
Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due March 22, at the beginning of class.

Homework 7

Exercise 1. Show that cosh(x) ≤ ex
2/2, ∀ x ∈ R.

Exercise 2 (Chernoff Inequality). Let 0 < p < 1. Let X1, X2, . . . be independent identically
distributed random variables with P(X1 = 1) = p and P(X1 = 0) = 1 − p for any i ≥ 1.
Then for any n ≥ 1
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Prove the same estimate for P( 1
n

∑n
i=1Xi ≤ t) for any t ≤ p. (Hint: 1 + x ≤ ex for any

x ∈ R, so 1 + (eα − 1)p ≤ e(e
α−1)p.)

Exercise 3. We return to the Erdös-Renyi random graph G = (V,E) on n vertices with
parameter 0 < p < 1 from an earlier homework. Define d := p(n− 1).

• Show that d is the expected degree of each vertex in G. (The degree of a vertex
v ∈ V is the number of vertices connected to v by an edge in E.)
• Show that there exists a constant c > 0 such that the following holds. Assume
p ≥ c logn

n
. Then with probability larger than .9, all vertices of G have degrees in the

range (.9d, 1.1d). (Hint: first consider a single vertex, then use the union bound over
all vertices.)

Exercise 4 (Khintchine Inequality). Let 0 < p < ∞. Then there exist constants Ap, Bp ∈
(0,∞) such that the following holds.

Let X1, X2, . . . be independent identically distributed random variables with P(X1 = 1) =
P(X1 = −1) = 1/2. Let a1, a2, . . . ∈ R. Then

Ap

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
∣∣∣∣∣
p

≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
∣∣∣∣∣
2

= (
n∑
i=1

a2i )
1/2 ≤ Bp

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
∣∣∣∣∣
p

.

So, all Lp (quasi)-norms of
∑n

i=1 aiXi are comparable.

(In Banach space terminology, there is an isomorphic copy of the Banach space `2 inside any
space Lp[0, 1]; e.g. we can use Xi(t) := sign sin(2iπt) for any t ∈ [0, 1], i ≥ 1.)

(Hint: For the Ap inequality, use Hoeffding’s inequality and “Integration by Parts,” obtaining
Ap ≤

√
pA for some fixed A > 0. For the Bp inequality with 0 < p < 2, apply Logarithmic

Convexity of Lp norms, in the form ||X||22 ≤ ||X||
2(1−θ)
p ||X||2θ4 , then apply the A4 inequality

to get ||X||2(1−θ)2 ≤ Ap ||X||2(1−θ)p .)
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Exercise 5. Let X1, X2, . . . : Ω → R be i.i.d. with E |X1| = ∞. Then P(|Xn| > n for
infinitely many n ≥ 1) = 1. And P(limn→∞

X1+···+Xn
n

∈ (−∞,∞)) = 0. (Hint: show∑∞
n=1P(|Xn| > n) = ∞, then apply the second Borel-Cantelli Lemma. Write Sn

n
− Sn+1

n+1
=

Sn
n(n+1)

− Xn+1

n+1
, and consider what happens to both sides on the set where limn→∞

Sn
n
∈ R.)

Also, unfortunately the strong law cannot hold for triangular arrays.

Exercise 6. Let X be a random variable taking values in the natural numbers with P(X =
n) = 1

ζ(3)
1
n3 , where ζ(3) :=

∑∞
m=1

1
m3 .

• Show that X is absolutely integrable.
• For any n ≥ 1, let Xn,1, . . . , Xn,n : Ω→ R be independent copies of X. Show that the

random variables Xn,1+···+Xn,n
n

are almost surely unbounded. (Hint: for any constant

c, show that Xn,1+···+Xn,n
n

> c occurs with probability at least ε/n for some ε > 0
depending on c. Then use the second Borel-Cantelli lemma.)

Exercise 7 (Second Borel-Cantelli Lemma). Let A1, A2, . . . be independent events with∑∞
n=1P(An) = ∞. Then P(An occurs for infinitely many n ≥ 1) = 1. (Hint: using 1 −

x ≤ e−x for any x ∈ R, show P(∩tn=sAcn) ≤ exp(−
∑t

n=sP(An)), let t → ∞ to conclude
P(∪∞n=sAn) = 1 for all s ≥ 1, then let s→∞.)

Exercise 8. Let X,X1, X2, . . . and let Y, Y1, Y2, . . . be random variables with values in R.

