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1. Introductory Remarks

1.1. A rigorous version of calculus. Here is a “proof” of Euler which in 1735 found the
quantity 1 + 1/4 + 1/9 + 1/16 + · · · , thereby solving the Basel problem. Do you agree with
the logic? Let x be a real number. Then

1− π2x2/6 + · · · = sin(πx)

πx
, by Taylor series (1)

= (1− x)(1 + x)(1− x/2)(1 + x/2)(1− x/3)(1 + x/3) · · · (2)

, since a nice function is a product of its zeros

= (1− x2)(1− x2/4)(1− x2/9) · · · (3)

= 1− x2(1 + 1/4 + 1/9 + · · · ) + x4(· · · ) + · · · (4)

So, equation the x2 terms on both sides, we get

1 + 1/4 + 1/9 + 1/16 + · · · = π2/6. (5)

It is actually possible to make this argument rigorous, but what problems do you see with
the amount of rigor? I see a few:

• In what sense does equality hold in (1)?
• What is the true meaning of an infinite sum, as in (1)?
• What is the meaning of the infinite product in (2)?
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• Is every function really the product of its zeros? This seems quite unlikely. (In fact it
is false in general (consider ex), but (2) actually does hold in an appropriate sense.)
• Can we freely rearrange terms in an infinite sum or an infinite product as in (3) and

(4)? (In general, we cannot, but sometimes we can.)

Euler was a brilliant mathematician, but he also occasionally made some mistakes by using
non-rigorous methods. Using intuition and non-rigorous calculations can be very helpful,
though! No one else was able to find (5) at the time. Yet, in order to be entirely certain
of facts, we need to ultimately find rigorous proofs of these facts. The above proof would
receive only partial credit as a solution on a homework, since it is no longer 1735.

1.2. What will we be learning? We will learn a fully rigorous version of calculus. That
is, we will learn how to answer many of the questions raised in the previous section. The
ultimate goal of the course is to develop an ability to read and write rigorous proofs of
mathematics. Also, we would like to learn how to rigorously treat calculus. From the time
of Newton and Leibniz in the mid 1600s to the time of Cauchy in the mid 1800s, calculus
did not have a truly rigorous foundation. And developing such a foundation turned out to
be a fairly difficult problem, which arguably lasted to the time of Cantor in the early 1900s.
Such a rigorous foundation has been quite influential in all other areas of mathematics.

More generally, in nearly any vocation or avocation, the process of problem solving and
thinking rigorously that we learn in this class can be applicable. There is a reason that
Euclid’s Elements were learned by many students in the past, and there is a reason that this
abstract, axiomatic method is still taught in our mathematics classes today.

1.3. How will we be learning analysis? As in the Euclidean axiomatization of geometry,
we will begin with the most basic axioms of arithmetic, and we will slowly build up our
understanding of numbers. For example, one question that we did not yet address is:

What is a real number?

We perhaps have a good intuitive idea of what a real number is. But what is a real
number, really? Maybe you think of a real number in terms of some infinite decimal. So,
are the real numbers the set of infinite decimals? For example,

1.000000 . . .

3.141592653589 . . .

1.34300344300 . . .

This seems reasonable at first, but there are some issues with this definition. For example,
the following two decimals should really be the same number, even though they look very
different.

1.00000 . . . and 0.9999999 . . .

If you don’t agree that these are the same number, then consider what their difference is.
By adjusting for this issue, it is possible to define the real numbers in terms of infinite

decimals. However, there are other, better definitions of the real numbers, which are more
instructive and more useful later. We will construct the real numbers soon using so-called
Cauchy sequences. In order to adjust to axiomatic thinking, and to review induction, we
start at the very beginning and define the natural numbers. We emphasize at the outset
that we will treat numbers as abstract mathematical objects that satisfy certain properties.
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Such a treatment perhaps lacks some intuition, but it seems necessary to provide a rigorous
foundation of mathematics that can avoid some of the issues we discussed in Euler’s proof
above. On the other hand, intuition can be quite useful in proving various facts. So,
doing mathematics seems to require two complementary modes of thought: the nonrigorous,
creative mode, and the rigorous, logical mode.

In this first chapter, we will begin with the axiomatization of the natural numbers, and
we will then move to axiomatizations of the integers, rationals, and reals, respectively. The
point of studying the axiomatization of the natural numbers is that it will allow a review
of induction, and it will lead naturally to our eventual axiomatization of the real number
system. However, a rigorous axiomatization of the real number system is a surprisingly
difficult creation.

1.4. Why are we learning this material? This material lays the foundation for a great
deal of further subjects. To give just one example, consider Fourier analysis, which is ar-
guably one of the most seminal areas of mathematics. Every time we use a cell phone,
or look at a JPEG, or watch an online video (for example, an MPEG), or when a doctor
uses an MRI or CT-Scan, Fourier analysis is involved. In Fourier analysis, we begin with a
function, we break this function up into simpler pieces, and we then reassemble these pieces.
Sometimes we are allowed to break up the function into pieces, and sometimes we are not.
The details become unexpectedly subtle. The rigorous way of thinking and the results of
this course play a crucial role in dealing with the details of the subject of Fourier analysis.

Abstract reasoning has some advantages and disadvantages. Since abstract reasoning
usually does not come naturally, it can be difficult to learn material that is presented in an
abstract way. On the other hand, an abstract approach promises more applicability. For
example, there are many different ways to interpret a real-valued function on the real line.
Such a function could represent the amplitude of a sound wave over time, the price of a stock
over time, the displacement of an object over time, and so on.

2. Natural Numbers

The natural numbers N are defined by the following axioms.

Definition 2.1 (Peano Axioms).
(1) 0 is a natural number.
(2) Every natural number n has a successor n+ + which is also a natural number.
(3) 0 is not the successor of any natural number. That is, for any natural number n, n++ 6= 0.
(4) Different natural numbers have difference successors. That is, if n,m are natural numbers
with n 6= m, then n+ + 6= m+ +.

(5) (Principle of Induction) Let n be a natural number, and let P (n) be any property that
holds for n. Assume that P (0) is true, and whenever P (n) is true for any natural number
n, P (n+ +) is also true. Then P (n) is true for every natural number n.

Assumption 1 (The Natural Numbers). There exists a number system N, whose ele-
ments we call natural numbers, such that Axioms (1) through (5) of Definition 2.1 are
true.

Definition 2.2. Define 1 := 0 + +.
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Definition 2.3 (Addition of Natural Numbers). Let m be a natural number. Define
0 + m := m. We now define how to add other natural numbers to m. Let n be a natural
number. Suppose we have inductively defined n+m. Then, define (n++)+m := (n+m)++.

Remark 2.4. By Axiom (5), we have defined addition on all natural numbers n,m.

Exercise 2.5. Show that, from Axioms (1), (2) it follows by induction (using Axiom (5))
that addition of two natural numbers produces a natural number.

Remark 2.6. Using only the definitions 0 + m = m and (n + +) + m = (n + m) + +, we
will deduce all basic facts of arithmetic.

Lemma 2.7. For any natural number n, n+ 0 = n.

Remark 2.8. Note that we cannot apply commutativity of addition, since it does not
immediately follow from the axioms of Definition 2.1.

Proof. From Definition 2.3, 0 + 0 = 0. So, we induct on n. Suppose n + 0 = n for a
natural number n. We need to show that (n + +) + 0 = n + +. From Definition 2.3,
(n++)+0 = (n+0)++. From the inductive hypothesis, we therefore have (n++)+0 = n++,
as desired. Having completed the inductive step and the base case, we are done. �

Lemma 2.9. For any natural numbers n,m, we have n+ (m+ +) = (n+m) + +

Proof. We fix m and induct on n. In the base case n = 0, we need to show 0 + (m + +) =
(0+m)++. From Definition 2.3, we know that 0+(m++) = m++ and (0+m)++ = m++.
We conclude that 0 + (m+ +) = (0 +m) + +, as desired. We now induct on n. Suppose n
satisfies n+ (m+ +) = (n+m) + +. We need to show that

(n+ +) + (m+ +) = ((n+ +) +m) + +. (∗)
From Definition 2.3, (n++)+(m++) = (n+(m++))++. From the inductive hypothesis,
(n + (m + +)) + + = ((n + m) + +) + +. From Definition 2.3, ((n + +) + m) + + =
((n+m) ++) ++. We conclude that both sides of (∗) are equal, so the inductive step holds,
and we deduce the lemma. �

Remark 2.10. From Definition 2.2, Lemma 2.7 and Lemma 2.9, n + 1 = n + (0 + +) =
(n+ 0) + + = n+ +, so n+ + = n+ 1 for all natural numbers n.

