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1. Cardinality of Sets

In the previous sections, we constructed the real numbers, and discussed the completeness
of the real numbers. We showed that the real numbers are a set of numbers that are larger
than the rational numbers, in the sense that the rational numbers are contained in the real
numbers. Also, there are real numbers that are not rational, such as the square root of two.
There is even another sense in which the set of real numbers is much larger than the set
of rational numbers. But what do we mean by this? There are evidently infinitely many
rational numbers, and there are infinitely many real numbers. So how can one infinite thing
be larger than another infinite thing? These questions lead us to the notion of cardinality.

The basic question we ask is: what does it mean for two sets to be of the same size? In
essentially all cultures of the world, there are two fundamental concepts of numbers. The
first concept is the notion of one, two and many. That is, essentially every culture of the
world recognizes that the natural numbers exist, in some sense. (This is one reason that we
call these numbers the natural numbers, after all.) The second concept of numbers is the
notion of a bijective correspondence. What does it mean that I have the same number of
apples and oranges? Well, it means that I can put the first apple next to the first orange,
and I put the second apple next to the second orange, and so on, until every apple is matched
to exactly one orange, and every orange is matched to exactly one apple. This is the notion
of bijective correspondence which we use to define cardinality.

Let’s now phrase this discussion using mathematical terminology. Let X, Y be sets, and
let f : X → Y be a function.
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Definition 1.1 (Bijection). The function f : X → Y is said to be bijective (or a one-to-
one correspondence) if and only if: for every y ∈ Y , there exists exactly one x ∈ X such
that f(x) = y.

Example 1.2. Consider the sets X = {0, 1, 2} and Y = {1, 2, 4}. Define f : X → Y by
f(0) = 1, f(1) = 4 and f(2) = 2. Then f is a bijection.

Example 1.3. Consider the sets X = N = {0, 1, 2, . . .} and Y = {1, 2, 3, 4, . . .}. Define
f : X → Y so that, for all x ∈ X, f(x) := x+ 1. Then f is a bijection.

Remark 1.4. A function f : X → Y is bijective if and only if it is both injective and
surjective. Also, if f is a bijection, then f is invertible. That is, there exists a function
f−1 : Y → X such that f(f−1(y)) = y for all y ∈ Y , and f−1(f(x)) = x for all x ∈ X.

Definition 1.5 (Cardinality). Two sets X, Y are said to have the same cardinality if and
only if there exists a bijection from X onto Y .

Remark 1.6. The important thing to note here is that X and Y may be finite or infinite.
At this point, it is not clear whether or not two infinite sets can have different cardinality.
However, we will show below that the real numbers and the rational numbers do not have
the same cardinality.

Exercise 1.7. Show that the notion of two sets having equal cardinality is an equivalence
relation. That is, show:

• X has the same cardinality as X.
• If X has the same cardinality as Y , then Y has the same cardinality as X.
• If X has the same cardinality as Y , and if Y has the same cardinality as Z, then X

has the same cardinality as Z.

Definition 1.8. Let n be a natural number. A set X is said to have cardinality n if and
only if X has the same cardinality as {i ∈ N : 1 ≤ i ≤ n}. We also say that X has n
elements if and only if X has cardinality n.

Proposition 1.9. Let n be a natural number, and suppose X is a set with cardinality n. Let
m be any natural number such that m 6= n. Then X does not have cardinality m.

Definition 1.10. A set X is finite if and only if there exists a natural number n such that
X has cardinality n. Otherwise, the set X is called infinite.

Theorem 1.11. The set of natural numbers N is infinite.

Exercise 1.12. Using a proof by contradiction, prove Theorem 1.11.

Definition 1.13 (Countable Set). A set X is said to be countably infinite (or just
countable) if and only if X has the same cardinality as N. A set X is said to be at most
countable if X is either finite or countable.

Exercise 1.14. Let X be a subset of the natural numbers N. Then X is at most countable.

Exercise 1.15. Let X be a subset of a countable set Y . Then X is at most countable.

Exercise 1.16. Let f : N → Y be a function. Then f(N) is at most countable. (Hint:
consider the set A := {n ∈ N : f(n) 6= f(m) for all 0 ≤ m < n}. Prove that f is a bijection
from A onto f(N). Then use Exercise 1.14.)
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Exercise 1.17. Let X be a countable set. Let f : X → Y be a function. Then f(X) is at
most countable.

We will now show that the integers and the rational numbers are countable.

Proposition 1.18. Let X, Y be countable sets. Then X ∪ Y is a countable set.

Exercise 1.19. Prove Proposition 1.18

Corollary 1.20. The integers Z are countable.

Proof. Write Z = {0, 1, 2, . . .}∪ {−1,−2,−3, . . .}. We have therefore written Z as the union
of two countable sets. Applying Proposition 1.18, we see that Z is countable. �

Definition 1.21 (Cartesian product). Let X, Y be sets. Define the set X × Y so that

X × Y := {(x, y) : x ∈ X and y ∈ Y }.
The following strengthening of Proposition 1.18 shows that a countable union of countable

sets is still countable.

Lemma 1.22. N× N is countable.

Proof. We need to construct a bijection f : N × N → N. Let k ∈ N, and consider the
“diagonal”

Dk := {(x, y) ∈ N× N : x+ y = k}.
Note that the cardinality of Dk is k + 1, and the cardinality of D0 ∪ D1 ∪ · · · ∪ Dk is
1+2+· · ·+k+1 = (k+1)(k+2)/2. Define ak := (k+1)(k+2)/2. Note that ak+k+2 = ak+1.
We define f(0, 0) := 0, and we then define f inductively as follows. Suppose we have defined
f on D0, D1, . . . , Dk so that f maps D0 ∪D1 ∪ · · · ∪Dk onto {0, 1, . . . , ak − 1}. Then, define
f(0, k + 1) := ak, f(1, k) := ak + 1, f(2, k − 1) := ak + 2, and so on. In general, for any
0 ≤ j ≤ k + 1, define f(j, k + 1− j) := ak + j. We have therefore defined f so that f maps
D0 ∪ · · · ∪Dk+1 onto {0, 1, . . . , ak+1 − 1}. The map f can be visualized in the following way

(0, 0) (0, 1) (0, 2) (0, 3) · · ·
(1, 0) (1, 1) (1, 2) · · ·
(2, 0) (2, 1)

. . .