(i) Assume that X is constant almost surely. Show that X1, X2, . . . converges to X in
distribution if and only if X1, X2, . . . converges to X in probability.

(ii) Prove this Lemma from the notes: Let µ1, µ2, . . . be a sequence of probability mea-
sures on R. Then any subsequential limit of the sequence (with respect to vague
convergence) is a probability measure if and only if µ1, µ2, . . . is tight: ∀ ε > 0, ∃
m = m(ε) > 0 such that

lim sup
n→∞

(1− µn([−m,m])) ≤ ε.

(iii) Suppose that X1, X2, . . . converges in distribution to X. Show there exist random
variables Z,Z1, Z2, . . . : Ω → R such that µZ = µX , µZn = µXn for any n ≥ 1,
and such that Z1, Z2, . . . converges almost surely to Z. (Hint: use the sample space
Ω = [0, 1] and using an exercise from a previous homework, represent each random
variable on Ω as the “inverse” of its cumulative distribution function.)

(iv) (Slutsky’s Theorem) Suppose X1, X2, . . . converges in distribution to X and Y1, Y2, . . .
converges in probability to Y . Assume Y is constant almost surely. Show that
X1+Y1, X2+Y2, . . . converges in distribution to X+Y . Show also that X1Y1, X2Y2, . . .
converges in distribution to XY . (Hint: either use (iii) or use (ii) to control error
terms.) What happens if Y is not constant almost surely?

(v) (Fatou’s lemma) If g : R → [0,∞) is continuous, and if X1, X2, . . . converges in
distribution to X, show that lim infn→∞Eg(Xn) ≥ Eg(X).

(vi) (Bounded convergence) If g : R → C is continuous and bounded, and if X1, X2, . . .
converges in distribution to X, show that limn→∞Eg(Xn) = Eg(X).



3

(vii) (Dominated convergence) If X1, X2, . . . : Ω→ R converges in distribution to X, and
if there exists a random variable Y : Ω → [0,∞) with |Xn| ≤ Y for all n ≥ 1 and
EY <∞, show that limn→∞EXn = EX.

Exercise 9 (Portmanteau Theorem). Let X,X1, X2, . . . be random variables with values in
R. Show that the condition (X1, X2, . . . converges in distribution to X) is equivalent to the
following three statements:

• For any closed K ⊆ R, lim supn→∞P(Xn ∈ K) ≤ P(X ∈ K).
• For any open U ⊆ R, lim infn→∞P(Xn ∈ U) ≤ P(X ∈ U).
• For any Borel set E ⊆ R whose topological boundary ∂E satisfies P(X ∈ ∂E) = 0,

limn→∞P(Xn ∈ E) = P(X ∈ E).

(Hint: Urysohn’s Lemma might be helpful.)

Exercise 10. Let f, g, h : R → R be measurable functions. Assume that
∫
R
|f(x)| dx,∫

R
|g(x)| dx < ∞ and

∫
R
|h(x)| dx < ∞. Show that

∫∞
−∞ |(g ∗ h)(t)| dt < ∞. Consequently,

(g ∗ h)(t) ∈ R almost surely for t ∈ R (with respect to Lebesgue measure on R).

Then, show that convolution is associative and commutative. That is, g ∗ h = h ∗ g and
f ∗ (g ∗ h) = (f ∗ g) ∗ h almost surely.

Exercise 11. Using convolution, show that if X, Y are standard Gaussian random variables,
then aX + bY is a Gaussian random variable with mean 0 and variance a2 + b2.

Exercise 12. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that fX
is not a continuous function.

Using convolution, compute fX+Y . Draw fX+Y . Note that fX+Y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fX+Y+Z . Draw fX+Y+Z . Note that fX+Y+Z is a differentiable
function, but it does not have a second derivative at some points.

Make a conjecture about how many derivatives fX1+···+Xn has, where X1, . . . , Xn are inde-
pendent and uniformly distributed on [0, 1]. You do not have to prove this conjecture. The
idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fX1+···+Xn has. Lastly, fX1+···+Xn should resemble a
Gaussian density when n becomes large. So, we should be able to guess at a formulation of
the Central Limit Theorem, at least for i.i.d. random variables with density.

Exercise 13. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X + Y = 1) = 1.

Then construct two random variables W,Z such that W and Z are each uniformly distributed
on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)