Proposition 2.11 (Addition is Commutative). For any natural numbers n,m, we have
n+m = m+ n.

Proof. We fix m and induct on n. In the base case n = 0, we need to show that 0+m = m+0.
From Definition 2.3, 0 +m = m. From Lemma 2.7, m+ 0 = m. Therefore, 0 +m = m+ 0,
as desired. Now, assume that n+m = m+ n. We need to show that

(n+ +) +m = m+ (n+ +). (∗)
From Definition 2.3, (n++)+m = (n+m)++. From Lemma 2.9, m+(n++) = (m+n)++.
From the inductive hypothesis, (m + n) + + = (n + m) + +. Putting everything together
(∗) holds, and the inductive step is complete. �

Proposition 2.12 (Addition is Associative). For any natural numbers a, b, c, we have
(a+ b) + c = a+ (b+ c).
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Exercise 2.13. Prove Proposition 2.12 by fixing two variables and inducting on the third
variable.

Proposition 2.14 (Cancellation Law). Let a, b, c be natural numbers such that a + b =
a+ c. Then b = c.

Remark 2.15. We have not defined subtraction, so we cannot subtract a from both sides.
In fact, we will use the Cancellation Law to define subtraction.

Proof. We induct on a. For the base case a = 0, we assume that 0 + b = 0 + c. From
Definition 2.3, we conclude that b = c, thereby proving the base case. Now, assume that: if
a + b = a + c, then b = c. We need to show that: if (a + +) + b = (a + +) + c, then b = c.
From Definition 2.3, (a + +) + b = (a + b) + +. Similarly, (a + +) + c = (a + c) + +. So,
we know that (a+ b) + + = (a+ c) + +. From the contrapositive of Axiom (4) of Definition
2.1, we conclude that a+ b = a+ c. From the inductive hypothesis, b = c. So, the inductive
step is complete, and we are done. �

Definition 2.16 (Positivity). A natural number n is said to be positive if and only if
n 6= 0.

Proposition 2.17. Let a, b be natural numbers. Assume that a is positive. Then a + b is
positive.

Proof. We induct on b. For the base case, b = 0, and we see that a+b = a+0 = a. Since a is
positive, we conclude that a+ b is positive. We now prove the inductive step. Assume that
a+ b is positive. We need to show that a+ (b+ +) is positive. But a+ (b+ +) = (a+ b) + +,
and (a + b) + + 6= 0 by Axiom (3) of Definition 2.1. We have therefore completed the
inductive step. �

The following Corollary is the contrapositive of Proposition 2.17.

Corollary 2.18. Let a, b be natural numbers such that a+ b = 0. Then a = b = 0.

Definition 2.19 (Order). Let n,m be natural numbers. We say that n is greater than
or equal to m, and we write n ≥ m or m ≤ n, if and only if n = m + a for some natural
number a. We say that n is strictly greater than m, and we write n > m or m < n, if
and only if n ≥ m and n 6= m.

Proposition 2.20 (Properties of Order). Let a, b, c be natural numbers.

(1) a ≥ a.
(2) If a ≥ b and b ≥ c, then a ≥ c.
(3) If a ≥ b and b ≥ a, then a = b.
(4) a ≥ b if and only if a+ c ≥ b+ c.
(5) a < b if and only if a+ c < b+ c.

Exercise 2.21. Prove Proposition 2.20.

Proposition 2.22 (Trichotomy of Order). Let a, b be natural numbers. Then exactly one
of the following statements is true: a < b, a > b or a = b.
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2.1. Multiplication.

Remark 2.23. We will now freely use facts about addition of natural numbers, without
referencing the above lemmas and propositions.

Definition 2.24 (Multiplication). Let m be a natural number. We define multiplication
× as follows. Define 0 × m := 0. Now, let n be a natural number, and assume we have
inductively defined n×m. Then, define (n+ +)×m := (n×m) +m.

Remark 2.25. One can show by induction that n×m is a natural number, for any natural
numbers n,m.

Exercise 2.26. Imitating the proofs of Lemmas 2.7 and 2.9 and Proposition 2.11, show
that, for all natural numbers n,m, we have n × 0 = 0, n × (m + +) = (n × m) + n and
n×m = m× n.

Remark 2.27. Let n,m, r be natural numbers. As is standard, we write nm to denote
n×m. Also, nm+ r denotes (n×m) + r.

Remark 2.28. If a, b are positive natural numbers, than ab is positive. One can prove this
using induction and Proposition 2.17.

Proposition 2.29 (Distributive Law). For any natural numbers a, b, c, we have a(b+c) =
ab+ ac and (b+ c)a = ba+ ca.

Proof. From Exercise 2.26, multiplication is commutative. So, it suffices to prove a(b+ c) =
ab + ac. Fix a, b. We then induct on c. The base case corresponds to c = 0. We need to
prove a(b + 0) = ab + a0. The left side is ab, and the right side is ab + 0 = ab, so the base
case is verified. Now, assume that a(b + c) = ab + ac for some natural number c. We need
to show that a(b+ (c+ +)) = ab+ a(c+ +). The left side is a((b+ c) + +) = a(b+ c) + a, by
Definition 2.24. So, by the inductive hypothesis, the left side is ab+ ac+ a. Meanwhile, the
right side is ab+ ac+ a, by Definition 2.24. So, the inductive step has been completed. �

Remark 2.30. From Proposition 2.29, we can mimic the proof of Proposition 2.12 to prove
that, for all natural numbers a, b, c, we have a(bc) = (ab)c.

Proposition 2.31. Let a, b be natural numbers with a < b. If c is a positive natural number,
then ac < bc.

Proof. Since a < b, there exists a positive natural number d such that a+d = b. Multiplying
both sides by c and using Proposition 2.29, bc = ac+dc. Since d, c are positive, dc is positive
by Remark 2.28. We conclude that ac < bc by the definition of order, as desired. �

Corollary 2.32 (Cancellation Law). Let a, b, c be natural numbers such that ac = bc and
such that c 6= 0. Then a = b.

Proof. From the trichotomy of order (Proposition 2.22), either a < b, a > b or a = b. Since
c 6= 0, c is positive. So, if a < b, then ac < bc by Proposition 2.31. Similarly, if b < a, then
bc < ac by Proposition 2.31. So, the cases a < b and b < a cannot occur. We conclude that
a = b, as desired. �

Remark 2.33. From now on, we will write n+ + as n+ 1, and we will use basic properties
of addition and multiplication of natural numbers.
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Proposition 2.34 (The Euclidean Algorithm). Let n be a natural number and let q be
a positive natural number. Then there exist natural numbers m, r such that 0 ≤ r < q and
such that n = mq + r.

Remark 2.35. That is, we can divide n by q, leaving a remainder r, where 0 ≤ r < q.

Exercise 2.36. Prove Proposition 2.34 by fixing q and using induction on n.

3. Integers

We have dealt with addition and multiplication of natural numbers above. We would now
like to deal with subtraction. In order to do this, we need to construct the integers. We will
define the integers as the formal difference of two natural numbers. This is not the only way
to define the integers, but it ends up being a bit cleaner than other methods.

Definition 3.1 (Integers). An integer is an expression of the form a—–b where a, b are
natural numbers. We say that two integers a—–b and c—–d are equal if and only if a+ d =
c+ b. We let Z denote the set of all integers.

Example 3.2. So, the integer 5—–2 is equal to 4—–1 since 5 + 1 = 4 + 2.

Remark 3.3. We need to verify that three axioms hold for this notion of equality. For any
natural numbers a, b, c, d, e, f , we need to show:

(1) a—–b is equal to a—–b.
(2) If a—–b is equal to c—–d, then c—–d is equal to a—–b.
(3) If a—–b is equal to c—–d, and if c—–d is equal to e—–f , then a—–b is equal to

e—–f .

These three axioms define an equivalence relation on integers. Properties (1) and (2) follow
immediately. To show property (3), note that a+ d = b+ c, and c+ f = d+ e. Adding both
equations, we get a + d + c + f = b + c + d + e. From the Cancellation Law (Proposition
2.14), we conclude that a+ f = b+ e, so that a—–b is equal to e—–f , as desired.

Definition 3.4 (Addition and Multiplication of Integers). Let a—–b and c—–d be
two integers. We define the sum (a—–b) + (c—–d) by

(a—–b) + (c—–d) := (a+ c)—–(b+ d).

