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Final Exam

This exam contains 6 pages (including this cover page) and 4 problems. Check to see if any
pages are missing. Enter all requested information on the top of this page.

You may not use the internet on this exam. You can use the course textbook, course notes
and homeworks. You are required to show your work on each problem on the exam. The
following rules apply:

• This exam is due 96 hours from now, to
be submitted electronically to the email:
sheilman@nd.edu. For every ten minutes that
the exam is late, 1 point will be deducted from
the score, rounded arbitrarily.

• If you use a theorem or proposition from
class/notes/book/homework you must
indicate this and explain why the theorem
may be applied. It is okay to just say, “by
some theorem/proposition from class.”

• Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive very little credit.

• Mysterious or unsupported answers will
not receive full credit. A correct answer, un-
supported by calculations, explanation, or al-
gebraic work will receive no credit; an incorrect
answer supported by substantially correct cal-
culations and explanations might still receive
partial credit.

Do not write in the table to the right. Good luck!a

aMay 6, 2018, c© 2018 Steven Heilman, All Rights Re-
served.

Problem Points Score

1 30

2 35

3 40

4 45

Total: 150



1. (30 points) This problem proves a monotone convergence theorem for conditional ex-
pectation.

Let (Ω,F ,P) be a probability space. Let 0 ≤ X1 ≤ X2 ≤ · · · be F -measurable ran-
dom variables on (Ω,F ,P). Let X := limn→∞Xn be the pointwise limit of X1, X2, . . ..
Assume EX <∞. Let G ⊆ F be a σ-algebra. Show that

lim
n→∞

E(Xn|G) = E(X|G).

(Hint: first prove that the sequence E(X1|G),E(X2|G), . . . has a pointwise limit, almost
surely.)
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2. (35 points) Let (Ω,F ,P) be a probability space. As usual, if X : Ω→ R is measurable,
define ||X||1 := E |X|. Let H be an L1 bounded set of random variables on (Ω,F ,P),
i.e. assume that supX∈H ||X||1 <∞.

Suppose H is not uniformly integrable. Show that there exists ε > 0 and there exist
disjoint sets A1, A2, . . . ⊆ Ω such that, for all n ≥ 1, we have

sup
X∈H

E |X| 1An ≥ ε.

(You are not allowed to use without proof Theorem 6.60 cited in the Additional Com-
ments section of the notes.)

(Hint: start by using Exercise 6.41 in the notes to get ε > 0. Let {δjk}1≤j<k<∞ be
nonnegative real numbers such that

∑
1≤j<k<∞ δjk < ε/2. Next, by inducting on k, find

X1, X2, . . . ∈ H and sets B1, B2, . . . ∈ F such that

E |Xk| 1Bk
> ε ∀ k ≥ 1.

E |Xj| 1Bk
< δjk ∀ 1 ≤ j < k.)
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3. (40 points) Let Y1, Y2, . . . be independent random variables such that P(Yn = 1) =
P(Yn = −1) = 1/2 ∀ n ≥ 1. Let Y0 := 0. Let Zn := Y0 + · · · + Yn for any n ≥ 0.
From the homework, one might wonder where the martingale Z2

0 − 0, Z2
1 − 1, . . . came

from, and if more like it exist. In this exercise, we compute an infinite family of such
martingales.

For any α ∈ R and n ≥ 0, let

Xn := eαZn−n log cosh(α).

Show that X0, X1, . . . is a martingale.

Then, using the power series expansion of the exponential function, we have Xn =∑∞
m=0

αm

m!
Mm,n for some random variables M1,1, . . ., for any α ∈ R and for any n ≥ 0.

Show that it follows that, for any m ≥ 0, Mm,0,Mm,1, . . . is a martingale. For example,
using m = 2 we get M2,n = Z2

n−n for all n ≥ 0. And using m = 4, M4,n = Z4
n− 6nZ2

n +
2n + 3n2 for all n ≥ 0. (You can assume that this formula holds for M4,n.) Using the
martingale (M4,n)n≥0, compute ET 2 when T := min{n ≥ 1: Zn ∈ {−b, b}} and b > 0,
b ∈ Z.
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4. (45 points) Let 0 < p < 1. Let b be a positive integer. Let Y1, Y2, . . . be independent
random variables such that P(Yn = 1) =: p and P(Yn = −1) = 1− p =: q ∀ n ≥ 1. Let
Y0 := 0. Let Zn = Y0 + · · ·+Yn, ∀ n ≥ 0. Let Tb := min{n ≥ 1: Zn = b}. For any α ∈ R
let M(α) := EeαY1 . For any n ≥ 0, let

Xn := eαZn(M(α))−n.

• If 1/2 ≤ p < 1, show that eαbEM(α)−Tb = 1 for all α > 0.

• If p = 1/2 and 0 < s < 1, show that

EsT1 =
s

1 +
√

1− s2
, EsTb = (EsT1)b.

(Hint: cosh−1(z) = log(z +
√
z + 1

√
z − 1) for any z > 1.)

• If 0 < p < 1/2, show that P(Tb <∞) = e−λb where λ := log((1− p)/p) > 0.

• If 0 < p < 1/2, show that Z := 1 + maxn≥0 Zn is a geometric random variable with
success probability 1− e−λ.
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(Scratch paper)
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