Please provide complete and well-written solutions to the following exercises.

Due January 25, at the beginning of class.

Homework 1

Exercise 1. This exercises gives a strategy for proving a property for a generated σ -algebra.

Let \mathcal{A} be a collection of subsets of a set Ω , and let p(A) be a property of subsets A of Ω , so that p(A) is true or false for each $A \in \Omega$. Assume the following:

- $p(\emptyset)$ is true.
- p(A) is true for all $A \in \mathcal{A}$.
- If $A \subseteq \Omega$ is such that p(A) is true, then $p(A^c)$ is also true.
- If $A_1, A_2, \ldots \subseteq \Omega$ are such that $p(A_i)$ is true for all $i \geq 1$, then $p(\bigcup_{i=1}^{\infty} A_i)$ is true.

Show that p(A) is true for all $A \in \sigma(A)$. (Hint: what can one say about $\{A \subseteq \Omega : p(A) \text{ is true}\}$?

Exercise 2. Let $n \geq 1$. Show that the Borel σ -algebra on \mathbf{R}^n is generated by sets of the form $A_1 \times \cdots \times A_n$ where $A_i \subseteq \mathbf{R}$ is a Borel set for every $1 \leq i \leq n$.

Exercise 3. Let $n, m \ge 1$. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ be a continuous function. Show that f is measurable (if $\mathbf{R}^n, \mathbf{R}^m$ each have the Borel σ -algebra.)

Exercise 4. Let $X_1: \Omega \to S_1, \ldots, X_n: \Omega \to S_n$ be measurable functions. Show that the joint function $(X_1, \ldots, X_n): \Omega \to S_1 \times \cdots \times S_n$ defined by

$$(X_1,\ldots,X_n)(\omega) := (X_1(\omega),\ldots,X_n(\omega)), \quad \forall \omega \in \Omega$$

is measurable.

Exercise 5. Let μ be a measure on a measurable space (Ω, \mathcal{F}) . Using the axioms for a measure, show:

- (Monotonicity) If $A \subseteq B$ are measurable, then $\mu(A) \le \mu(B)$.
- \bullet (Subadditivity) If A_1, A_2, \ldots are measurable (but not necessarily disjoint), then

$$\mu(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu(A_n).$$

- (Continuity from below) If $A_1 \subseteq A_2 \subseteq \cdots$ are measurable, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.
- (Continuity from above) If $A_1 \supseteq A_2 \supseteq \cdots$ are measurable and if $\mu(A_1) < \infty$, then $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$. Then, find a measurable space (Ω, \mathcal{F}) and measurable subsets $B_1 \supseteq B_2 \supseteq \cdots$ such that $\mu(\bigcap_{n=1}^{\infty} B_n) \neq \lim_{n \to \infty} \mu(B_n)$.

Exercise 6. Let (Ω, \mathcal{F}) be a measurable space. Let $[-\infty, \infty]$ have the Borel σ -algebra.

- Let $X: \Omega \to [-\infty, \infty]$. Show that X is measurable if and only if the sets $\{\omega \in \Omega: X(\omega) \leq t\}$ are measurable for all $t \in [-\infty, \infty]$.
- Let $X, Y: \Omega \to [-\infty, \infty]$. Show that X = Y if and only if $\{\omega \in \Omega: X(\omega) \le t\} = \{\omega \in \Omega: Y(\omega) \le t\}$ for all $t \in [-\infty, \infty]$.
- Let $X_1, X_2, \ldots : \Omega \to [-\infty, \infty]$ be measurable. Show that $\sup_{m \geq 1} X_m$, $\inf_{m \geq 1} X_m$, $\lim \sup_{m \to \infty} X_m$, and $\lim \inf_{m \to \infty} X_m$ are all measurable.

Exercise 7. Let μ be a probability measure on \mathbf{R} , where \mathbf{R} has the Borel σ -algebra. (Then μ is a Stieltjes measure.) Define the **distribution function** $F \colon \mathbf{R} \to [0,1]$ associated to μ by

$$F(t) := \mu((-\infty, t]) = \mu(\{x \in \mathbf{R} : -\infty < x \le t\}), \quad \forall t \in \mathbf{R}$$

Show the following properties of F:

- \bullet F is nondecreasing.
- $\lim_{t\to-\infty} F(t) = 0$ and $\lim_{t\to\infty} F(t) = 1$.
- F is right continuous, i.e. $F(t) = \lim_{s \to t^+} F(s)$ for all $t \in \mathbf{R}$.

Exercise 8. Let $F: \mathbf{R} \to [0,1]$ satisfy the three properties from Exercise 7. Show that there exists a random variable X on (0,1) with the Borel σ -algebra such that

$$F(t) = \mathbf{P}(X \le t), \quad \forall t \in \mathbf{R}.$$

Here **P** is Lebesgue measure on (0,1). (Hint: consider $X(t) := \sup\{y \in \mathbf{R} : F(y) < t\}$. Then X is an inverse of F.)

Exercise 9. Let X be a random variable with cumulative distribution function $F \colon \mathbf{R} \to [0,1]$. Show:

- $P(X < t) = \lim_{s \to t^{-}} F(s)$.
- $P(X = t) = F(t) \lim_{s \to t^{-}} F(s)$.

So, P(X = t) = 0 for all $t \in \mathbf{R}$ if and only if F is continuous.

Exercise 10. Let μ be a probability measure on \mathbb{R}^n , where \mathbb{R}^n has the Borel σ -algebra. Define the **distribution function** $F \colon \mathbb{R}^n \to [0,1]$ associated to μ by

$$F(t_1, \dots, t_n) := \mu((-\infty, t_1] \times \dots \times (-\infty, t_n])$$

= $\mu(\{(x_1, \dots, x_n) \in \mathbf{R}^n : -\infty < x_i \le t_i, \forall 1 \le i \le n\}), \forall t_1, \dots, t_n \in \mathbf{R}.$

Show the following properties of F:

- F is nondecreasing. $(F(t_1, \ldots, t_n) \leq F(t'_1, \ldots, t'_n)$ whenever $t_i \leq t'_i \ \forall \ 1 \leq i \leq n.)$
- $\lim_{t_1,\dots,t_n\to-\infty} F(t_1,\dots,t_n)=0$ and $\lim_{t_1,\dots,t_n\to\infty} F(t_1,\dots,t_n)=1$.
- F is right continuous, i.e. $F(t_1, \ldots, t_n) = \lim_{(s_1, \ldots, s_n) \to (t_1, \ldots, t_n)^+} F(s_1, \ldots, t_n)$ for all $t_1, \ldots, t_n \in \mathbf{R}$, where the limit restricts that $s_i \geq t_i \ \forall \ 1 \leq i \leq n$.
- If $t_{i,0} \leq t_{i,1} \ \forall \ 1 \leq i \leq n$, then

$$\sum_{(\omega_1,\dots,\omega_n)\in\{0,1\}^n} (-1)^{\omega_1+\dots+\omega_n+n} F(t_{1,\omega_1},\dots,t_{n,\omega_n}) \ge 0.$$