We define the product (a—–b)× (c—–d) by

(a—–b)× (c—–d) := (ac+ bd)—–(ad+ bc).

One potential problem with these definitions is that, even though 5—–2=4—–1, it is not
clear that (5—–2) + (c—–d) = (4—–1) + (c—–d), or that (5—–2)× (c—–d) = (4—–1)× (c—
–d). Fortunately, this is not a problem at all.

Lemma 3.5. Let a, a′, b, b′, c, d be natural numbers such that a—–b=a′—–b′. Then

(1) (a—–b) + (c—–d) = (a′—–b′) + (c—–d).
(2) (a—–b)× (c—–d) = (a′—–b′)× (c—–d).
(3) (c—–d) + (a—–b) = (c—–d) + (a′—–b′).
(4) (c—–d)× (a—–b) = (c—–d)× (a′—–b′).
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Proof. We first prove (1). Using Definition 3.4, we need to show that (a + c)—–(b + d) =
(a′+ c)—–(b′+ d). Using Definition 3.1, we need to show that a+ c+ b′+ d = a′+ c+ b+ d.
Since a—–b=a′—–b′, we know that a+ b′ = a′+ b. So, adding c+ d to both sides proves (1).

We now prove (2). Using Definition 3.4, we need to show that (ac + bd)—–(bc + ad) =
(a′c + b′d)—–(b′c + a′d). Using Definition 3.1, we need to show that ac + bd + b′c + a′d =
a′c + b′d + bc + ad. The left side can be written c(a + b′) + d(a′ + b), while the right is
c(a′+ b) + d(a+ b′). Since a—–b=a′—–b′, we know that a+ b′ = a′+ b. So, both sides of (2)
are equal. The remaining claims (3), (4) are proven similarly. �

Remark 3.6. Let n,m be any natural numbers. Then the set of integers n—–0 behave
exactly like the natural numbers. For example, (n—–0) + (m—–0) = (n + m)—–0, and
(n—–0)× (m—–0) = (nm)—–0. Also, (n—–0) = (m—–0) if and only if n = m. So, we may
identify the natural numbers as a subset of the integers via the correspondence n = (n—–0).
Note in particular that under this correspondence, 0 = (0—–0) and 1 = (1—–0).

Remark 3.7. Then, for any integer x, we define x+ + := x+ 1.

Definition 3.8. Let (a—–b) be an integer. We define the negation −(a—–b) of (a—–b) by
−(a—–b) := (b—–a).

Remark 3.9. Negation is well-defined. That is, if (a—–b) = (a′—–b′), then −(a—–b) =
−(a—–b).

Definition 3.10. Let n be a natural number. We define −n := −(n—–0) = (0—–n). If n
is a positive natural number, we call −n a negative integer.

Lemma 3.11. Let x be an integer. Then exactly one of the following three statements is
true.

(1) x is zero.
(2) There exists a positive natural number n such that x = n.
(3) There exists a positive natural number n such that x = −n.

Proposition 3.12. Let x, y, z be integers. Then the following laws of algebra hold.

• x+ y = y + x (Commutativity of addition)
• (x+ y) + z = x+ (y + z) (Associativity of addition)
• x+ 0 = 0 + x = x (Additive identity element)
• x+ (−x) = (−x) + x = 0 (Additive inverse)
• xy = yx (Commutativity of multiplication)
• (xy)z = x(yz) (Associativity of multiplication)
• x1 = 1x = x (Multiplicative identity element)
• x(y + z) = xy + xz (Left Distributivity)
• (y + z)x = yx+ zx (Right Distributivity)

Remark 3.13. These properties say that the integers form a commutative ring. Note that
there is no notion of division within the integers. More specifically, there is no multiplicative
inverse property. For example, given 2 ∈ Z, there does not exist an x ∈ Z such that 2x = 1.
In order to have multiplicative inverses, we will need to enlarge the set of integers to the set
of rational numbers. We will realize this goal shortly.
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Proof of Associativity of addition. Let x, y, z be integers. Then there exist natural numbers
a, b, c, d, e, f such that x = a—–b, y = c—–d and such that z = e—–f . We compute both
sides of the purported inequality (xy)z = x(yz), separately.

(xy)z = [(a—–b)(c—–d)](e—–f) = [(ac+ bd)—–(bc+ ad)](e—–f)

= (ace+ bde+ bcf + adf)—–(acf + bdf + bce+ ade).

x(yz) = (a—–b)[(c—–d)(e—–f)] = (a—–b)[(ce+ df)—–(cf + de)]

= (ace+ adf + bcf + bde)—–(bce+ bdf + acf + ade).

So, (xy)z = x(yz) for all integers x, y, z, as desired. �

Proposition 3.14. Let a, b be integers such that ab = 0. Then at least one of a, b is zero.

Exercise 3.15. Prove Proposition 3.14.

Corollary 3.16 (Cancellation Law). Let a, b, c be integers such that c 6= 0 and such that
ac = bc. Then a = b.

Proof. Since ac = bc, we have (a− b)c = ac− bc = 0. Since c 6= 0, Proposition 3.14 implies
that a− b = 0, so that a = b. �

We can now define the order on the integers exactly as we did for the natural numbers.

Definition 3.17 (Order). Let n,m be integers. We say that n is greater than or equal
to m, and we write n ≥ m or m ≤ n, if and only if n = m + a for some natural number a.
We say that n is strictly greater than m, and we write n > m or m < n, if and only if
n ≥ m and n 6= m.

Also, using Proposition 3.12, we have the following properties of order

Proposition 3.18 (Properties of Order). Let a, b be integers.

(1) a > b if and only if a− b is a positive natural number.
(2) If a > b, then a+ c > b+ c for any integer c.
(3) If a > b, then ac > bc for any positive natural number c.
(4) If a > b, then −a < −b.
(5) If a > b and b > c, then a > c.
(6) If a ≥ b and b ≥ a, then a = b.

4. Rationals

As discussed above, there does not exist an integer x such that 2x = 1. That is, a general
integer does not have a multiplicative inverse. In order to get multiplicative inverses for
nonzero integers, we need to enlarge this set to the set of rational numbers. As above, we
will define the rational numbers axiomatically.

Definition 4.1 (Rational Numbers). A rational number is an expression of the form
a//b, where a, b are integers and b 6= 0. Two rational numbers a//b and c//d are considered
to be equal if and only if ad = cb.
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Remark 4.2. As before, we need to check that this notion of equality of rational numbers is
an equivalence relation. It follows readily that a//b is equal to a//b, and if a//b is equal to
c//d, then c//d is equal to a//b. To check the third property, suppose a//b is equal to c//d,
and c//d is equal to e//f . Then ad = bc and cf = de. Multiplying both of these equations,
we get adcf = debc. We need to show that a//b is equal to e//f . That is, we need to
show that af = eb. Since d 6= 0, from the Cancellation Law (Corollary 3.16), the equation
adcf = debc becomes acf = ebc. If c 6= 0, the Cancellation law implies that af = eb, as
desired. If c = 0, then ad = bc = 0 and de = cf = 0. And since b 6= 0 and d 6= 0, Proposition
3.14 implies that a = e = 0. So, af = 0 = eb, as desired. In any case, we have proven that
our notion of equality of rational numbers is an equivalence relation.

As before, we now define addition, multiplication, and negation of rational numbers. And
we then need to check that these definitions are well-defined.

Definition 4.3. Let a//b and c//d be rational numbers. Define their sum as follows.

(a//b) + (c//d) = (ad+ bc)//(db).

Define their product as follows.

(a//b)× (c//d) := (ac)//(bd).

Define the negation of a//b as follows.

−(a//b) := (−a)//b.

Lemma 4.4. Let a//b, a′//b′, c//d be rational numbers such that a//b is equal to a′//b′.
Then the sum, product, and negation are unchanged when we replace a//b with a′//b′. And
similarly for c//d.

Proof. We prove the first property, since the other proofs are similar. We need to show
that (a//b) + (c//d) = (a′//b′) + (c//d). That is, we need to show that (ad + bc)//(bd) =
(a′d+ b′c)//(b′d). That is, we need to show that (ad+ bc)(b′d) = (a′d+ b′c)(bd), i.e. we need
ab′dd+ bb′cd = a′bdd+ bb′cd, i.e. we need ab′dd = a′bdd. We know that a//b = a′//b′. That
is, we know that ab′ = a′b. So, the claim follows by multiplying both sides of this equation
by dd, as desired. �

Remark 4.5. Let a, b be integers. The rational numbers a//1, b//1 behave exactly like the
integers, since we have

(a//1) + (b//1) = (a+ b)//1, (a//1)× (b//1) = (ab)//1, −(a//1) = (−a)//1.

