
Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 12, at the beginning of class.

Homework 10

Exercise 1. Prove Wald’s first equation. Let X1, X2, . . . : Ω → R be i.i.d. with E |X1| <
∞. Let N be a stopping time with EN < ∞. Let S0 := 0 and for any n ≥ 1, let
Sn := X1 + · · ·+Xn. Then ESN = EX1EN . (Hint: condition on N taking fixed values.)

Exercise 2. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R
be a random variable such that X(t) = t2 for all t ∈ [0, 1]. Let

G = σ{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]}.
Compute explicitly the function E(X|G). (It should be constant on each of the partition
elements.) Draw the function E(X|G) and compare it to a drawing of X itself.

Now, for every integer k > 1, let s = 2−k, and let Gk := σ{[0, s), [s, 2s), [2s, 3s), . . . , [1 −
2s, 1− s), [1− s, 1)}. Try to draw E(X|Gk). Prove that, for every t ∈ [0, 1],

lim
k→∞

E(X|Gk)(t) = X(t).

Exercise 3. Let X : Ω → R be a random variable with finite variance, and let t ∈ R.
Consider the function f : R→ R defined by f(t) = E(X − t)2. Show that the function f is
uniquely minimized when t = EX. That is, f(EX) < f(t) for all t ∈ R such that t 6= EX.
Put another way, setting t to be the mean of X minimizes the quantity E(X − t)2 uniquely.

The conditional expectation, being a piecewise version of taking an average, has a similar
property. Let B1, . . . , Bk ⊆ Ω such that Bi ∩ Bj = ∅ for all i, j ∈ {1, . . . , k} with i 6= j,
and ∪ki=1Bi = Ω. Write G = σ{B1, . . . , Bk}. Let Y be any other random variable such that,
for each 1 ≤ i ≤ k, Y is constant on Bi. Show that the quantity E(X − Y )2 is uniquely
minimized by such a Y only when Y = E(X|G).

Exercise 4. Let Ω = [0, 1]. Let P be the uniform probability law on Ω. Let X : [0, 1]→ R be
a random variable such that X(t) = t2 for all t ∈ [0, 1]. For every integer k > 1, let s = 2−k,
let Gk := σ{[0, s), [s, 2s), [2s, 3s), . . . , [1−2s, 1−s), [1−s, 1)}, and let Mk := E(X|Gk). Show
that the increments M2 −M1,M3 −M2, . . . are orthogonal in the following sense. For any
i, j ≥ 1 with i 6= j,

E(Mi+1 −Mi)(Mj+1 −Mj) = 0.

This property is sometimes called orthogonality of martingale increments.

Exercise 5. Let (Ω,F ,P) be a probability space, and let X : Ω→ R be a random variable
with E |X| <∞. Let G,H ⊆ F be σ-algebras. Let H be a σ-algebra that is independent of
σ(σ(X),G). Show that

E(X|σ(G,H)) = E(X|G).
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In particular, if we choose G = {∅,Ω}, we get: if H is independent of σ(X), then E(X|H) =
EX.

(Hint: Let G ∈ G, H ∈ H, let Y := E(X|G). Compare E(X1G∩H) and E(Y 1G∩H). Is the set
of A ∈ σ(G,H) such that E(X1A) = E(Y 1A) a monotone class?)

Exercise 6. Prove Jensen’s inequality for the conditional expectation. Let X : Ω→ R be a
random variable and let φ : R→ R be convex. Assume E |X| ,E |φ(X)| <∞. Then

φ(E(X|G)) ≤ E(φ(X)|G)

Conclude that for any 1 ≤ p ≤ ∞ we have the following contractive inequality for conditional
expectation

||E(X|G)||p ≤ ||X||p .

Exercise 7 (Tower Property). Let (Ω,F ,P) be a probability space, and let X : Ω → R
be a random variable with E |X| < ∞. Let H ⊆ G ⊆ F be σ-algebras. Then E(X|H) =
E(E(X|G)|H).

Exercise 8 (Conditional Markov Inequality). Let p > 0. Let (Ω,F ,P) be a probability
space, and let X : Ω → R be a random variable with E |X|p < ∞. Let G ⊆ F be a
σ-algebra. For any A ∈ F , we denote P(A|G) := E(1A|G).

• Show that, almost surely,

E(|X|p |G) =

∫ ∞
0

ptp−1P(|X| > t|G)dt.

• Deduce a conditional version of Markov’s inequality: for any t > 0, almost surely,

P(|X| > t|G) ≤ E(|X|p |G)

tp
.

Exercise 9 (Conditional Hölder Inequality). Let p, q > 1 with 1
p

+ 1
q

= 1. Let (Ω,F ,P) be

a probability space, and let X, Y : Ω → R be random variables with E |X|p ,E |Y |q < ∞.
Let G ⊆ F be a σ-algebra. Show that, almost surely,

E(|XY | |G) ≤ [E(|X|p |G)]1/p[E(|Y |q |G)]1/q.

Exercise 10. Let H be a Hilbert space. Let g, h ∈ H. Prove the Cauchy-Schwarz inequality

|〈g, h〉| ≤ ||g|| ||h|| .

Show also the triangle inequality ||g + h|| ≤ ||g||+||h||, and the parallelogram law ||g + h||2+
||g − h||2 = 2 ||g||2 + 2 ||h||2.

Exercise 11. Let H be a Hilbert space, let M ⊆ H a closed subspace, and for any h ∈ H,
denote f(h) as the linear projection of H onto M . Show that h 7→ f(h) is actually a linear
projection. That is, verify that f(αg + h) = αf(g) + h and f(f(h)) = f(h) for any α ∈ R,
g, h ∈ H.

Exercise 12. Let X be F -measurable and let Y be G-measurable, real-valued random
variables, where G ⊆ F . Let µX|G be a regular conditional probability on F given G. Let
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h : R2 → R be a Borel measurable function with E |h(X, Y )| < ∞. Then, almost surely
with respect to ω ∈ Ω,

E(h(X, Y )|G)(ω) =

∫
R

h(x, Y (ω))µX|G(x, ω)dx.

In particular, if Y is constant and if E |X| <∞,

E(X|G)(ω) =

∫
R

xµX|G(x, ω)dx.


