Please provide complete and well-written solutions to the following exercises. Due April 12, at the beginning of class. ## Homework 10 **Exercise 1.** Prove Wald's first equation. Let $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ be i.i.d. with $\mathbf{E}|X_1| < \infty$. Let N be a stopping time with $\mathbf{E}N < \infty$. Let $S_0 := 0$ and for any $n \geq 1$, let $S_n := X_1 + \cdots + X_n$. Then $\mathbf{E}S_N = \mathbf{E}X_1\mathbf{E}N$. (Hint: condition on N taking fixed values.) **Exercise 2.** Let $\Omega = [0,1]$. Let **P** be the uniform probability law on Ω . Let $X: [0,1] \to \mathbf{R}$ be a random variable such that $X(t) = t^2$ for all $t \in [0,1]$. Let $$\mathcal{G} = \sigma\{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]\}.$$ Compute explicitly the function $\mathbf{E}(X|\mathcal{G})$. (It should be constant on each of the partition elements.) Draw the function $\mathbf{E}(X|\mathcal{G})$ and compare it to a drawing of X itself. Now, for every integer k > 1, let $s = 2^{-k}$, and let $\mathcal{G}_k := \sigma\{[0, s), [s, 2s), [2s, 3s), \dots, [1 - 2s, 1 - s), [1 - s, 1)\}$. Try to draw $\mathbf{E}(X|\mathcal{G}_k)$. Prove that, for every $t \in [0, 1]$, $$\lim_{k \to \infty} \mathbf{E}(X|\mathcal{G}_k)(t) = X(t).$$ **Exercise 3.** Let $X: \Omega \to \mathbf{R}$ be a random variable with finite variance, and let $t \in \mathbf{R}$. Consider the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(t) = \mathbf{E}(X - t)^2$. Show that the function f is uniquely minimized when $t = \mathbf{E}X$. That is, $f(\mathbf{E}X) < f(t)$ for all $t \in \mathbf{R}$ such that $t \neq \mathbf{E}X$. Put another way, setting t to be the mean of X minimizes the quantity $\mathbf{E}(X - t)^2$ uniquely. The conditional expectation, being a piecewise version of taking an average, has a similar property. Let $B_1, \ldots, B_k \subseteq \Omega$ such that $B_i \cap B_j = \emptyset$ for all $i, j \in \{1, \ldots, k\}$ with $i \neq j$, and $\bigcup_{i=1}^k B_i = \Omega$. Write $\mathcal{G} = \sigma\{B_1, \ldots, B_k\}$. Let Y be any other random variable such that, for each $1 \leq i \leq k$, Y is constant on B_i . Show that the quantity $\mathbf{E}(X - Y)^2$ is uniquely minimized by such a Y only when $Y = \mathbf{E}(X|\mathcal{G})$. **Exercise 4.** Let $\Omega = [0,1]$. Let **P** be the uniform probability law on Ω . Let $X: [0,1] \to \mathbf{R}$ be a random variable such that $X(t) = t^2$ for all $t \in [0,1]$. For every integer k > 1, let $s = 2^{-k}$, let $\mathcal{G}_k := \sigma\{[0,s), [s,2s), [2s,3s), \ldots, [1-2s,1-s), [1-s,1)\}$, and let $M_k := \mathbf{E}(X|\mathcal{G}_k)$. Show that the increments $M_2 - M_1, M_3 - M_2, \ldots$ are orthogonal in the following sense. For any $i, j \geq 1$ with $i \neq j$, $$\mathbf{E}(M_{i+1} - M_i)(M_{j+1} - M_j) = 0.$$ This property is sometimes called **orthogonality of martingale increments**. **Exercise 5.** Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, and let $X : \Omega \to \mathbf{R}$ be a random variable with $\mathbf{E}|X| < \infty$. Let $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ be σ -algebras. Let \mathcal{H} be a σ -algebra that is independent of $\sigma(\sigma(X), \mathcal{G})$. Show that $$\mathbf{E}(X|\sigma(\mathcal{G},\mathcal{H})) = \mathbf{E}(X|\mathcal{G}).