Also, a//1 = b//1 if and only if a = b. We therefore identify the rational numbers a//1 with
the integers a by the relation a = a//1.

Remark 4.6. Let a//b be a rational number. Then a//b = 0//1 if and only if a = 0. Taking
the contrapositive, a//b 6= 0//1 if and only if a 6= 0.

Definition 4.7 (Reciprocal). Let x = a//b be a nonzero rational number. From the
previous remark and the definition of rational numbers, a 6= 0 and b 6= 0. We then define
the reciprocal x−1 of x by x−1 := b//a. Note that if two rational numbers are equal, then
their reciprocals are equal. Also, the reciprocal of 0 is left undefined.
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Just as in the case of the integers, we can now prove various properties of the rationals.
However, as promised, we now have an additional property. Nonzero numbers now have a
multiplicative inverse. Whereas the integers were a commutative ring, the rationals are also
a commutative ring. And with this additional multiplicative inverse property, the rationals
are now referred to as a field.

Proposition 4.8. Let x, y, z be rational numbers. Then the following laws of algebra hold.

• x+ y = y + x (Commutativity of addition)
• (x+ y) + z = x+ (y + z) (Associativity of addition)
• x+ 0 = 0 + x = x (Additive identity element)
• x+ (−x) = (−x) + x = 0 (Additive inverse)
• xy = yx (Commutativity of multiplication)
• (xy)z = x(yz) (Associativity of multiplication)
• x1 = 1x = x (Multiplicative identity element)
• x(y + z) = xy + xz (Left Distributivity)
• (y + z)x = yx+ zx (Right Distributivity)

Finally, if x is nonzero, then

• xx−1 = x−1x = 1 (Multiplicative Inverse)

Proof. We will only prove the associativity of addition, since the other proofs have a similar
flavor. Write x = a//b, y = c//d, z = e//f . Then

(x+ y) + z = ((a//b) + (c//d)) + e//f = ((ad+ bc)//(bd)) + e//f

= (adf + bcf + bde)//(bde).

x+ (y + z) = (a//b) + ((c//d) + (e//f)) = (a//b) + ((cd+ de)//(df))

= (adf + bcf + bde)//(bde).

So, (x+ y) + z = x+ (y + z), as desired. �

Definition 4.9 (Quotient). Let x, y be rational numbers such that y 6= 0. We define the
quotient x/y of x and y by

x/y := x× y−1.

Remark 4.10. For any integers a, b with b 6= 0, note that a/b = a//b, since

a/b = ab−1 = (a//1)× (1//b) = a//b.

So, from now on, we use the notation a/b instead of a//b.

Remark 4.11. From now on, we will use the field axioms of Proposition 4.8 without explicit
reference.

As in the case of integers, we now define positive and negative rational numbers.

Definition 4.12. A rational number x is said to be positive if and only if x = a/b for some
positive integers a, b. A rational number x is said to be negative if and only if x = −y for
a positive rational number y.

Remark 4.13. A positive integer is a positive rational number, and a negative integer is a
negative rational number, so our notions of positive and negative are consistent.
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Lemma 4.14. Let x be a rational number. Then exactly one of the following three statements
is true.

• x is equal to 0.
• x is a positive rational number.
• x is a negative rational number.

We now define an order on the rationals that extends the notion of order on the integers.

Definition 4.15 (Order). Let x, y be rational numbers. We write x > y if and only if x−y
is a positive rational number. We write x < y if and only if y − x is a positive rational
number. We write x ≥ y if and only if either x > y or x = y. We write x ≤ y if and only if
either x < y or x = y.

Proposition 4.16 (Properties of Order). Let x, y, z be rational numbers. Then

(1) Exactly one of the statements x = y, x < y, x > y is true.
(2) x < y if and only if y > x.
(3) If x < y and y < z, then x < z
(4) If x < y, then x+ z < y + z.
(5) If x < y and if z is positive, then xz < yz.

Remark 4.17. The five properties of Proposition 4.16 combined with the field axioms of
Proposition 4.8 say that the set of rational numbers Q form an ordered field.

Unlike the integers, the rationals have the following density property. Given any two
rational numbers, there is a third rational number between them.

Proposition 4.18. Given any two rational numbers x, z with x < z, there exists a rational
number y such that x < y < z.

Proof. Define y := (x + z)/2. Since x < z and 1/2 is positive, Proposition 4.16(5) says
that x/2 < z/2. Adding z/2 to both sides and using Proposition 4.16(4), we get x/2 +
z/2 < z/2 + z/2 = z. That is, y < z. Adding x/2 to both sides of x/2 < z/2, we get
x = x/2 + x/2 < x/2 + z/2. That is, x < y. In conclusion, x < y < z, as desired. �

Even though the rationals have some density in the sense of Proposition 4.18, the set of
rational numbers still has many gaps. To illustrate this fact, consider the following classical
proposition.

Proposition 4.19. There does not exist a rational number x such that xx = 2.

Proof. We argue by contradiction. Assume that x is rational and xx = 2. We may assume
that x is positive, since xx = (−x)(−x). Let p, q be integers with q 6= 0 such that x = p/q.
Since x is positive, we may assume that p, q are natural numbers. Since xx = 2, we have
pp = 2qq. Recall that a natural number a is even if there exists a natural number b such
that a = 2b, and a natural number a is odd if there exists a natural number b such that
a = 2b+1. Note that every natural number is either even or odd, and natural number cannot
be both even and odd. Both of these facts follow from Proposition 2.34. If a is odd, note
that aa = 4bb+2b+2b+1 = 2(2bb+b+b)+1, so aa is odd. So, by taking the contrapositive:
if aa is even, then a is even. Since pp = 2qq, pp is even, so we conclude that p is even, so
there exists a natural number k such that p = 2k. Since p is positive, k is positive. Since
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pp = 2qq, we get pp = 4kk = 2qq, so qq = 2kk. Since pp = 2qq, and p, q are positive, we
have q < p.

In summary, we started with positive natural numbers p, q such that pp = 2qq. And
we now have positive natural numbers q, k such that qq = 2kk, and such that q < p. We
can therefore iterate this procedure. For any natural number n, suppose inductively we
have pn, qn positive natural numbers such that pnpn = 2qnqn. Then we have found natural
numbers pn+1, qn+1 such that pn+1pn+1 = 2qn+1qn+1, and such that pn+1 < pn. The existence
of the natural numbers p1, p2, . . . violates the principle of infinite descent (Exercise 4.20), so
we have obtained a contradiction. We conclude that no rational x satisfies xx = 2. �

Exercise 4.20. Prove the principle of infinite descent. Let p0, p1, p2, . . . be an infinite se-
quence of natural numbers such that p0 > p1 > p2 > · · · . Prove that no such sequence exists.
(Hint: Assume by contradiction that such a sequence exists. Then prove by induction that
for all natural numbers n,N , we have pn ≥ N . Use this fact to obtain a contradiction.)

4.1. Operations on Rationals. We now introduce a few additional operations on the
rationals Q. These operations will help in our construction of the real numbers.

Definition 4.21 (Absolute Value). Let x be a rational number. The absolute value |x|
of x is defined as follows. If x ≥ 0, then |x| := x. If x < 0, then |x| := −x.

Definition 4.22 (Distance). Let x, y be rational numbers. The quantity |x− y| is called
the distance between x and y. We denote d(x, y) := |x− y|.

The following inequalities will be used very often in this course.

Proposition 4.23. Let x, y be rational numbers. Then |x| ≥ 0, and |x| = 0 if and only if
x = 0. We also have the triangle inequality

|x+ y| ≤ |x|+ |y| ,
the bounds

− |x| ≤ x ≤ |x|
and the equality

|xy| = |x| |y| .
In particular,

|−x| = |x| .
Also, the distance d(x, y) satisfies the following properties. Let x, y, z be rational numbers.
Then d(x, y) = 0 if and only if x = y. Also, d(x, y) = d(y, x). Lastly, we have the triangle
inequality

d(x, z) ≤ d(x, y) + d(y, z).

Exercise 4.24. By breaking into different cases as necessary, prove Proposition 4.23.

Exercise 4.25. Using the usual triangle inequality, prove the reverse triangle inequality:
For any rational numbers x, y, we have |x− y| ≥ ||x| − |y||.

Definition 4.26 (Exponentiation). Let x be a rational number. We define x0 := 1. Now,
let n be any natural number, and suppose we have inductively defined xn. Then define
xn+1 := xn × x.