(3, 0)
...

...

 −→


0 1 3 6 · · ·
2 4 7 · · ·
5 8

. . .

9
...

...


We now prove that f is a bijection. By the definition of f , if k is any natural number, then

f is a bijection from Dk onto {ak, ak + 1, . . . , ak+1 − 1}. We first show that f is injective.
Let (a, b), (c, d) ∈ N×N. Assume that f(a, b) = f(c, d). For any natural numbers k, k′ with
k 6= k′, the sets of integers {ak, ak + 1, . . . , ak+1 − 1} and {ak′ , ak′ + 1, . . . , ak′+1 − 1} are
disjoint. So, if f(a, b) = f(c, d), there must exist a natural number k such that f(a, b) and
f(c, d) are both contained in {ak, ak + 1, . . . , ak+1 − 1}. Since f is a bijection from Dk onto
{ak, ak + 1, . . . , ak+1 − 1}, we conclude that (a, b) = (c, d). Therefore, f is injective.

We now conclude by showing that f is surjective. Let n ∈ N. We need to find (a, b) ∈ N×N
such that f(a, b) = n. Since N = ∪k∈N{ak, ak+1, . . . , ak+1−1}, there exists a natural number
k such that n is in the set {ak, ak + 1, . . . , ak+1 − 1}. Since f is a bijection from Dk onto
{ak, ak + 1, . . . , ak+1 − 1}, there exists (a, b) ∈ Dk such that f(a, b) = n. Therefore, f is
surjective. In conclusion, f is a bijection, as desired. �

3



Exercise 1.23. Using Lemma 1.22, prove the following statement. If X, Y are countable
sets, then X × Y is countable.

Corollary 1.24. The rational numbers Q are countable.

Proof. From Corollary 1.20, the integers Z are countable. So, the nonzero integers Z r {0}
are also countable. Define a function f : Z× (Z r {0})→ Q by

f(a, b) := a/b.

Since b 6= 0, f is well-defined. From Exercise 1.23, f is then a function from a countable set
into the rational numbers Q. Also, from the definition of the rational numbers, f(Z× (Z r
{0})) = Q. From Exercise 1.17, we conclude that Q is at most countable. Since Q contains
the integers, Q is not finite. Therefore, Q is countable, as desired. �

In summary, the natural numbers, integers, and rational numbers are countable. Surpris-
ingly, the real numbers are not countable as we will show further below.

Definition 1.25 (Uncountable Set). Let X be a set. We say that X is uncountable if
and only if X is not finite, and X is not countable.

Definition 1.26 (Power Set). Let X be a set. Define the power set 2X as the set of all
subsets of X. Equivalently, 2X is the set of all functions f : X → {0, 1}.

Remark 1.27. To see the equivalence of these two definitions, for any subset A of X, we
associate A with the function f : X → {0, 1} where f(x) = 1 if and only if x ∈ A. In the other
direction, given a function f : X → {0, 1}, we associate f to the set A = {x ∈ X : f(x) = 1}.
This association gives a bijection between the subset of A, and the set of all functions
f : X → {0, 1}.

Proposition 1.28. Let X be a set. Then X and 2X do not have the same cardinality.

Proof. We argue by contradiction. Suppose X and 2X have the same cardinality. Then there
exists a bijection f : X → 2X . Consider the following subset V of X.

V := {x ∈ X : x /∈ f(x)}.
We will achieve a contradiction by showing that V is not in the range of f . Since f is a
bijection and V ∈ 2X , there exists y ∈ X such that f(y) = V . We now consider two cases.

Case 1. y ∈ f(y). If y ∈ f(y), then y ∈ V , since f(y) = V . However, from the definition
of V , if y ∈ V , then y /∈ f(y), a contradiction.

Case 2. y /∈ f(y). If y /∈ f(y), then y /∈ V , since f(y) = V . So, from the definition of V ,
y ∈ f(y), a contradiction.

In either case, we get a contradiction. We conclude that X and 2X do not have the same
cardinality. �

Corollary 1.29. N and 2N do not have the same cardinality. In particular, 2N is uncountable.

Corollary 1.30. The set of real numbers R is uncountable.

Proof. Let f : N→ {0, 1} be an element of 2N. For any natural number n, define

an :=
n∑

i=1

3−if(i).
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One can show that (an)∞n=0 is a Cauchy sequence of rational numbers. We therefore define a
map F : 2N → R so that

F (f) := (
n∑

i=1

3−if(i))∞n=0.

We will show that F is an injection. Let f, g : N→ {0, 1} such that f 6= g. Then there exists
N ∈ N such that f(N) 6= g(N). Without loss of generality, N is the smallest element of N
such that f(N) 6= g(N). Also, without loss of generality, f(N) = 1 and g(N) = 0. By the
definition of N , we have f(i) = g(i) for all 1 ≤ i ≤ N − 1. Therefore,

F (f)− F (g) = (
n∑

i=1

3−if(i))∞n=0 − (
n∑

i=1

3−ig(i))∞n=0

= (
n∑

i=1

3−i(f(i)− g(i)))∞n=0 = (3−N +
n∑

i=N+1

3−i(f(i)− g(i)))∞n=N

Since f(i), g(i) ∈ {0, 1} for all i ∈ N, we have |f(i)− g(i)| ≤ 1. So, for any n ≥ N + 1, we
have by the triangle inequality∣∣∣∣∣

n∑
i=N+1

3−i(f(i)− g(i))

∣∣∣∣∣ ≤
n∑

i=N+1

3−i ≤ (2/3)3−N .

So, 3−N +
∑n

i=N+1 3−i(f(i) − g(i)) ≥ 3−N − (2/3)3−N = 3−N−1. Therefore, F (f) − F (g) ≥
3−N−1 > 0. In particular, F (f) 6= F (g).

