Please provide complete and well-written solutions to the following exercises.

Due March 22, at the beginning of class.

Homework 7

Exercise 1. Show that $\cosh(x) \leq e^{x^2/2}, \forall x \in \mathbf{R}$.

Exercise 2 (Chernoff Inequality). Let $0 . Let <math>X_1, X_2, ...$ be independent identically distributed random variables with $\mathbf{P}(X_1 = 1) = p$ and $\mathbf{P}(X_1 = 0) = 1 - p$ for any $i \ge 1$. Then for any $n \ge 1$

$$\mathbf{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\geq t\right)\leq e^{-np}\left(\frac{ep}{t}\right)^{tn}, \quad \forall t\geq p.$$

Prove the same estimate for $\mathbf{P}(\frac{1}{n}\sum_{i=1}^{n}X_{i}\leq t)$ for any $t\leq p$. (Hint: $1+x\leq e^{x}$ for any $x\in\mathbf{R}$, so $1+(e^{\alpha}-1)p\leq e^{(e^{\alpha}-1)p}$.)

Exercise 3. We return to the Erdös-Renyi random graph G = (V, E) on n vertices with parameter 0 from an earlier homework. Define <math>d := p(n-1).

- Show that d is the expected degree of each vertex in G. (The degree of a vertex $v \in V$ is the number of vertices connected to v by an edge in E.)
- Show that there exists a constant c>0 such that the following holds. Assume $p\geq \frac{c\log n}{n}$. Then with probability larger than .9, all vertices of G have degrees in the range (.9d,1.1d). (Hint: first consider a single vertex, then use the union bound over all vertices.)

Exercise 4 (Khintchine Inequality). Let $0 . Then there exist constants <math>A_p, B_p \in (0, \infty)$ such that the following holds.

Let $X_1, X_2, ...$ be independent identically distributed random variables with $\mathbf{P}(X_1 = 1) = \mathbf{P}(X_1 = -1) = 1/2$. Let $a_1, a_2, ... \in \mathbf{R}$. Then

$$A_p \left\| \sum_{i=1}^n a_i X_i \right\|_p \le \left\| \sum_{i=1}^n a_i X_i \right\|_2 = \left(\sum_{i=1}^n a_i^2 \right)^{1/2} \le B_p \left\| \sum_{i=1}^n a_i X_i \right\|_p.$$

So, all L_p (quasi)-norms of $\sum_{i=1}^n a_i X_i$ are comparable.

(In Banach space terminology, there is an isomorphic copy of the Banach space ℓ_2 inside any space $L_p[0,1]$; e.g. we can use $X_i(t) := \operatorname{sign} \sin(2^i \pi t)$ for any $t \in [0,1], i \geq 1$.)

(Hint: For the A_p inequality, use Hoeffding's inequality and "Integration by Parts," obtaining $A_p \leq \sqrt{p}A$ for some fixed A > 0. For the B_p inequality with $0 , apply Logarithmic Convexity of <math>L_p$ norms, in the form $||X||_2^2 \leq ||X||_p^{2(1-\theta)} ||X||_4^{2\theta}$, then apply the A_4 inequality to get $||X||_2^{2(1-\theta)} \leq A_p ||X||_p^{2(1-\theta)}$.)

Exercise 5. Let $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ be i.i.d. with $\mathbf{E}|X_1| = \infty$. Then $\mathbf{P}(|X_n| > n)$ for infinitely many $n \geq 1$ = 1. And $\mathbf{P}(\lim_{n \to \infty} \frac{X_1 + \cdots + X_n}{n} \in (-\infty, \infty)) = 0$. (Hint: show $\sum_{n=1}^{\infty} \mathbf{P}(|X_n| > n) = \infty$, then apply the second Borel-Cantelli Lemma. Write $\frac{S_n}{n} - \frac{S_{n+1}}{n+1} = \frac{S_n}{n(n+1)} - \frac{X_{n+1}}{n+1}$, and consider what happens to both sides on the set where $\lim_{n \to \infty} \frac{S_n}{n} \in \mathbf{R}$.)

Also, unfortunately the strong law cannot hold for triangular arrays.

Exercise 6. Let X be a random variable taking values in the natural numbers with $\mathbf{P}(X = n) = \frac{1}{\zeta(3)} \frac{1}{n^3}$, where $\zeta(3) := \sum_{m=1}^{\infty} \frac{1}{m^3}$.

- \bullet Show that X is absolutely integrable.
- For any $n \geq 1$, let $X_{n,1}, \ldots, X_{n,n} \colon \Omega \to \mathbf{R}$ be independent copies of X. Show that the random variables $\frac{X_{n,1}+\cdots+X_{n,n}}{n}$ are almost surely unbounded. (Hint: for any constant c, show that $\frac{X_{n,1}+\cdots+X_{n,n}}{n} > c$ occurs with probability at least ε/n for some $\varepsilon > 0$ depending on c. Then use the second Borel-Cantelli lemma.)

Exercise 7 (Second Borel-Cantelli Lemma). Let $A_1, A_2, ...$ be independent events with $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = \infty$. Then $\mathbf{P}(A_n \text{ occurs for infinitely many } n \ge 1) = 1$. (Hint: using $1 - x \le e^{-x}$ for any $x \in \mathbf{R}$, show $\mathbf{P}(\cap_{n=s}^t A_n^c) \le \exp(-\sum_{n=s}^t \mathbf{P}(A_n))$, let $t \to \infty$ to conclude $\mathbf{P}(\cup_{n=s}^{\infty} A_n) = 1$ for all $s \ge 1$, then let $s \to \infty$.)

Exercise 8. Let X, X_1, X_2, \ldots and let Y, Y_1, Y_2, \ldots be random variables with values in \mathbb{R} .