The following properties of exponentiation then follow by induction.
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Proposition 4.27. Let x, y be rational numbers, and let n,m be natural numbers.

• xnxm = xn+m, (xn)m = xnm, and (xy)n = xnyn.
• xn = 0 if and only if x = 0 and n > 0.
• If x ≥ y ≥ 0, then xn ≥ yn ≥ 0.
• |x|n = |xn|.

Definition 4.28 (Negative Exponentiation). Let x be a nonzero rational number, and
let n be a positive natural number. Define x−n := 1/xn.

Proposition 4.29. Let x, y be nonzero rational numbers, and let n,m be integers.

• xnxm = xn+m, (xn)m = xnm, and (xy)n = xnyn.
• If x ≥ y > 0, then xn ≥ yn > 0 if n > 0, and 0 < xn ≤ yn if n < 0.
• |x|n = |xn|.

5. Cauchy Sequences of Rationals

Having established many properties of the rational numbers, we can finally begin to con-
struct the real number system. As we saw in Proposition 4.19, there does not exist a rational
number x such that x2 = 2. Nevertheless, we can still find rational numbers x such that
x2 becomes as close as desired to 2. In this sense, the rational numbers have gaps between
them. And filling in these gaps will exactly give us the real number system. There are a
few different ways to fill in these gaps between the rational numbers. We will discuss the
method of Cauchy sequences, since their investigation will lead naturally to further topics
of interest.

As a preliminary result, we consider the gaps between the integers.

Proposition 5.1. Let x be a rational number. Then there exists a unique integer n such
that n ≤ x < n+ 1. In particular, there exists an integer N such that x < N .

Exercise 5.2. Using the Euclidean Algorithm (Proposition 2.34), prove Proposition 5.1.

Proposition 5.3. For any rational number ε > 0, there exists a nonnegative rational number
x such that x2 < 2 < (x+ ε)2.

Proof. We argue by contradiction. Suppose there exists ε > 0 and there does not exist a
nonnegative rational number x such that x2 < 2 < (x + ε)2. So, every nonnegative rational
number x with x2 < 2 must also satisfy (x + ε)2 ≤ 2. From Proposition 4.19, (x + ε)2 6= 2,
so (x + ε)2 < 2. Note that (x + ε)2 is rational and (x + ε)2 < 2, so using this number in
place of x, we see that we must have (x + 2ε)2 < 2 as well. Indeed, an inductive argument
shows that, for any natural number n, (x+nε)2 < 2. Choosing x = 0, we see that (nε)2 < 2,
for any natural number n. However, since 2/ε is rational, Proposition 5.1 says that there
exists an integer N such that N > 2/ε. That is, Nε > 2, so (Nε)2 > 4. This inequality
contradicts that (Nε)2 < 2. Since we have arrived at a contradiction, we conclude that an x
exists satisfying the proposition. �

Indeed, we “know” that the sequence of rational numbers

1.4, 1.41, 1.414, 1.4142, . . .

becomes arbitrarily close to a number x such that x2 = 2. And this sort of sequential
procedure is exactly how we will construct the rational numbers. Note that we define the
decimal 1.4142 as the rational number 14142/10000.
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Definition 5.4 (Sequence of rationals). Let m be an integer. A sequence (an)∞n=m of
rationals is any function from the set {n ∈ N : n ≥ m} to Q. Informally, a sequence of
rationals is an ordered list of rational numbers.

Example 5.5. The sequence (n2)∞n=0 is the collection 0, 1, 4, 9, 16, . . . of natural numbers.

We will define real numbers as certain limits of sequences of rationals. A general sequence
of rationals does not seem to have a sensible limit, so we need to restrict the sequences that
we are considering. For example, the sequence ((−1)n)∞n=0 does not seem to have any sensible
limit. The following definition states precisely what kind of sequences we would like to focus
on. The idea is that, eventually, the sequence elements need to be close to each other. This
vague statement is then formalized as follows.

Definition 5.6 (Cauchy sequence). A sequence (an)∞n=0 of rational numbers is said to be
a Cauchy sequence if and only if, for every rational ε > 0, there exists a natural number
N = N(ε) such that, for all j, k ≥ N , we have d(aj, ak) < ε.

Example 5.7. The sequence (1/n)∞n=1 is a Cauchy sequence. To see this, let ε > 0 be a
rational number. From Proposition 5.1, let N be a natural number such that N > 2/ε.
Then 1/N < ε/2. Now, let j, k ≥ N so that 1/j ≤ 1/N and 1/k ≤ 1/N . From the triangle
inequality, we then have

d(1/j, 1/k) = |1/j − 1/k| ≤ |1/j|+ |1/k| = 1/j + 1/k ≤ 2/N < ε.

To get an idea of where we are headed, we are going to define the real numbers to be the
“limits” of Cauchy sequences. In order to make this statement rigorous, we need to show
that a Cauchy sequence has a limit, and we need to discuss when two Cauchy sequences
have the same limit. If two Cauchy sequences have the same limit, we will say that they
are equal. Before defining the real numbers, we need some preliminary facts about Cauchy
sequences.

Definition 5.8 (Bounded Sequence). Let M ≥ 0 be rational. A finite sequence of
rationals a0, . . . , an is bounded by M if and only if |ai| ≤ M for all i ∈ {0, . . . , n}. An
infinite sequence of rationals (ai)

∞
i=0 is bounded by M if and only if |ai| ≤M for all i ∈ N.

A sequence (ai)
∞
i=0 is bounded if and only if there exists a positive rational M such that

(ai)
∞
i=0 is bounded by M .

Lemma 5.9. Every Cauchy sequence is bounded.

Exercise 5.10. Prove Lemma 5.9

Definition 5.11 (Equivalent Cauchy Sequences). Let (an)∞n=0, (bn)∞n=0 be Cauchy se-
quences. We say that these Cauchy sequences are equivalent if and only if, for every
rational ε > 0, there exists a natural number N = N(ε) ≥ 0 such that |an − bn| < ε for all
n ≥ N .

As with our notations of equivalence of integers and rationals, we need to show that
this notion of equivalence is an equivalence relation. That is, we need the following three
properties.

Lemma 5.12. Let (an)∞n=0, (bn)∞n=0, (cn)∞n=0 be Cauchy sequences.

• (an)∞n=0 is equivalent to (an)∞n=0.
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• If (an)∞n=0 is equivalent to (bn)∞n=0, then (bn)∞n=0 is equivalent to (an)∞n=0.
• If (an)∞n=0 is equivalent to (bn)∞n=0, and if (bn)∞n=0 is equivalent to (cn)∞n=0, then (an)∞n=0

is equivalent to (cn)∞n=0.

Proof. We prove the third item. Let ε > 0 be a rational number. Note that ε/2 > 0 is
a rational number. So, by assumption, there exist L,M > 0 such that, for all n ≥ L,
|an − bn| < ε/2, and for all n ≥ M , |bn − cn| < ε/2. Define N := max(L,M). Then, for all
n ≥ N , we have by the triangle inequality

|an − cn| = |an − bn + bn − cn| ≤ |an − bn|+ |bn − cn| < ε/2 + ε/2 = ε.

That is, (an)∞n=0 is equivalent to (cn)∞n=0, as desired. �

Remark 5.13. The above proof strategy occurs very often in analysis, so it should be
ingrained in your memory. The idea is that, in order to prove that two things are close, you
add and subtract the same number, and then apply the triangle inequality.

6. Construction of the Real Numbers

We can now finally give a definition of a real number. As in our construction of the
integers and rational numbers, we will begin by using some artificial symbol to designate a
real number. However, the construction of the real numbers requires a new ingredient, which
is the Cauchy sequence of rational numbers.

Definition 6.1 (Real Number). A real number is an object of the form LIMn→∞an,
where (an)∞n=0 is a Cauchy sequence. Two real numbers LIMn→∞an, LIMn→∞bn are equal if
and only if (an)∞n=0, (bn)∞n=0 are equivalent Cauchy sequences. The set of all real numbers is
denoted by R

Remark 6.2. We refer to LIMn→∞an as the formal limit of the Cauchy sequence (an)∞n=0.
Later on, we will show that a Cauchy sequence has an actual limit as n→∞, which explains
our use of this notation.

Even though we define real numbers in terms of Cauchy sequences, which allows us to
axiomatize the real number system and prove facts about this system, our approach perhaps
does not have many direct consequences for other results concerning real numbers and func-
tions. To use an analogy, even though we know that all materials in the world are made of
atoms, this fact only marginally affects our material interaction with the physical world. On
the other hand, the exact way that we construct and analyze the real numbers does influence
our understanding of other mathematical objects. To use the same analogy as before, our
understanding of atoms does allow us to better understand some things that we encounter
in the physical world, such as light, the sun, etc.