We conclude that F : 2N → R is an injection. From Corollary 1.29, 2N is uncountable.
Since F is an injection, F is a bijection onto its image F (2N). That is, F (2N) is uncountable.
Finally, if R were countable, then all of its subsets would be at most countable, by Exercise
1.15. But we have found an uncountable subset F (2N) of R. We therefore conclude that R
is not countable. We also know that R is not finite, since it contains N. We conclude that
R is uncountable. �

2. Review

Theorem 2.1 (Archimedean Property). Let x, ε be any positive real numbers. Then
there exists a positive integer N such that Nε > x.

Corollary 2.2. Let x, z be real numbers with x < z. Then there exists a rational number y
with x < y < z.

Theorem 2.3 (Least Upper Bound Property). Let E be a nonempty subset of R. If E
has some upper bound, then E has exactly one least upper bound.

3. Sequences of Real Numbers

This course has a few fundamental concepts. One of these fundamental concepts is the
Cauchy sequence. We will now introduce another fundamental concept, which is a variation
on the Cauchy sequence. We will discuss sequences of real numbers and their limits. This
topic is perhaps a bit more familiar, though it will turn out that a sequence of real numbers
will have a limit if and only if this sequence is a Cauchy sequence. So, in some sense, we
have been working with a familiar topic all along.
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Our more general discussion of sequences of real numbers will inform our later investigation
of derivatives and integration. More specifically, we can define derivatives and integrals
in terms of limits of sequences of real numbers. So, a thorough understanding of limits
of sequences of real numbers allows a quick and thorough investigation of derivatives and
integrals.

Definition 3.1 (Cauchy Sequence). Let (an)∞n=0 be a sequence of real numbers. We say
that (an)∞n=0 is a Cauchy sequence if and only if, for any real ε > 0, there exists a natural
number N = N(ε) such that, for all n,m ≥ N , we have |an − am| < ε.

Remark 3.2. Our previous definition of a Cauchy sequence asked for the same condition
to hold for all rational ε > 0. So, Definition 3.1 may appear to be stricter than our previous
definition of a Cauchy sequence. However, given any real ε > 0, Corollary 2.2 gives a rational
ε′ > 0 with ε′ < ε. So, within Definition 3.1, it is equivalent to require the definition to hold
for all rational ε > 0, or for all real ε > 0. That is, our previous definition and our current
definition of a Cauchy sequence both coincide.

Definition 3.3 (Convergent Sequence). Let (an)∞n=0 be a sequence of real numbers, and
let L be a real number. We say that the sequence (an)∞n=0 converges to L if and only if,
for every real ε > 0, there exists a natural number N = N(ε) such that, for all n ≥ N , we
have |an − L| < ε.

Proposition 3.4. Let (an)∞n=0 be a sequence of real numbers, and let L,L′ be a real numbers
with L 6= L′. Then (an)∞n=0 cannot simultaneously converge to L and converge to L′.

Proof. We argue by contradiction. Suppose (an)∞n=0 converges to L and to L′. Define ε :=
|L− L′| /4 > 0. Since (an)∞n=0 converges to L, there exists N such that, for all n ≥ N , we
have |an − L| < ε. Since (an)∞n=0 converges to L′, there exists N ′ such that, for all n ≥ N ′,
we have |an − L′| < ε. Setting M := max(N,N ′), we have

|aM − L| < |L− L′| /4, |aM − L′| < |L− L′| /4.
By the triangle inequality,

|L− L′| = |L− aM + aM − L′| ≤ |aM − L|+ |aM − L′| < |L− L′| /2.
Since |L− L′| > 0, we have shown that 2 < 1, a contradiction. We conclude that it cannot
occur that (an)∞n=0 converges to L and to L′ with L 6= L′. �

Definition 3.5 (Limit). Let (an)∞n=0 be a sequence of real numbers that is converging to a
real number L. We then say that the sequence (an)∞n=0 is convergent, and we write

L = lim
n→∞

an.

If (an)∞n=0 is not convergent, we say that the sequence (an)∞n=0 is divergent, and we say the
limit of L is undefined.

Remark 3.6. By Proposition 3.4, if (an)∞n=0 converges to some limit L, then this limit is
unique. So, we call L the limit of the sequence (an)∞n=0.

Remark 3.7. Instead of writing (an)∞n=0 converges to L, we will sometimes write an → L
as n→∞.

Proposition 3.8. limn→∞(1/n) = 0.

6



Proof. Let ε > 0 be a real number. By the Archimedian property (Theorem 2.1), there exists
a positive integer N such that 0 < 1/N < ε. So, for all n ≥ N , we have |an − 0| = |an| =
1/n ≤ 1/N < ε. �

Exercise 3.9. Let (an)∞n=m be a sequence of real numbers converging to 0. Show that
(|an|)∞n=m also converges to zero.

The following Theorem shows that Cauchy sequences and convergent sequences are the
same thing. This Theorem also demonstrates that the real numbers are complete, in that a
Cauchy sequence of real numbers converges to a real number. Note that the corresponding
statement for the rational numbers is false. That is, a Cauchy sequence of rational numbers
does not necessarily converge to a rational number. So, in this sense, the real numbers do
not have any “holes,” but the rational numbers do.

Theorem 3.10 (Completeness of R). Let (an)∞n=0 be a sequence of real numbers. Then
(an)∞n=0 is convergent if and only if (an)∞n=0 is a Cauchy sequence.

Exercise 3.11. Prove Theorem 3.10. (Hint: Given a Cauchy sequence (an)∞n=0, use that the
rationals are dense in the real numbers to replace each real an by some rational a′n, so that
|an − a′n| is small. Then, ensure that the sequence (a′n)∞n=0 is a Cauchy sequence of rationals
and that (a′n)∞n=0 defines a real number which is the limit of the original sequence (an)∞n=0.)

As a Corollary of Theorem 3.10, the formal limits of Cauchy sequences of rationals are
actual limits. That is, we used a sensible notation for formal limits during our construction
of the real number system.

