Graduate Probability Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due March 22, at the beginning of class.

Homework 7

Exercise 1. Show that cosh(z) < e**/2, ¥ z € R.

Exercise 2 (Chernoff Inequality). Let 0 < p < 1. Let X3, X5, ... be independent identically
distributed random variables with P(X; = 1) = p and P(X; = 0) = 1 — p for any ¢ > 1.
Then for any n > 1

1 & ep\ "
P(— Xi>t>< —”p<—> Vi,

Prove the same estimate for P(% Yo X <t)forany t <p. (Hint: 1+ 2 < e” for any
rE€R, 501+ (e*—1)p <ele"1p)

Exercise 3. We return to the Erdos-Renyi random graph G = (V, E) on n vertices with
parameter 0 < p < 1 from an earlier homework. Define d := p(n — 1).

e Show that d is the expected degree of each vertex in G. (The degree of a vertex
v € V is the number of vertices connected to v by an edge in E.)

e Show that there exists a constant ¢ > 0 such that the following holds. Assume
p > Clo%. Then with probability larger than .9, all vertices of G have degrees in the
range (.9d, 1.1d). (Hint: first consider a single vertex, then use the union bound over
all vertices.)

Exercise 4 (Khintchine Inequality). Let 0 < p < co. Then there exist constants A,, B, €
(0, 00) such that the following holds.

Let X1, Xs,... be independent identically distributed random variables with P(X; = 1) =
P(X; =—1)=1/2. Let a1, as,... € R. Then
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So, all L, (quasi)-norms of """  a,X; are comparable.

A, <

n
E a; X;
i=1

p

(In Banach space terminology, there is an isomorphic copy of the Banach space ¢, inside any
space L,[0,1]; e.g. we can use X;(t) := signsin(2'nt) for any ¢ € [0,1], 7 > 1.)

(Hint: For the A, inequality, use Hoeffding’s inequality and “Integration by Parts,” obtaining

A, < \/pA for some fixed A > 0. For the B, inequality with 0 < p < 2, apply Logarithmic

Convexity of L, norms, in the form ||X||3 < ||XH}2,(1_9) ||X 2%, then apply the A, inequality
2(1-6 2(1-6

to get [|X][3"7 < 4, [1X[51)
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Exercise 5. Let X, Xy,...: Q2 — R be i.id. with E|X;| = co. Then P(|X,| > n for
infinitely many n > 1) = 1. And P(lim,_, 254X € (—00,00)) = 0. (Hint: show

S P(|X,| > n) = oo, then apply the second Borel-Cantelli Lemma. Write 52 — Sntl —

n n+1
n(fj—l) — )iIT’ and consider what happens to both sides on the set where lim,, ., Sn—" €R.))

Also, unfortunately the strong law cannot hold for triangular arrays.

Exercise 6. Let X be a random variable taking values in the natural numbers with P(X =
n) = ﬁ%, where ((3) := Y | 5.

e Show that X is absolutely integrable.

e Foranyn > 1, let X,,1,...,X,,,: € — R be independent copies of X. Show that the
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are almost surely unbounded. (Hint: for any constant

¢, show that > ¢ occurs with probability at least ¢/n for some € > 0
depending on ¢. Then use the second Borel-Cantelli lemma.)

Exercise 7 (Second Borel-Cantelli Lemma). Let A, Ay, ... be independent events with
> P(A,) = co. Then P(A, occurs for infinitely many n > 1) = 1. (Hint: using 1 —
x < e for any x € R, show P(nf_,A%) < exp(—Y.'_.P(A,)), let t — oo to conclude

n=s n

P(uye  A,) =1 for all s > 1, then let s — 00.)

Exercise 8. Let X, X1, X5,... and let Y, Y], Y5, ... be random variables with values in R.

(i) Assume that X is constant almost surely. Show that X, Xs,... converges to X in
distribution if and only if X;, Xy, ... converges to X in probability.

