
Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 15, at the beginning of class.

Homework 4

Exercise 1. Let ε1, ε2, · · · ∈ {0, 1} be random variables that are independent and identically
distributed copies of the Bernoulli random variable with expectation 1/2, so that P(εn =
1) = P(εn = 0) = 1/2 for all n ≥ 1.

• Show that the random variable
∑∞

n=1 2−nεn is uniformly distributed on the unit
interval [0, 1].
• Show that the random variable

∑∞
n=1 2·3−nεn is uniformly distributed on the standard

middle third Cantor set (where the Cantor set’s center is 1/2.)
• Let µ be a probability measure on R. The Fourier Transform of µ at ξ ∈ R is defined

by µ̂(ξ) :=
∫
R
eixξdµ(x). where i =

√
−1. For example, if µ is uniform on [−1/2, 1/2],

then

µ̂(ξ) =

∫ 1/2

−1/2
eixξdx =

eiξ/2 − e−iξ/2

iξ
=

2 sin(ξ/2)

ξ
, ∀ ξ 6= 0.

Using the first item, find an expression for sin(ξ)/ξ in terms of an infinite product of
cosines. (Hint: if a random variable X has distribution µX , then µ̂X(ξ) = EeiXξ for
any ξ ∈ R. So the Fourier transform of the sum of independent random variables is
the product of the Fourier transforms.) Similarly, find an expression for the Fourier
transform of the uniform measure on the middle third Cantor set (when the Cantor
set’s center is 0 ∈ R) in terms of an infinite product of cosines.

Exercise 2. Let X be a random variable taking nonnegative integer values. Show that

EX =
∞∑
n=1

P(X ≥ n).

Exercise 3 (MAX-CUT). The probabilistic method is a very useful way to prove the ex-
istence of something satisfying some properties. This method is based upon the following
elementary statement: If α ∈ R and if a random variable X : Ω→ R satisfies EX ≥ α, then
there exists some ω ∈ Ω such that X(ω) ≥ α. We will demonstrate this principle in this
exercise.

Let G = (V,E) be an undirected graph on the vertices V = {1, . . . , n} so that the edge set
E is a subset of unordered pairs {i, j} such that i, j ∈ V and i 6= j. Let S ⊆ V and denote
Sc := V r S. We refer to (S, Sc) as a cut of the graph G. The goal of the MAX-CUT
problem is to maximize the number of edges going between S and Sc over all cuts of the
graph G.
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Prove that there exists a cut (S, Sc) of the graph such that the number of edges going
between S and Sc is at least |E| /2. (Hint: define a random S ⊆ V such that, for every
i ∈ V , P(i ∈ S) = 1/2, and the events 1 ∈ S, 2 ∈ S, . . . , n ∈ S are all independent. If
{i, j} ∈ E, show that P(i ∈ S, j /∈ S) = 1/2. So, what is the expected number of edges
{i, j} ∈ E such that i ∈ S and j /∈ S?)

Exercise 4. Let X1, X2, . . . : Ω→ S be random variables. Show that

σ(X1, X2, . . .) = σ(∪∞i=1σ(X1, . . . , Xi)).

Exercise 5. Let (Xi)i∈I be a collection of independent random variables. Show that (Xi)i∈I
are independent if and only if (σ(Xi))i∈I are independent σ-algebras. (Hint: Let i ∈ I and let
J ⊆ I r {i} be finite. Are the sets in σ(Xi) that are independent of (σ(Xj))j∈J a monotone
class?)

Exercise 6. Let X1, X2, . . . be random variables. Show that X1, X2, . . . are independent if
and only if: for every i ≥ 1, σ(Xi+1) is independent of σ(X1, . . . , Xi). And the previous
cases occur if and only if: for every i ≥ 1, σ(Xi+1, Xi+1, . . .) is independent of σ(X1, . . . , Xi)

Exercise 7. Let X1, X2, . . . : Ω → R be a sequence of independent random variables. For
any n ≥ 1, let Sn := X1 + · · ·+Xn. Show the following:

• {limn→∞ Sn exists} ∈ T .
• If t ∈ [−∞,∞], then it can occur that {lim supn→∞ Sn > t} /∈ T .
• If t ∈ [−∞,∞] and if c1 ≤ c2 ≤ · · · is a sequence of real numbers such that

limn→∞ cn =∞, then

{lim sup
n→∞

Sn
cn

> t} ∈ T .