Corollary 3.12. Let (an)∞n=0 be a Cauchy sequence of rational numbers. Then (an)∞n=0

converges to LIMn→∞an. That is,

LIMn→∞an = lim
n→∞

an.

Definition 3.13. Let M be a real number. A sequence (an)∞n=0 is bounded by M if and
only if |an| ≤M for all n ∈ N. We say that (an)∞n=0 is bounded if and only if there exists a
real number M such that (an)∞n=0 is bounded by M .

Recall that any Cauchy sequence of rational numbers is bounded. The proof of this
statement also shows that any Cauchy sequence of real numbers is bounded. So, from
Theorem 3.10 we get the following.

Corollary 3.14. Every convergent sequence is bounded.

Theorem 3.15 (Limit Laws). Let (an)∞n=0, (bn)∞n=0 be convergent sequences. Let x, y be
real numbers such that x = limn→∞ an, y = limn→∞ bn.

(i) The sequence (an + bn)∞n=0 converges to x+ y. That is,

lim
n→∞

(an + bn) = ( lim
n→∞

an) + ( lim
n→∞

bn).

(ii) The sequence (anbn)∞n=0 converges to xy. That is,

lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn).

(iii) For any real number c, the sequence (can)∞n=0 converges to cx. That is,

c lim
n→∞

an = lim
n→∞

(can).
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(iv) The sequence (an − bn)∞n=0 converges to x− y. That is,

lim
n→∞

(an − bn) = ( lim
n→∞

an)− ( lim
n→∞

bn).

(v) Suppose x 6= 0 and there exists m such that an 6= 0 for all n ≥ m. Then (a−1n )∞n=m

converges to x−1. That is,

lim
n→∞

a−1n = ( lim
n→∞

an)−1.

(vi) Suppose x 6= 0 and there exists m such that an 6= 0 for all n ≥ m. Then (bn/an)∞n=m

converges to y/x. That is,

lim
n→∞

(bn/an) = ( lim
n→∞

bn)/( lim
n→∞

an).

(vii) Suppose an ≥ bn for all n ≥ 0. Then x ≥ y.

Exercise 3.16. Prove Theorem 3.15.

4. The Extended Real Number System

Now that we have defined limits, it is slightly more convenient to add two additional
symbols to the real number system, namely +∞ and −∞.

Definition 4.1 (Extended Real Number System). The extended real number sys-
tem R∗ is the real line R with two additional elements +∞ and −∞. These two additional
elements are distinct from each other, and these two elements are distinct from all other
elements of the real line. So, R∗ = R∪{+∞}∪{−∞}. An extended real number x is called
finite if and only if x is a real number, and x is called infinite if and only if x is equal to
+∞ or −∞. (Note that these notions of finite and infinite are similar to but distinct from
our notions of finite and infinite sets.)

Definition 4.2 (Negation). The operation of negation is defined for any extended real
number x by defining −(+∞) := −∞, and −(−∞) := +∞. And for any finite extended
real number x, we use the usual operation of negation.

So, −(−x) = x for any x ∈ R∗. We can also extend the order on R to an order on R∗.

Definition 4.3 (Order). Let x, y be extended real numbers. We say that x is less than or
equal to y, and we write x ≤ y, if and only if one of the following statements holds.

• x, y are real numbers, and x ≤ y as real numbers.
• y = +∞.
• x = −∞.

We say that x < y if and only if x ≤ y and x 6= y. We sometimes write y > x to indicate
x < y, and we sometimes write y ≥ x to indicate x ≤ y.

Remark 4.4. One can then check that this order on R∗ satisfies the usual properties of
order. Let x, y, z ∈ R∗. Then

• x ≤ x
• If x ≤ y and y ≤ x then x = y.
• If x ≤ y and y ≤ z then x ≤ z.
• If x ≤ y then −y ≤ −x.
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Remark 4.5. It would be nice to extend other operations such as addition and multiplication
to the extended real number system. However, doing so could introduce several inconsis-
tencies within the various arithmetic operations. So, we will not extend other operations of
arithmetic to R∗. For example, it seems reasonable to define 1 +∞ = ∞ and 2 +∞ = ∞,
but then 1 +∞ = 2 +∞, so the cancellation law no longer holds on R∗.

One convenient property of the extended real number system is that the supremum and
infimum operations are a bit easier to handle. In particular, the Theorem below can be
stated succinctly, without explicitly reverting to different cases.

Definition 4.6 (Supremum). Let E be a subset of R∗. We define the supremum sup(E)
or least upper bound of E by the following conditions.

• If E is contained in R (so that +∞ and −∞ are not elements of E), then sup(E) is
already defined.
• If E contains +∞, define sup(E) := +∞.
• If E does not contain +∞, and if E does contain −∞, then E r {−∞} is a subset

of R. So, we define sup(E) := sup(E r {−∞}).
Definition 4.7 (Infimum). Let E be a subset of R∗. We define the infimum inf(E) or
greatest lower bound of E by inf(E) := −(sup(−E)).

Theorem 4.8. Let E be a subset of R∗. Then the following statements hold.

• For every x ∈ E, we have x ≤ sup(E) and x ≥ inf(E).
• Let M ∈ R∗ be an upper bound for E, so that x ≤M for all x ∈ E. Then sup(E) ≤
M .
• Let M ∈ R∗ be a lower bound for E, so that x ≥M for all x ∈ E. Then inf(E) ≥M .

Exercise 4.9. Prove Theorem 4.8

Remark 4.10 (Limits and Infinity). Let (an)∞n=0 be a sequence. If for all positive integers
M , there exists N such that, for all n ≥ N , we have an > M , we then write limn→∞ an = +∞.
In this case, we still say that the limit of the sequence does not exist. If for all negative
integers M , there exists N such that, for all n ≥ N , we have an < M , we then write
limn→∞ an = −∞. In this case, we still say that the limit of the sequence does not exist.

5. Suprema and Infima of Sequences

The extended real number system and Theorem 4.8 simplify our notation for suprema and
infima of sets. One of the main motivations for suprema and infima is that they will aid
our rigorous investigation of sequences of real numbers. That is, given a sequence of real
numbers (an)∞n=0 , we will consider the suprema and infima of the subset of real numbers,
{an : n ∈ N} ⊆ R.

