and 4 problems. Check to see if any pages are missing. Enter all requested information on the top of this page.

You may *not* use the internet on this exam. You *can* use the course textbook, course notes and homeworks. You are required to show your work on each problem on the exam. The following rules apply:

- This exam is due 96 hours from now, to be submitted electronically to the email: sheilman@nd.edu. For every ten minutes that the exam is late, 1 point will be deducted from the score, rounded arbitrarily.
- If you use a theorem or proposition from class/notes/book/homework you must indicate this and explain why the theorem may be applied. It is okay to just say, "by some theorem/proposition from class."
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.

Do not write in the table to the right. Good luck!^a

Problem	Points	Score
1	30	
2	35	
3	40	
4	45	
Total:	150	

 $[^]a\mathrm{May}$ 6, 2018, © 2018 Steven Heilman, All Rights Reserved.

1. (30 points) This problem proves a monotone convergence theorem for conditional expectation.

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Let $0 \leq X_1 \leq X_2 \leq \cdots$ be \mathcal{F} -measurable random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. Let $X := \lim_{n \to \infty} X_n$ be the pointwise limit of X_1, X_2, \ldots Assume $\mathbf{E}X < \infty$. Let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra. Show that

$$\lim_{n\to\infty} \mathbf{E}(X_n|\mathcal{G}) = \mathbf{E}(X|\mathcal{G}).$$

(Hint: first prove that the sequence $\mathbf{E}(X_1|\mathcal{G}), \mathbf{E}(X_2|\mathcal{G}), \dots$ has a pointwise limit, almost surely.)

2. (35 points) Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. As usual, if $X : \Omega \to \mathbf{R}$ is measurable, define $||X||_1 := \mathbf{E}|X|$. Let H be an L_1 bounded set of random variables on $(\Omega, \mathcal{F}, \mathbf{P})$, i.e. assume that $\sup_{X \in H} ||X||_1 < \infty$.

Suppose H is not uniformly integrable. Show that there exists $\varepsilon > 0$ and there exist **disjoint** sets $A_1, A_2, \ldots \subseteq \Omega$ such that, for all $n \geq 1$, we have

$$\sup_{X \in H} \mathbf{E} |X| \, 1_{A_n} \ge \varepsilon.$$

(You are not allowed to use without proof Theorem 6.60 cited in the Additional Comments section of the notes.)

(Hint: start by using Exercise 6.41 in the notes to get $\varepsilon > 0$. Let $\{\delta_{jk}\}_{1 \leq j < k < \infty}$ be nonnegative real numbers such that $\sum_{1 \leq j < k < \infty} \delta_{jk} < \varepsilon/2$. Next, by inducting on k, find $X_1, X_2, \ldots \in \mathcal{H}$ and sets $B_1, B_2, \ldots \in \mathcal{F}$ such that

$$\mathbf{E} |X_k| 1_{B_k} > \varepsilon \qquad \forall \ k \ge 1.$$

$$\mathbf{E} |X_j| 1_{B_k} < \delta_{jk} \qquad \forall \ 1 \le j < k.)$$

3. (40 points) Let $Y_1, Y_2, ...$ be independent random variables such that $\mathbf{P}(Y_n = 1) = \mathbf{P}(Y_n = -1) = 1/2 \,\forall n \geq 1$. Let $Y_0 := 0$. Let $Z_n := Y_0 + \cdots + Y_n$ for any $n \geq 0$. From the homework, one might wonder where the martingale $Z_0^2 - 0, Z_1^2 - 1, ...$ came from, and if more like it exist. In this exercise, we compute an infinite family of such martingales.

For any $\alpha \in \mathbf{R}$ and $n \geq 0$, let

$$X_n := e^{\alpha Z_n - n \log \cosh(\alpha)}.$$

Show that X_0, X_1, \ldots is a martingale.

Then, using the power series expansion of the exponential function, we have $X_n = \sum_{m=0}^{\infty} \frac{\alpha^m}{m!} M_{m,n}$ for some random variables $M_{1,1}, \ldots$, for any $\alpha \in \mathbf{R}$ and for any $n \geq 0$. Show that it follows that, for any $m \geq 0$, $M_{m,0}, M_{m,1}, \ldots$ is a martingale. For example, using m=2 we get $M_{2,n}=Z_n^2-n$ for all $n\geq 0$. And using m=4, $M_{4,n}=Z_n^4-6nZ_n^2+2n+3n^2$ for all $n\geq 0$. (You can assume that this formula holds for $M_{4,n}$.) Using the martingale $(M_{4,n})_{n\geq 0}$, compute $\mathbf{E}T^2$ when $T:=\min\{n\geq 1\colon Z_n\in\{-b,b\}\}$ and b>0, $b\in\mathbf{Z}$.

4. (45 points) Let 0 . Let <math>b be a positive integer. Let Y_1, Y_2, \ldots be independent random variables such that $\mathbf{P}(Y_n = 1) =: p$ and $\mathbf{P}(Y_n = -1) = 1 - p =: q \ \forall \ n \ge 1$. Let $Y_0 := 0$. Let $Z_n = Y_0 + \cdots + Y_n, \ \forall \ n \ge 0$. Let $T_b := \min\{n \ge 1: Z_n = b\}$. For any $\alpha \in \mathbf{R}$ let $M(\alpha) := \mathbf{E}e^{\alpha Y_1}$. For any $n \ge 0$, let

$$X_n := e^{\alpha Z_n} (M(\alpha))^{-n}.$$

- If $1/2 \le p < 1$, show that $e^{\alpha b} \mathbf{E} M(\alpha)^{-T_b} = 1$ for all $\alpha > 0$.
- If p = 1/2 and 0 < s < 1, show that

$$\mathbf{E}s^{T_1} = \frac{s}{1 + \sqrt{1 - s^2}}, \qquad \mathbf{E}s^{T_b} = (\mathbf{E}s^{T_1})^b.$$

(Hint: $\cosh^{-1}(z) = \log(z + \sqrt{z+1}\sqrt{z-1})$ for any z > 1.)

- If $0 , show that <math>\mathbf{P}(T_b < \infty) = e^{-\lambda b}$ where $\lambda := \log((1-p)/p) > 0$.
- If $0 , show that <math>Z := 1 + \max_{n \ge 0} Z_n$ is a geometric random variable with success probability $1 e^{-\lambda}$.

(Scratch paper)