- (i) Assume that X is constant almost surely. Show that X_1, X_2, \ldots converges to X in distribution if and only if X_1, X_2, \ldots converges to X in probability.
- (ii) Prove this Lemma from the notes: Let μ_1, μ_2, \ldots be a sequence of probability measures on **R**. Then any subsequential limit of the sequence (with respect to vague convergence) is a probability measure if and only if μ_1, μ_2, \ldots is **tight**: $\forall \varepsilon > 0$, $\exists m = m(\varepsilon) > 0$ such that

$$\limsup_{n\to\infty} (1-\mu_n([-m,m])) \le \varepsilon.$$

- (iii) Suppose that X_1, X_2, \ldots converges in distribution to X. Show there exist random variables $Z, Z_1, Z_2, \ldots : \Omega \to \mathbf{R}$ such that $\mu_Z = \mu_X$, $\mu_{Z_n} = \mu_{X_n}$ for any $n \geq 1$, and such that Z_1, Z_2, \ldots converges almost surely to Z. (Hint: use the sample space $\Omega = [0, 1]$ and using an exercise from a previous homework, represent each random variable on Ω as the "inverse" of its cumulative distribution function.)
- (iv) (Slutsky's Theorem) Suppose X_1, X_2, \ldots converges in distribution to X and Y_1, Y_2, \ldots converges in probability to Y. Assume Y is constant almost surely. Show that X_1+Y_1, X_2+Y_2, \ldots converges in distribution to X+Y. Show also that X_1Y_1, X_2Y_2, \ldots converges in distribution to XY. (Hint: either use (iii) or use (ii) to control error terms.) What happens if Y is not constant almost surely?
- (v) (Fatou's lemma) If $g: \mathbf{R} \to [0, \infty)$ is continuous, and if X_1, X_2, \ldots converges in distribution to X, show that $\liminf_{n\to\infty} \mathbf{E}g(X_n) \geq \mathbf{E}g(X)$.
- (vi) (Bounded convergence) If $g: \mathbf{R} \to \mathbf{C}$ is continuous and bounded, and if X_1, X_2, \ldots converges in distribution to X, show that $\lim_{n\to\infty} \mathbf{E}g(X_n) = \mathbf{E}g(X)$.

(vii) (Dominated convergence) If $X_1, X_2, \ldots : \Omega \to \mathbf{R}$ converges in distribution to X, and if there exists a random variable $Y : \Omega \to [0, \infty)$ with $|X_n| \leq Y$ for all $n \geq 1$ and $\mathbf{E}Y < \infty$, show that $\lim_{n \to \infty} \mathbf{E}X_n = \mathbf{E}X$.

Exercise 9 (Portmanteau Theorem). Let X, X_1, X_2, \ldots be random variables with values in \mathbf{R} . Show that the condition $(X_1, X_2, \ldots$ converges in distribution to X) is equivalent to the following three statements:

- For any closed $K \subseteq \mathbf{R}$, $\limsup_{n \to \infty} \mathbf{P}(X_n \in K) \le \mathbf{P}(X \in K)$.
- For any open $U \subseteq \mathbf{R}$, $\liminf_{n\to\infty} \mathbf{P}(X_n \in U) \leq \mathbf{P}(X \in U)$.
- For any Borel set $E \subseteq \mathbf{R}$ whose topological boundary ∂E satisfies $\mathbf{P}(X \in \partial E) = 0$, $\lim_{n \to \infty} \mathbf{P}(X_n \in E) = \mathbf{P}(X \in E)$.

(Hint: Urysohn's Lemma might be helpful.)

Exercise 10. Let $f, g, h \colon \mathbf{R} \to \mathbf{R}$ be measurable functions. Assume that $\int_{\mathbf{R}} |f(x)| \, dx$, $\int_{\mathbf{R}} |g(x)| \, dx < \infty$ and $\int_{\mathbf{R}} |h(x)| \, dx < \infty$. Show that $\int_{-\infty}^{\infty} |(g*h)(t)| \, dt < \infty$. Consequently, $(g*h)(t) \in \mathbf{R}$ almost surely for $t \in \mathbf{R}$ (with respect to Lebesgue measure on \mathbf{R}).

Then, show that convolution is associative and commutative. That is, g * h = h * g and f * (g * h) = (f * g) * h almost surely.

Exercise 11. Using convolution, show that if X, Y are standard Gaussian random variables, then aX + bY is a Gaussian random variable with mean 0 and variance $a^2 + b^2$.

Exercise 12. Let X, Y, Z be independent and uniformly distributed on [0, 1]. Note that f_X is not a continuous function.

Using convolution, compute f_{X+Y} . Draw f_{X+Y} . Note that f_{X+Y} is a continuous function, but it is not differentiable at some points.

Using convolution, compute f_{X+Y+Z} . Draw f_{X+Y+Z} . Note that f_{X+Y+Z} is a differentiable function, but it does not have a second derivative at some points.

Make a conjecture about how many derivatives $f_{X_1+\cdots+X_n}$ has, where X_1,\ldots,X_n are independent and uniformly distributed on [0,1]. You do not have to prove this conjecture. The idea of this exercise is that convolution is a kind of average of functions. And the more averaging you do, the more derivatives $f_{X_1+\cdots+X_n}$ has. Lastly, $f_{X_1+\cdots+X_n}$ should resemble a Gaussian density when n becomes large. So, we should be able to guess at a formulation of the Central Limit Theorem, at least for i.i.d. random variables with density.

Exercise 13. Construct two random variables X, Y such that X and Y are each uniformly distributed on [0, 1], and such that $\mathbf{P}(X + Y = 1) = 1$.

Then construct two random variables W, Z such that W and Z are each uniformly distributed on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That is, there is a way to solve each problem without working very hard.)