Definition 5.1 (Suprema and infima of a sequence). Let (an)∞n=m be a sequence of real
numbers. Define sup(an)∞n=m to be the supremum of the set {an : n ≥ m, n ∈ N}. Define
inf(an)∞n=m to be the infimum of the set {an : n ≥ m, n ∈ N}.
Example 5.2. For any n ∈ N, let an := (−1)n. Then sup(an)∞n=0 = 1 and inf(an)∞n=0 = −1.

Example 5.3. For any positive integer n, let an := 1/n. Then sup(an)∞n=1 = 1 and
inf(an)∞n=1 = 0. Note that the infimum of the sequence (an)∞n=1 is not actually a member of
the sequence (an)∞n=1.
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Proposition 5.4. Let (an)∞n=m be a sequence of real numbers. Let x be the extended real
number x := sup(an)∞n=m. Then an ≤ x for all n ≥ m. Also, for any M ∈ R∗ which is an
upper bound for (an)∞n=m (so that an ≤M for all n ≥ m), we have x ≤M . Finally, for any
y ∈ R∗ such that y < x, there exists at least one integer n with n ≥ m such that y < an ≤ x.

Exercise 5.5. Prove Proposition 5.4 using Theorem 4.8.

In Corollary 3.14, we saw that every convergent sequence is bounded. The converse of this
statement is not true. The sequence an = (−1)n is bounded in absolute value by 1, but this
sequence is not convergent. However, if we change the statement of the converse slightly,
then it does become both true and quite useful. For example, we have the following.

Proposition 5.6. Let (an)∞n=m be a bounded sequence of real numbers. Assume also that
(an)∞n=m is monotone increasing. That is, an+1 ≥ an for all n ≥ m. Then the sequence
(an)∞n=m is convergent. In fact,

lim
n→∞

an = sup(an)∞n=m.

Exercise 5.7. Prove Proposition 5.6 using Proposition 5.4.

Remark 5.8. One can similarly show that a bounded monotone decreasing sequence (an)∞n=m

(i.e. a sequence with an+1 ≤ an for all n ≥ m) is convergent.

Remark 5.9. A sequence (an)∞n=m is said to be monotone if and only if it is monotone
increasing or monotone decreasing. If (an)∞n=m is monotone, then from Proposition 5.6 and
Corollary 3.14, we see that (an)∞n=m converges if and only if (an)∞n=m is bounded.

6. Limsup, Liminf, and Limit Points

In order to understand the limits of sequences, it is helpful to first generalize our notion
of a limit to the notion of a limit point. We then study this slightly generalized notion of
a limit. We will use the limsup and liminf as upper and lower bounds on the set of limit
points, respectively. Ultimately, if we for example want to prove that the limit of a sequence
exists, it will sometimes be much easier to find upper and lower bounds on the set of limit
points. Then, if we can show that the upper bound is equal to the lower bound, then we will
have shown that the sequence is convergent.

Definition 6.1 (Limit Point). Let (an)∞n=m be a sequence of real numbers and let x be a
real number. We say that x is a limit point of the sequence (an)∞n=m if and only if: for every
real ε > 0, for every natural number N ≥ m, there exists n ≥ N such that |an − x| < ε.

Proposition 6.2. Let (an)∞n=m be a sequence of real numbers that converges to a real number
x. Then x is a limit point of (an)∞n=m. Moreover, x is the only limit point of (an)∞n=m.

Exercise 6.3. Prove Proposition 6.2.

Definition 6.4 (Limsup). Let (an)∞n=m be a sequence of real numbers. For any natural
number n with n ≥ m, define bn := supt≥n at. Since the set {t ∈ N : t ≥ n + 1} is con-
tained in the set {t ∈ N : t ≥ n}, we conclude that bn+1 ≤ bn for all n ≥ m. That is
the sequence (bn)∞n=m is monotone decreasing. We therefore define the limit superior by
lim supn→∞ an := limn→∞ bn. The limit on the right either exists as a real number, or if the
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limit does not exist, we denote this limit with the extended real number −∞. In summary,
the following definition makes sense by Remark 5.9.

lim sup
n→∞

an := lim
n→∞

sup
m≥n

am.

Definition 6.5 (Liminf). Let (an)∞n=m be a sequence of real numbers. Reasoning as before,
if we define bn := infm≥n am, then bn+1 ≥ bn for all n ≥ m. So, the following definition of
the limit inferior makes sense.

lim inf
n→∞

an := lim
n→∞

inf
m≥n

am.

Remark 6.6.

lim sup
n→∞

an = inf
n≥m

sup
t≥n

at, and lim inf
n→∞

an = sup
n≥m

inf
t≥n

at.

These identities follows from the monotonicity in n of the sequences supt≥n at and inft≥n at,
and Proposition 5.6

Proposition 6.7 (Properties of Limsup/Liminf). Let (an)∞n=m be a sequence of real
numbers. Let L+ be the limit superior of this sequence, and let L− be the limit inferior of
this sequence. (Note that L+, L− ∈ R∗.)

(i) For every x > L+ there exists N ≥ m such that an < x for all n ≥ N . For every
y < L− there exists N ≥ m such that an > y for all n ≥ N .

(ii) For every x < L+ and for every N ≥ m there exists n ≥ N such that an > x. For
every y > L+ and for every N ≥ m there exists n ≥ N such that an < y.

(iii) inf(an)∞n=m ≤ L− ≤ L+ ≤ sup(an)∞n=m.
(iv) If c is any limit point of (an)∞n=m, then L− ≤ c ≤ L+.
(v) If L+ is finite, then it is a limit point of (an)∞n=m. If L− is finite, then it is a limit

point of (an)∞n=m.
(vi) Let c be a real number. If (an)∞n=m converges to c, then L+ = L− = c. Conversely, if

L+ = L− = c, then (an)∞n=m converges to c.