$$ In particular, if we choose $\mathcal{G} = \{\emptyset, \Omega\}$, we get: if \mathcal{H} is independent of $\sigma(X)$, then $\mathbf{E}(X|\mathcal{H}) = \mathbf{E}X$. (Hint: Let $G \in \mathcal{G}, H \in \mathcal{H}$, let $Y := \mathbf{E}(X|\mathcal{G})$. Compare $\mathbf{E}(X1_{G\cap H})$ and $\mathbf{E}(Y1_{G\cap H})$. Is the set of $A \in \sigma(\mathcal{G}, \mathcal{H})$ such that $\mathbf{E}(X1_A) = \mathbf{E}(Y1_A)$ a monotone class?) **Exercise 6.** Prove Jensen's inequality for the conditional expectation. Let $X: \Omega \to \mathbf{R}$ be a random variable and let $\phi: \mathbf{R} \to \mathbf{R}$ be convex. Assume $\mathbf{E}|X|, \mathbf{E}|\phi(X)| < \infty$. Then $$\phi(\mathbf{E}(X|\mathcal{G})) \le \mathbf{E}(\phi(X)|\mathcal{G})$$ Conclude that for any $1 \le p \le \infty$ we have the following contractive inequality for conditional expectation $$||\mathbf{E}(X|\mathcal{G})||_p \le ||X||_p$$. **Exercise 7** (Tower Property). Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, and let $X : \Omega \to \mathbf{R}$ be a random variable with $\mathbf{E}|X| < \infty$. Let $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ be σ -algebras. Then $\mathbf{E}(X|\mathcal{H}) = \mathbf{E}(\mathbf{E}(X|\mathcal{G})|\mathcal{H})$. **Exercise 8** (Conditional Markov Inequality). Let p > 0. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, and let $X \colon \Omega \to \mathbf{R}$ be a random variable with $\mathbf{E} |X|^p < \infty$. Let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra. For any $A \in \mathcal{F}$, we denote $\mathbf{P}(A|\mathcal{G}) := \mathbf{E}(1_A|\mathcal{G})$. • Show that, almost surely, $$\mathbf{E}(|X|^p | \mathcal{G}) = \int_0^\infty pt^{p-1} \mathbf{P}(|X| > t | \mathcal{G}) dt.$$ • Deduce a conditional version of Markov's inequality: for any t > 0, almost surely, $$\mathbf{P}(|X| > t|\mathcal{G}) \le \frac{\mathbf{E}(|X|^p |\mathcal{G})}{t^p}.$$ **Exercise 9** (Conditional Hölder Inequality). Let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, and let $X, Y \colon \Omega \to \mathbf{R}$ be random variables with $\mathbf{E} |X|^p, \mathbf{E} |Y|^q < \infty$. Let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra. Show that, almost surely, $$\mathbf{E}(|XY||\mathcal{G}) \le [\mathbf{E}(|X|^p|\mathcal{G})]^{1/p} [\mathbf{E}(|Y|^q|\mathcal{G})]^{1/q}.$$ **Exercise 10.** Let H be a Hilbert space. Let $g, h \in H$. Prove the Cauchy-Schwarz inequality $$|\langle g, h \rangle| \le ||g|| \, ||h|| \, .$$ Show also the triangle inequality $||g+h|| \le ||g|| + ||h||$, and the parallelogram law $||g+h||^2 + ||g-h||^2 = 2 ||g||^2 + 2 ||h||^2$. **Exercise 11.** Let H be a Hilbert space, let $M \subseteq H$ a closed subspace, and for any $h \in H$, denote f(h) as the linear projection of H onto M. Show that $h \mapsto f(h)$ is actually a linear projection. That is, verify that $f(\alpha g + h) = \alpha f(g) + h$ and f(f(h)) = f(h) for any $\alpha \in \mathbf{R}$, $g, h \in H$. **Exercise 12.** Let X be \mathcal{F} -measurable and let Y be \mathcal{G} -measurable, real-valued random variables, where $\mathcal{G} \subseteq \mathcal{F}$. Let $\mu_{X|\mathcal{G}}$ be a regular conditional probability on \mathcal{F} given \mathcal{G} . Let $h \colon \mathbf{R}^2 \to \mathbf{R}$ be a Borel measurable function with $\mathbf{E} |h(X,Y)| < \infty$. Then, almost surely with respect to $\omega \in \Omega$, $$\mathbf{E}(h(X,Y)|\mathcal{G})(\omega) = \int_{\mathbf{R}} h(x,Y(\omega))\mu_{X|\mathcal{G}}(x,\omega)dx.$$ In particular, if Y is constant and if $\mathbf{E}|X| < \infty$, $$\mathbf{E}(X|\mathcal{G})(\omega) = \int_{\mathbf{R}} x \mu_{X|\mathcal{G}}(x,\omega) dx.$$