As in our treatment of the integers and rationals, we now define arithmetic on the real
numbers.

Definition 6.3 (Addition of Real Numbers). Let x = LIMn→∞an and let y = LIMn→∞bn
be real numbers. Then define the sum of x and y by x+ y := LIMn→∞(an + bn).

We now check that addition of two real numbers give a real number, and that addition is
well-defined.
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Lemma 6.4. Let x = LIMn→∞an and let y = LIMn→∞bn be real numbers. Then x + y is
also a real number.

Proof. We need to show that (an + bn)∞n=0 is a Cauchy sequence. The proof is similar to that
of Lemma 5.12. Let ε > 0 be a rational number. Note that ε/2 > 0 is a rational number.
By assumption, there exist L,M > 0 such that, for all j, k ≥ L, |aj − ak| < ε/2, and for all
j, k ≥ M , |bj − bk| < ε/2. Define N := max(L,M). Then, for all j, k ≥ N , we have by the
triangle inequality

|aj + bj − ak − bk| = |aj − ak + bj − bk| ≤ |aj − ak|+ |bj − bk| < ε/2 + ε/2 = ε.

That is, (an + bn)∞n=0 is a Cauchy sequence, as desired. �

Lemma 6.5. Let x = LIMn→∞an and let y = LIMn→∞bn be real numbers. Let x′ =
LIMn→∞a

′
n be a real number such that x = x′. Then x+ y = x′ + y.

Proof. Let ε > 0 be a rational number. Since x = x′, there exists N > 0 such that, for all
n ≥ N , |an − a′n| < ε. Then, for all n ≥ N ,

|an + bn − a′n − bn| = |an − a′n| < ε.

That is, (an + bn)∞n=0 is equivalent to (a′n + bn)∞n=0, as desired. �

Remark 6.6. If additionally y′ is equivalent to y, then x+y = x+y′. To see this, note that
addition is commutative for real numbers, which follows from the commutativity of addition
for rational numbers.

We now define multiplication.

Definition 6.7 (Multiplication of Real Numbers). Let x = LIMn→∞an and let y =
LIMn→∞bn be real numbers. Define the product xy := LIMn→∞(anbn).

Proposition 6.8. Let x = LIMn→∞an and let y = LIMn→∞bn be real numbers. Then xy is
a real number. Also if x′ = LIMn→∞a

′
n is a real number such that x = x′, then xy = x′y.

Exercise 6.9. Prove Proposition 6.8.

Remark 6.10. We can now realize the rational numbers as a subset of the real numbers.
Given a rational number q ∈ Q, consider the constant Cauchy sequence q, q, q, q, . . .. Then
addition and multiplication are identical for q ∈ Q and for the Cauchy sequence q, q, q, q, . . ..
Moreover, this identification of rational numbers within the real numbers is consistent with
our two notions of equality. That is, p, q ∈ Q are equal if and only if the Cauchy sequences
p, p, p, . . . and q, q, q, . . . are equal.

Definition 6.11. Since we have defined multiplication of real numbers, we can now define
the negation of a real number x by

−x := (−1)× x.
We therefore see that

−(LIMn→∞an) = LIMn→∞(−an).

Also, we define subtraction of real numbers x, y by

x− y := x+ (−y).
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We therefore see that

LIMn→∞an − (LIMn→∞bn) = LIMn→∞(an − bn).

We will now show that the real number system satisfies all of the usual algebraic identities
with which we are acquainted. That is, the number system R is a field. The final property
of the field, the multiplicative inverse, is a bit tricky to verify, so we will deal with that last.
That is, we will first only assert that R is a commutative ring.

Proposition 6.12. Let x, y, z be real numbers. Then the following laws of algebra hold.

• x+ y = y + x (Commutativity of addition)
• (x+ y) + z = x+ (y + z) (Associativity of addition)
• x+ 0 = 0 + x = x (Additive identity element)
• x+ (−x) = (−x) + x = 0 (Additive inverse)
• xy = yx (Commutativity of multiplication)
• (xy)z = x(yz) (Associativity of multiplication)
• x1 = 1x = x (Multiplicative identity element)
• x(y + z) = xy + xz (Left Distributivity)
• (y + z)x = yx+ zx (Right Distributivity)

Proof. We only prove the associativity of a multiplication, the others being similar. As we will
see, these properties follow readily from the corresponding properties of the rational numbers.
Let x, y, z be real numbers. Write x = LIMn→∞an, y = LIMn→∞bn, z = LIMn→∞cn. Then
(xy) = LIMn→∞(anbn), and (xy)z = LIMn→∞[(anbn)cn]. From associativity of multiplication
of rationals, we then have

(xy)z = LIMn→∞[an(bncn)] = x× LIMn→∞(bncn) = x(yz),

as desired. �

We now need to define the reciprocal. Note that we cannot simply define the reciprocal of
a Cauchy sequence a0, a1, . . . to be the sequence a−10 , a−11 , since some of the elements of the
sequence a0, a1, . . . could be zero. Thankfully, this problem can be circumvented by simply
waiting for the Cauchy sequence to be nonzero.

Lemma 6.13. Let x be a nonzero real number. Then there exists a rational number ε > 0
such that, for any Cauchy sequence (an)∞n=0 with x = LIMn→∞an, there exists N > 0 such
that, for all n ≥ N , |an| > ε. In this statement, note that ε does not depend on the Cauchy
sequence, but N does.

Proof. Since x is nonzero, (an)∞n=0 is not equivalent to the Cauchy sequence 0, 0, 0, . . .. So,
negating the statement “(an)∞n=0 is equivalent to 0, 0, 0, . . ., ” we get the following. There
exists a rational ε > 0 such that, for all natural numbers L > 0, there exists ` > L such
that |a`| ≥ 3ε. Since (an)∞n=0 is a Cauchy sequence, there exists M > 0 such that, for all
j, k > M , we have |aj − ak| < ε. So, if we choose L := M , there exists ` > L = M such that
|a`| ≥ 3ε. So, for any n > ` > M , we have by Exercise 4.25

|an| = |an − a` + a`| ≥ |a`| − |an − a`| > 3ε− ε = 2ε.

So, the assertion is proven with an ε that may depend on the chosen Cauchy sequence
(an)∞n=0. To see that we can choose ε to not depend on the particular Cauchy sequence, let
(a′n)∞n=0 be any Cauchy sequence equivalent to (an)∞n=0. That is, there exists K > 0 such
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that, for all n > K, we have |an − a′n| < ε. Finally, define N := max(`,K). Then, for any
n > N , we have

|a′n| = |a′n − an + an| ≥ |an| − |an − a′n| ≥ 2ε− ε = ε.

Since (a′n)∞n=0 is any Cauchy sequence equivalent to (an)∞n=0, we have shown that the number
ε does not depend on the particular Cauchy sequence, as desired. �

With this lemma, we can now define the inverse of a real number.

Definition 6.14 (Inverse). Let x be a nonzero real number. Let (an)∞n=0 be any Cauchy
sequence with x = LIMn→∞an. From Lemma 6.13, there exists a rational ε > 0 and a
natural number N > 0 such that, for all n > N , |an| > ε > 0. Consider the equivalent
Cauchy sequence bn where bn := an for all n > N , and bn := 1 for all 0 ≤ n ≤ N . Then
x = LIMn→∞bn, and |bn| > ε for all n ≥ 0. So, we define the reciprocal x−1 of x as
x−1 := LIMn→∞(b−1n ).

We now need to check that x−1 is a real number, and also that x−1 is well-defined. That
is, we need to show that x−1 does not depend on the Cauchy sequence (an)∞n=0.

Lemma 6.15. Let δ > 0. Let (an)∞n=0 be a Cauchy sequence such that |an| > δ for all n ≥ 0.
Then (a−1n )∞n=0 is a Cauchy sequence.

Proof. Let ε > 0. Since |an| > δ > 0 for all n ≥ 0, we have |an|−1 < 1/δ for all n ≥ 0.
Since (an)∞n=0 is a Cauchy sequence, there exists N > 0 such that, for all j, k > N , we have
|aj − ak| < εδ2. Then, for all j, k > N , we have∣∣a−1j − a−1k

∣∣ = |aj|−1 |ak|−1 |ak − aj| < δ−2εδ2 = ε.