Proof of (i). If L+ = +∞, there is nothing to prove. So, assume that L+ 6= +∞. Then
L+ ∈ R ∪ {−∞}. Let x > L+. From Remark 6.6, L+ = infn≥m supt≥n at. From Proposition
5.4, there exists n ≥ m such that x > supt≥n at. Using Proposition 5.4 again, for all t ≥ n,
we have x > at, as desired. The second assertion follows similarly. �

Proof of (ii). If L+ = −∞, there is nothing to prove. So, assume that L+ 6= −∞. Then
L+ ∈ R ∪ {+∞}. Let x < L+. From Remark 6.6, L+ = infn≥m supt≥n at. From Proposition
5.4, for all n ≥ m we have x < supt≥n at. Using Proposition 5.4 again, there exists t ≥ m
such that x < at, as desired. The second assertion follows similarly. �

Exercise 6.8. Prove parts (iii)-(vi) of Proposition 6.7

Remark 6.9. Proposition 6.7(iv) and Definitions 6.4,6.5 say that, if L+ and L− are both
finite, then they are the largest and smallest limit points of the sequence, respectively.
Proposition 6.7(vi) shows that, to test whether or not a sequence converges, it suffices to
compute the limit superior and limit inferior of the sequence.

Lemma 6.10 (Comparison Principle). Let (an)∞n=m, (bn)∞n=m be sequences of real num-
bers. Assume that an ≤ bn for all n ≥ m. Then

11



• sup(an)∞n=m ≤ sup(bn)∞n=m.
• inf(an)∞n=m ≤ inf(bn)∞n=m.
• lim supn→∞ an ≤ lim supn→∞ bn.
• lim infn→∞ an ≤ lim infn→∞ bn.

Exercise 6.11. Prove Lemma 6.10.

Corollary 6.12 (Squeeze Test/ Squeeze Theorem). Let (an)∞n=m, (bn)∞n=m, (cn)∞n=m be
sequences of real numbers such that there exists a natural number M such that, for all n ≥M ,

an ≤ bn ≤ cn.

Assume that (an)∞n=m and (cn)∞n=m converge to the same limit L. Then (bn)∞n=m converges to
L.

Exercise 6.13. Prove Corollary 6.12 using Lemma 6.10.

6.1. Exponentiation by Rationals. For x, y real numbers, it would be nice to define xy

in some way. In the case that x is negative and y is e.g. 1/3, defining xy requires complex
analysis. In this class, we will only be able to define xy for positive real numbers x. To this
end, in this section, we will let x be a positive real number, and we will define xy for rational
y.

Definition 6.14. Let x > 0 be a positive real number, and let n ≥ 1 be a positive integer.
We define the nth root of x, and write x1/n, by the formula

x1/n := sup{y ∈ R : y ≥ 0 and yn ≤ x}.

For x a positive real number and n a positive integer, we now show that x1/n is finite.

Lemma 6.15. Let x > 0 be a positive real number, and let n ≥ 1 be a positive integer.
Then the set E := sup{y ∈ R : y ≥ 0 and yn ≤ x} is nonempty and bounded from above.
Consequently, x1/n is a real number by the Least Upper Bound property (Theorem 2.3).

Proof. Since x is positive, 0 ∈ E, so E is nonempty. We now show that E is bounded from
above. We consider two cases: x ≤ 1 and x > 1. In the first case, x ≤ 1, and we claim that
1 is an upper bound for E. That is, if y ∈ R and y ≥ 0 with yn ≤ x ≤ 1, then y ≤ 1. We
prove this by contradiction. Suppose y > 1. Since y > 1, it follows by induction on n that
yn > 1 as well, contradicting that yn ≤ 1. We conclude that E is bounded above by 1 when
x ≤ 1. We now consider the case x > 1. We claim that x is an upper bound for E. That
is, if y ∈ R and y ≥ 0 with yn ≤ x, then y ≤ x. We prove this by contradiction. Suppose
y > x. Since x > 1, we have y > x > 1. If then follows by induction on n that yn > x,
contradicting that yn ≤ x. We conclude that E is bounded above by x when x > 1. Having
exhausted all cases for x > 0, we are done. �

Lemma 6.16. Let x, y > 0 be positive real numbers, and let n,m ≥ 1 be positive integers.

(i) If y = x1/n, then yn = x.
(ii) If yn = x, then y = x1/n.

(iii) x1/n is a positive real number.
(iv) x > y if and only if x1/n > y1/n.
(v) If x > 1 then x1/n decreases when n increases. If x < 1, then x1/n increases when n

increases. If x = 1, then x1/n = 1 for all positive integers n.

12



(vi) (xy)1/n = x1/ny1/n.
(vii) (x1/n)1/m = x1/(nm).

Exercise 6.17. Prove Lemma 6.16.

Remark 6.18. Note the following cancellation law from Lemma 6.16(ii). If x, y are positive
real numbers, and if xn = yn for a positive integer n, then x = y. Note that the positivity
of x, y is needed, since (−3)2 = 32, but 3 6= −3.

Given a positive x and a rational number q, we can now define xq. Due to the density of
rational numbers within the real numbers, we therefore come very close to a general definition
of xy where y is real.

Definition 6.19 (Exponentiation to a Rational). Let x > 0 be a positive real number,
and let q be a rational number. We now define xq. Write q = a/b where a is an integer, and
b is a positive integer. We then define

xq := (x1/b)a.

We now show that this definition is well-defined.

Lemma 6.20. Let a, a′ be integers and let b, b′ be positive integers such that a/b = a′/b′. Let
x be a positive real number. Then (x1/b)a = (x1/b

′
)a

′
.

Proof. We consider three cases: a = 0, a < 0, and a > 0. If a = 0, then we must have a′ = 0
since a/b = a′/b′, so (x1/b)0 = 1 = (x1/b

′
)0, as desired.