(ii) Prove this Lemma from the notes: Let py, po, ... be a sequence of probability mea-
sures on R. Then any subsequential limit of the sequence (with respect to vague
convergence) is a probability measure if and only if pq, po, ... is tight: V e > 0, 3
m = m(e) > 0 such that

limsup(1 — pn([—m, m])) <e.

n—oo
(iii) Suppose that X, Xs, ... converges in distribution to X. Show there exist random
variables Z, Zy, Zs,...: 0 — R such that puy = ux, pz, = px, for any n > 1,
and such that Z;, Z,, ... converges almost surely to Z. (Hint: use the sample space

2 = [0,1] and using an exercise from a previous homework, represent each random
variable on 2 as the “inverse” of its cumulative distribution function.)

(iv) (Slutsky’s Theorem) Suppose X1, Xs, ... converges in distribution to X and Y3, Y5, ...
converges in probability to Y. Assume Y is constant almost surely. Show that
X1+4Yy, Xo+Y;, ... converges in distribution to X +Y. Show also that X;Y7, XoY5, ...
converges in distribution to XY. (Hint: either use (iii) or use (ii) to control error
terms.) What happens if Y is not constant almost surely?

(v) (Fatou’s lemma) If g: R — [0,00) is continuous, and if X, Xs,... converges in
distribution to X, show that liminf, .., Eg(X,) > Eg(X).

(vi) (Bounded convergence) If g: R — C is continuous and bounded, and if X3, X5, ...
converges in distribution to X, show that lim, ., Eg(X,) = Eg(X).
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(vii) (Dominated convergence) If X, X5, ... : Q — R converges in distribution to X, and
if there exists a random variable Y:  — [0,00) with |X,,| <Y for all n > 1 and
EY < oo, show that lim,,_,., EX, = EX.

Exercise 9 (Portmanteau Theorem). Let X, X, Xy, ... be random variables with values in
R. Show that the condition (X;, Xs,... converges in distribution to X) is equivalent to the
following three statements:

e For any closed K C R, limsup,,_,., P(X,, € K) <P(X € K).

e For any open U C R, liminf, ,,,P(X, € U) < P(X € U).

e For any Borel set F C R whose topological boundary OF satisfies P(X € 0F) = 0,
lim, ..« P(X,, € £) =P(X € F).

(Hint: Urysohn’s Lemma might be helpful.)

Exercise 10. Let f,g,h: R — R be measurable functions. Assume that [g |f(z)|dz,
Jal9(@)|dz < oo and [ |h(z)|dz < co. Show that [~ (g h)(t)|dt < co. Consequently,
(g h)(t) € R almost surely for ¢t € R (with respect to Lebesgue measure on R).

Then, show that convolution is associative and commutative. That is, g * h = h % g and
fx(gxh)=(f*g)*h almost surely.

Exercise 11. Using convolution, show that if X, Y are standard Gaussian random variables,
then aX + bY is a Gaussian random variable with mean 0 and variance a® + b%.

Exercise 12. Let XY, Z be independent and uniformly distributed on [0, 1]. Note that fyx
is not a continuous function.

Using convolution, compute fx.y. Draw fx.y. Note that fx,y is a continuous function,
but it is not differentiable at some points.

Using convolution, compute fxiyiz. Draw fx.y.,z. Note that fxy.y.z is a differentiable
function, but it does not have a second derivative at some points.

Make a conjecture about how many derivatives fx,i..+x, has, where Xi,..., X, are inde-
pendent and uniformly distributed on [0, 1]. You do not have to prove this conjecture. The
idea of this exercise is that convolution is a kind of average of functions. And the more
averaging you do, the more derivatives fx,;..4x, has. Lastly, fx,+..+x, should resemble a
Gaussian density when n becomes large. So, we should be able to guess at a formulation of
the Central Limit Theorem, at least for i.i.d. random variables with density.

Exercise 13. Construct two random variables X, Y such that X and Y are each uniformly
distributed on [0, 1], and such that P(X +Y =1) = 1.

Then construct two random variables W, Z such that W and Z are each uniformly distributed
on [0, 1], and such that W + Z is uniformly distributed on [0, 2].

(Hint: there is a way to do each of the above problems with about one line of work. That
is, there is a way to solve each problem without working very hard.)