That is, the sequence (a−1n )∞n=0 is a Cauchy sequence. �

Lemma 6.16. Let x be a nonzero real number. Let (an)∞n=0 and (a′n)∞n=0 be Cauchy se-
quences such that x = LIMn→∞an and such that x = LIMn→∞a

′
n. Then, after changing a

finite number of terms of these Cauchy sequences, we have: LIMn→∞a
−1
n is equivalent to

LIMn→∞(a′n)−1.

Proof. Let ε > 0. From Lemma 6.13, let δ > 0 and let L > 0 such that, for all n > L,
|an| > δ and |a′n| > δ. Since (an)∞n=0 and (a′n)∞n=0 are equivalent, there exists M > 0 such
that, for all n > M , we have |an − a′n| < εδ2. Define N := max(L,M). Then, for all n > N ,∣∣a−1n − (a′n)−1

∣∣ = |an|−1 |a′n|
−1 |an − a′n| < δ−2εδ2 = ε.

So, if we define bn := an for all n > N , b′n := a′n for all n ≥ N , and bn = b′n = 1 for all
0 ≤ n ≤ N , we see that LIMn→∞b

−1
n is equivalent to LIMn→∞(b′n)−1, as desired. �

Lemma 6.15 shows that x−1 is a real number whenever x is a nonzero real number. And
Lemma 6.16 shows that x−1 is well-defined.

Remark 6.17. If x is a nonzero real number, it follows from Definition 6.14 that xx−1 =
x−1x = 1. Combining this fact with Proposition 6.12, we conclude that R is a field, as
previously asserted.

Remark 6.18. Note that our definition of reciprocal is consistent with the definition of
reciprocal of a rational number.
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Definition 6.19 (Division). Let x, y be real numbers with y nonzero. We then define
x/y := x× y−1. We then have the cancellation law (which follows from the same property
for rational numbers). If x, y, z are real numbers with z nonzero, and if xz = yz, then x = y.

Remark 6.20. We now have all of the usual arithmetic operations on the real numbers.
We now turn to the order properties of the reals. Note that we cannot simply say that: a
Cauchy sequence is positive if and only if its elements are all positive. For example, the
Cauchy sequence −1, 1, 1, 1, 1, 1, 1, 1, . . . corresponds to the positive real number 1, but it
has a negative value in the sequence. For another example, note that the Cauchy sequence
1, 1/2, 1/3, 1/4, 1/5, . . . has all positive elements, but it is equivalent to the sequence 0, 0, 0 . . .,
which is certainly not positive. So, we need to be careful in defining positivity.

6.1. Ordering of the Reals.

Definition 6.21. A real number x is said to be positive if and only if there exists a positive
rational ε > 0 such that, for any Cauchy sequence (an)∞n=0 with x = LIMn→∞(an), there exists
a natural number N > 0 such that, for all n > N , we have an > ε > 0. A real number x is
said to be negative if and only if −x is positive.

Remark 6.22. Note that these definitions are consistent with the definitions of positivity
and negativity for rational numbers. For example, if x > 0 is rational, then Lemma 6.13 im-
plies that there exists ε > 0 such that, for any Cauchy sequence (an)∞n=0 with x = LIMn→∞an
there exists N > 0 such that for all n > N , an > ε > 0. (You will investigate the details of
this argument in Exercise 6.31.)

Proposition 6.23. For every real number x, exactly one of the following statements is true:
x is positive, x is negative, or x is zero. If x, y are positive real numbers, then x + y is
positive, and xy is positive.

Exercise 6.24. Using Lemma 6.13, prove Proposition 6.23

We can now define order, since we have just defined positivity and negativity.

Definition 6.25. Let x, y be real numbers. We say that x is greater than y, and we write
x > y if and only if x − y is a positive real number. We say that x is less than y, and we
write x < y if and only if y−x is a positive real number. We write x ≥ y if and only if x > y
or x = y, and we similarly define x ≤ y.

Remark 6.26. This ordering on the reals is consistent with the ordering we gave for the
rational numbers. That is, if a, b are two rational numbers with a < b, then the real numbers
a, b also satisfy a < b. And similarly for the assertion a > b.

The real numbers now satisfy all of the same axioms for order than the rational numbers
satisfied in Proposition 4.16.

Proposition 6.27 (Properties of Order). Let x, y, z be real numbers. Then

(1) Exactly one of the statements x = y, x < y, x > y is true.
(2) x < y if and only if y > x.
(3) If x < y and y < z, then x < z
(4) If x < y, then x+ z < y + z.
(5) If x < y and if z is positive, then xz < yz.
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Remark 6.28. In conclusion, the real numbers form an ordered field.

Proof. We only prove (5), since the other proofs similarly follow from Proposition 6.23 and
basic algebra. Suppose x < y and z is positive. Since x < y, y − x is positive. So, from
Proposition 6.23, z(y − x) is positive, so xz < yz, as desired. �

Proposition 6.29. Let x be a positive real number. Then x−1 is also a positive real number.
If y is a positive real number with x > y, then x−1 < y−1.

Proof. Let x be a positive real number. Since xx−1 = 1, the real number x−1 is nonzero. (If
we had x−1 = 0, then xx−1 = 0.) We show that x−1 is positive by contradiction. If x−1 were
not positive, it would be negative, since x−1 6= 0. From Proposition 6.23, we get that xx−1

is negative, contradicting that xx−1 = 1. We therefore conclude that x−1 is positive.
We now show that x−1 < y−1 by contradiction. Assume that x−1 ≥ y−1. Then from

Proposition 6.27(5) applied twice, xx−1 ≥ xy−1 > yy−1, i.e. 1 > 1, a contradiction. We
conclude that x−1 < y−1, as desired. �

Proposition 6.30. Let x, y be real numbers. Suppose (an)∞n=0, (bn)∞n=0 are Cauchy sequences
with x = LIMn→∞an and y = LIMn→∞bn. Assume that there exists N > 0 such that for all
n > N , we have an ≤ bn. Then x ≤ y.

Proof. We argue by contradiction. Suppose x > y. Then x − y is positive. Note that
(an−bn)∞n=0 is a Cauchy sequence such that x−y = LIMn→∞(an−bn). So, by Definition 6.21,
there exists δ > 0 and there exists M > 0 such that, for all n > M , we have an− bn > δ > 0.
In particular, we have aM+1 > bM+1, a contradiction. Since we have achieved a contradiction,
we are done. �

Exercise 6.31. Prove the following variant of Lemma 6.13: Let x be a positive real number.
Then there exists a rational number ε > 0 such that, for any Cauchy sequence (an)∞n=0 with
x = LIMn→∞an, there exists N > 0 such that, for all n ≥ N , an > ε. In this statement, note
that ε does not depend on the Cauchy sequence, but N does. (And similarly, when x is a
negative real number.)

Remark 6.32. Since we have defined positive and negative real numbers, we can then define
the absolute value |x| exactly as in Definition 4.21. We then define d(x, y) := |x− y| just as
before, but now for real numbers x, y. Note that, if (an)∞n=0 is a Cauchy sequence such that
x = LIMn→∞an, then |an| is a Cauchy sequence for |x|, by Exercise 6.31.

Theorem 6.33 (Triangle Inequality for Real Numbers). Let x, y be real numbers.
Then |x+ y| ≤ |x|+ |y|.
Proof. Suppose (an)∞n=0, (bn)∞n=0 are Cauchy sequences with x = LIMn→∞an, y = LIMn→∞bn.
From the triangle inequality for rational numbers (Proposition 4.23), |an + bn| ≤ |an| + |bn|
for all n ∈ N. By Remark 6.32, note that (|an|)∞n=0 is a Cauchy sequence for |x|, and
(|bn|)∞n=0 is a Cauchy sequence for |y|, and (|an + bn|)∞n=0 is a Cauchy sequence for |x+ y|.
Since |an + bn| ≤ |an|+ |bn| for all n ∈ N, Proposition 6.30 implies |x+ y| ≤ |x|+ |y|. �

Theorem 6.34 (The Rationals are Dense in the Real Numbers). Let x be a real
number and let ε > 0 be any rational number. Then there exists a rational number y such
that |x− y| < ε.

Exercise 6.35. Prove Theorem 6.34.
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Theorem 6.36 (Archimedean Property). Let x, ε be any positive real numbers. Then
there exists a positive integer N such that Nε > x.