If a > 0, then a′ > 0 since a/b = a′/b′, and a, b, b′ > 0. Define y := x1/(ab
′). Since

ab′ = a′b, we have y = x1/(a
′b). From Lemma 6.16(vii), y = (x1/b)1/a

′
= (x1/b

′
)1/a. From

Lemma 6.16(ii), we therefore have ya
′
= x1/b and ya = x1/b

′
. So,

(x1/b
′
)a

′
= (ya)a

′
= yaa

′
= (ya

′
)a = (x1/b)a.

So, the case a > 0 is done. Finally, suppose a < 0. Then a′ < 0 as well, so −a and −a′ are
positive. From the previous case, (x1/b)−a = (x1/b

′
)−a

′
. Taking the reciprocal of both sides

completes the proof. �

Lemma 6.21. Let x, y > 0 be positive real numbers, and let q, r be rational numbers.

(i) xq is a positive real number.
(ii) xq+r = xqxr and (xq)r = xqr.

(iii) x−q = 1/xq.
(iv) If q > 0, then x > y if and only if xq > yq.
(v) If x > 1, then xq > xr if and only if q > r. If x < 1, then xq > xr if and only if

q < r.

Exercise 6.22. Prove Lemma 6.21.

6.2. Some Standard Limits. We can now compute some standard limits.

Remark 6.23. Let c be a real number. Then limn→∞ c = c.

Proposition 3.8 gives us the following.

Corollary 6.24. For any positive integer k, we have limn→∞ 1/(n1/k) = 0.
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Proof. From Lemma 6.16, 1/(n1/k) is decreasing in n and bounded below by 0. By Propo-
sition 5.6 (for decreasing sequences bounded from below), there exists a real number L ≥ 0
such that

L = lim
n→∞

1/(n1/k).

Taking both sides to the power k, and applying Theorem 3.15(ii) k times,

Lk = [ lim
n→∞

1/(n1/k)]k = lim
n→∞

1/(nk/k) = lim
n→∞

(1/n) = 0.

The last equality follows from Proposition 3.8. Since Lk = 0, we know that L is not positive
by Lemma 6.21(i). Since L ≥ 0, we conclude that L = 0, as desired. �

Remark 6.25. By using the limit laws as in Corollary 6.24, it follows that, for any positive
rational q > 0, we have limn→∞ 1/(nq) = 0. Consequently, nq does not converge as n→∞.

Exercise 6.26. Let −1 < x < 1. Then limn→∞ x
n = 0. Using the identity (1/xn)xn = 1 for

x > 1, conclude that xn does not converge as n→∞ for x > 1.

Lemma 6.27. For any x > 0, we have limn→∞ x
1/n = 1.

Exercise 6.28. Prove Lemma 6.27. (Hint: first, given any ε > 0, show that (1 + ε)n has no
real upper bound M , as n → ∞. To prove this claim, set x = 1/(1 + ε) and use Exercise
6.26. Now, with this preliminary claim, show that for any ε > 0 and for any real M , there
exists a positive integer n such that M1/n < 1 + ε. Now, use these two claims, and consider
the cases y > 1 and y < 1 separately.)

7. Infinite Series

We will now begin our discussion of infinite series. One reason to care about infinite
series is that Fourier analysis essentially reduces the study of certain functions to the study
of infinite series. For another motivation, our study of infinite series is a precursor to the
study of sequences of functions, and to the study of integrals. So, the study of infinite series
provides a foundation for several other important topics.

We will briefly discuss finite series, and we will then move on to infinite series.

7.1. Finite Series.

Definition 7.1 (Finite Series/ Finite Sum). Let m,n be integers. Let (ai)
n
i=m be a finite

sequence of real numbers. Define the finite sum
∑n

i=m ai by the recursive formula

n∑
i=m

ai := 0 , if n < m

n+1∑
i=m

ai := (
n∑

i=m

ai) + an+1 , if n ≥ m− 1

Remark 7.2. To clarify the expressions we have used, a series is an expression of the form∑n
i=m ai, and this series is equal to a real number, which is itself the sum of the series. The

distinction between series and sum is not really important.

The following properties of summation can be proven by various inductive arguments.
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Lemma 7.3. Let m ≤ n < p be integers, and let (ai)
n
i=m, (bi)

n
i=m be a sequences of real

numbers, let k be an integer, and let c be a real number. Then

•
n∑

i=m

ai +

p∑
i=n+1

ai =

p∑
i=m

ai.

•
n∑

i=m

ai =
n+k∑

j=m+k

aj−k.

•
n∑

i=m

(ai + bi) = (
n∑

i=m

ai) + (
n∑

i=m

bi).

•
n∑

i=m

(cai) = c(
n∑

i=m

ai).

•

∣∣∣∣∣
n∑

i=m

ai

∣∣∣∣∣ ≤
n∑

i=m

|ai| .

• If ai ≤ bi for all m ≤ i ≤ n, then
n∑

i=m

ai ≤
n∑

i=m

bi.

Exercise 7.4. Prove Lemma 7.3.

We can also define sums over finite sets.

Definition 7.5. Let X be a finite set of cardinality n ∈ N. Let f : X → R be a function.
We define

∑
x∈X f(x) as follows. Let g : {1, 2, . . . , n} → X be any bijection, which exists

since X has cardinality n. We then define∑
x∈X

f(x) :=
n∑

i=1

f(g(i)).

Exercise 7.6. Show that this definition is well defined. That is, for any two bijections
g, h : {1, 2, . . . , n} → X, we have

∑n
i=1 f(g(i)) =

∑n
i=1 f(h(i)).

Lemma 7.3 translates readily to sums over finite sets.

Lemma 7.7. (i) If X is empty and if f : X → R is a function, then∑
x∈X

f(x) = 0.

(ii) If X = {x0} consists of a single element and if f : X → R is a function, then∑
x∈X

f(x) = f(x0).

(iii) If X is a finite set, if f : X → R is a function, and if g : Y → X is a bijection between
sets X, Y , then ∑

x∈X

f(x) =
∑
y∈Y

f(g(y)).
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(iv) Let m ≤ n be integers, let (ai)
n
i=m be a sequence of real numbers, and let X = {i ∈

N : m ≤ i ≤ n}. Then
n∑

i=m

ai =
∑
i∈X

ai.