Proof. From Propositions 6.29 and 6.23, ε/x is a positive real number. Let (an)∞n=0 be a
Cauchy sequence of rationals such that ε/x = LIMn→∞an. From Exercise 6.31, there exists
a rational number y and there exists a natural number M such that, for all n > M , we have
an > y > 0. Write y = p/q with p, q ∈ N, p 6= 0, q 6= 0. Then an > y ≥ 1/q > 0, so
ε/x ≥ 1/q by Proposition 6.30, so (q+ 1)ε > x. Setting N := q+ 1 completes the proof. �

Corollary 6.37. Let x, z be real numbers with x < z. Then there exists a rational number
y with x < y < z.

Exercise 6.38. Using Theorems 6.34 and 6.36, prove Corollary 6.37.

7. The Least Upper Bound Property

We have constructed the real numbers, defined their arithmetic operations, and proven a
few basic properties of the real numbers. We can now finally describe some of the useful
properties of the real numbers. The least upper bound property is the first such property. It
will give a rigorous statement to the intuition that the real numbers “have no gaps” between
them. We will see more rigorous statements of this intuition within our discussion of limits
and completeness.

Definition 7.1 (Upper bound). Let E be a subset of R, and let M be a real number. We
say that M is an upper bound for E if and only if for every x in E, we have x ≤M .

Example 7.2. The set {t ∈ R : 0 ≤ t ≤ 1} has an upper bound of 1. The set {t ∈ R : t > 0}
has no upper bound.

Definition 7.3 (Least upper bound). Let E be a subset of R, and let M be a real number.
We say that M is a least upper bound for E if and only if: M is an upper bound for E,
and any other upper bound M ′ of E satisfies M ≤M ′.

Example 7.4. The set {t ∈ R : 0 ≤ t ≤ 1} has a least upper bound of 1.

Proposition 7.5. Let E be a subset of R. Then E has at most one least upper bound.

Proof. Let M,M ′ be two least upper bounds for E. We will show that M = M ′. From
Definition 7.3 applied to M , we have M ≤M ′. From Definition 7.3 applied to M ′, we have
M ′ ≤M . Therefore, M = M ′. �

The following Theorem is taken as an axiom in the book. However, it can instead be
proven from our construction of the real numbers. The proof is a bit long, so it could be
skipped on a first reading.

Theorem 7.6 (Least Upper Bound Property). Let E be a nonempty subset of R. If E
has some upper bound, then E has exactly one least upper bound.

Proof. From Proposition 7.5, E has at most one least upper bound. We therefore need to
show that E has at least one least upper bound. In order to find the least upper bound for
E, we will construct a Cauchy sequence of rational numbers which come very close to the
least upper bound of E.
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Let M be an upper bound for E. Let x0 ∈ E, and let n be a positive integer. From the
Archimedean property (Theorem 6.36), there exists K ∈ N such that x0 +K/n > M . That
is, x0 + K/n is an upper bound for E. Since x0 ∈ E, x0 − 1/n is not an upper bound for
E. So, there exists an integer i with 0 ≤ i ≤ K such that x0 + i/n is an upper bound for
E, though x0 + (i− 1)/n is not an upper bound for E. To see that i exists, just let i be the
smallest natural number such that x0 + i/n is an upper bound for E.

Note that x0 + (i− 1)/n < x0 + i/n. From Corollary 6.37, there exists a rational number
an such that

x0 + (i− 1)/n < an < x0 + i/n.

Therefore, an + 1/n is an upper bound for E since an + 1/n > x0 + i/n, but an − 1/n is not
an upper bound for E since an − 1/n < x0 + (i− 1)/n.

Consider the sequence of rational numbers (an)∞n=0. We will show that this sequence is a
Cauchy sequence. Let n,m be positive integers. Then an +1/n is always an upper bound for
E, while am−1/m is not an upper bound for E. Therefore, an +1/n > am−1/m. Similarly,
am + 1/m > an − 1/n. Therefore, for all positive integers n,m,

−1/n− 1/m < an − am < 1/n+ 1/m.

In particular, for any positive integer N , we have for all n,m ≥ N ,

−2/N < an − am < 2/N. (∗)

Let ε > 0 be a rational number. From the Archimedean property (Theorem 6.36), there
exists a positive integer N such that Nε > 2, so that 0 < 2/N < ε. So, for any rational
number ε, there exists a positive integer N such that, for all n,m ≥ N , we have

−ε < an − am < ε.

So, (an)∞n=0 is a Cauchy sequence.
Define x := LIMn→∞an. We will show that x is a least upper bound of E. We first show

that x is an upper bound for E. Setting m = N in (∗), we get that, for all n ≥ N ,

−2/N < an − aN < 2/N.

So, from Proposition 6.30, for all positive integers N ,

−2/N ≤ x− aN ≤ 2/N. (∗∗)

Let y ∈ E. For each positive integer N , recall that aN + 1/N is an upper bound for E.
So, y ≤ aN + 1/N . From (∗∗), −2/N ≤ x − aN , so adding these two inequalities, we get
y − 3/N ≤ x. Since y − 3/N ≤ x for all positive integers N , we conclude that y ≤ x. (Note
that if we had y > x, then there exists a positive integer N such that N(y − x) > 3 by the
Archimedean property, so y − x > 3/N , so y − 3/N > x, a contradiction.) In conclusion, x
is an upper bound for E.

We now conclude by showing that x is the least upper bound for E. Let z be any other
upper bound for E. We need to show that x ≤ z. For any positive integer N , we know that
aN − 1/N is not an upper bound for E. So, there exists e ∈ E such that aN − 1/N < e ≤ z,
so aN − 1/N < z. From (∗∗), x − aN ≤ 2/N . Adding these two inequalities, x < z + 3/N
for all positive integers N . Therefore, x ≤ z, as desired. �

23



Definition 7.7 (Supremum). Let E be a subset of R with some upper bound. The least
upper bound of E is called the supremum of E. The supremum of E, which exists by
Theorem 7.6, is denoted by sup(E) or sup E. If E has no upper bound, we use the symbol
+∞ and we write sup(E) = +∞. If E is empty, we write sup(E) = −∞.

Definition 7.8 (Infimum). Let E be a subset of R with some lower bound. The greatest
lower bound of E is called the infimum of E. The infimum of E, which exists by Theorem
7.6, is denoted by inf(E) or inf E. If E has no lower bound, we write inf(E) = −∞. If E is
empty, we write inf(E) = +∞.

In Proposition 4.19, we saw that there does not exist a rational number x such that x2 = 2.
However, Theorem 7.6 allows us to show that there exists a real number x such that x2 = 2.
In this sense, the real numbers do not have a “gap” here. And indeed, we can always take
the square root of a real positive number, and recover another positive real number.

Proposition 7.9. There exists a real number x such that x2 = 2.

Proof. Let E be the set E := {y ∈ R : y ≥ 0 and y2 < 2}. Note that E has an upper bound
of 2, since 22 = 4 > 2. So, by Theorem 7.6, there exists a real number x such that x is the
unique least upper bound of E. We will show that x2 = 2. In order to show x2 = 2, we will
show that either x2 < 2 or x2 > 2 lead to contradictions.

Assume for the sake of contradiction that x2 < 2. Since 2 is an upper bound for E, and x
is the least upper bound of E, we have x ≤ 2. Let 0 < ε < 1 be a real number. Then ε2 < ε,
so

(x+ ε)2 = x2 + 2xε+ ε2 ≤ x2 + 4ε+ ε = x2 + 5ε.

Since x2 < 2, we can choose 0 < ε < 1 such that x2 + 5ε < 2, by the Archimedean property.
That is, (x+ ε)2 < 2. So, x+ ε ∈ E, but x+ ε > x, contradicting the fact that x is an upper
bound for E. We conclude that x2 < 2 does not hold.

Now, assume for the sake of contradiction that x2 > 2. As before, 1 ≤ x ≤ 2. Let
0 < ε < 1 be a real number. Then ε2 < ε, so

(x− ε)2 = x2 − 2xε+ ε2 ≥ x2 − 2xε ≥ x2 − 4ε.

Since x2 > 2, we can choose 0 < ε < 1 such that x2 − 4ε > 2, by the Archimedean property.
That is, (x−ε)2 > 2. So, for any y ∈ E, we must have x−ε ≥ y. (If not, then 0 < x−ε < y,
so (x − ε)2 < y2, so y2 > 2, contradicting that y ∈ E.) So, x − ε is an upper bound for E,
but x − ε < x, contradicting the fact that x is the least upper bound for E. We conclude
that x2 > 2 does not hold.

Finally, we conclude that x2 = 2, as desired. �

8. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers. Let F be a field.
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Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Z+ := {1, 2, 3, 4, . . .}, the positive integers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B
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