(v) Let X, Y be disjoint finite sets (so X ∩ Y = ∅). Let f : X ∪ Y → R be a function.
Then ∑

x∈X∪Y

f(x) = (
∑
x∈X

f(x)) + (
∑
y∈Y

f(y)).

(vi) Let X be a finite set, let f : X → R and let g : X → R be functions. Then∑
x∈X

(f(x) + g(x)) = (
∑
x∈X

f(x)) + (
∑
x∈X

g(x)).

(vii) Let X be a finite set, let f : X → R be a function, and let c ∈ R. Then∑
x∈X

(cf(x)) = c(
∑
x∈X

f(x)).

(viii) Let X be a finite set, let f : X → R and let g : X → R be functions such that
f(x) ≤ g(x) for all x ∈ X. Then∑

x∈X

f(x) ≤
∑
x∈X

g(x).

(ix) Let X be a finite set, and let f : X → R be a function. Then∣∣∣∣∣∑
x∈X

f(x)

∣∣∣∣∣ ≤∑
x∈X

|f(x)| .

Exercise 7.8. Prove Lemma 7.7.

Lemma 7.9. Let X, Y be finite sets. Let f : (X × Y )→ R be a function. Then∑
x∈X

(
∑
y∈Y

f(x, y)) =
∑

(x,y)∈X×Y

f(x, y).

Exercise 7.10. Prove Lemma 7.9 by induction on the size of X.

Corollary 7.11 (Fubini’s Theorem for finite sets). Let X, Y be finite sets, and let
f : X × Y → R be a function. Then∑

x∈X

(
∑
y∈Y

f(x, y)) =
∑

(x,y)∈X×Y

f(x, y) =
∑

(y,x)∈Y×X

f(x, y) =
∑
y∈Y

(
∑
x∈X

f(x, y)).

Proof. Lemma 7.9 gives the first and last equalities. For the remaining middle equality, note
that g : X × Y → Y × X defined by g(x, y) := (y, x) is a bijection. So, Lemma 7.7(iii)
completes the proof. �

Remark 7.12. As we saw in the first homework, Corollary 7.11 is false for infinite sums.
So, we can already see that more care is needed when we pass to infinite sums.
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7.2. Infinite Series.

Definition 7.13 (Infinite Series). Let (an)∞n=m be a sequence of real numbers. An infinite
series is any formal expression of the form

∞∑
n=m

an.

We sometimes write this series as

am + am+1 + am+2 + · · · .

So far, we have only given a formal definition for the expression
∑∞

n=m an. The sum only
makes sense as a real number via the following definition.

Definition 7.14 (Convergent Sum). Let
∑∞

n=m an be a formal infinite series. For any

integer N ≥ m, define the N th partial sum SN of this series by SN :=
∑N

n=m an. Note that
SN is a real number. If the sequence (SN)∞N=m converges to some limit L as N → ∞, then
we say that the infinite series

∑∞
n=m an is convergent, and this infinite series converges

to L. We also write L =
∑∞

n=m an and say that L is the sum of the infinite series
∑∞

n=m an.
If the partial sums diverge, then we say that the infinite series

∑∞
n=m an is divergent, and

we do not assign any real number to the infinite series
∑∞

n=m an.

Proposition 7.15. Let
∑∞

n=m an be a formal series of real numbers. Then
∑∞

n=m an con-
verges if and only if: for every real number ε > 0, there exists an integer N ≥M such that,
for all p, q ≥ N , ∣∣∣∣∣

q∑
n=p

an

∣∣∣∣∣ < ε.

Exercise 7.16. Prove Proposition 7.15. (Hint: use Theorem 3.10).

Corollary 7.17 (Zero Test). Let
∑∞

n=m an be a formal series of real numbers. If
∑∞

n=m an
converges, then limn→∞ an = 0. Note that the contrapositive says: if an does not converge to
zero as n→∞, then

∑∞
n=m an does not converge.

Exercise 7.18. Using Proposition 7.15, prove Corollary 7.17.

Remark 7.19. The converse of Corollary 7.17 is false. For example, the series
∑∞

n=1 1/n
does not converge. On the other hand, as we will see below, the series

∑∞
n=1(−1)n/n does

converge.

Definition 7.20 (Absolute Convergence). Let
∑∞

n=m an be a formal series of real num-
bers. We say that the series

∑∞
n=m an is absolutely convergent if and only if the series∑∞

n=m |an| is convergent. If a series is not absolutely convergent, then it is absolutely diver-
gent.

Proposition 7.21. Let
∑∞

n=m an be a formal series of real numbers. If this series is abso-
lutely convergent, then it is convergent. Moreover,∣∣∣∣∣

∞∑
n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an| .
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Exercise 7.22. Prove Proposition 7.21.

Proposition 7.23 (Alternating Series Test). Let (an)∞n=m be a decreasing sequence of
nonnegative real numbers. That is, an+1 ≤ an and an ≥ 0 for all n ≥ m. Then the series∑∞

n=m(−1)nan converges if and only if an → 0 as n→∞.

Proof. Suppose
∑∞

n=m(−1)nan converges. From the Zero Test (Corollary 7.17), we know
that (−1)nan → 0 as n→∞. Therefore, an → 0 as n→∞ as desired.

We now prove the converse. The idea is that looking only at even partial sums (or odd
partial sums) reveals a monotonicity of the sequence. Suppose limn→∞ an = 0. Let N ≥ m

and define SN :=
∑N

n=m(−1)nan. Note that

SN+2 = SN + (−1)N+1aN+1 + (−1)N+2aN+2 = SN + (−1)N+1(aN+1 − aN+2).

Recall that aN+1 ≥ aN+2. So, if N is odd, then SN+2 ≥ SN , and if N is even, SN+2 ≤ SN .
Suppose N is even. Then for any natural number k, SN+2k ≤ SN . Also, SN+2k+1 ≥

SN+1 = SN − aN+1, and SN+2k+1 = SN+2k − aN+2k+1 ≤ SN+2k since aN+2k+1 ≥ 0. So, for
any natural number k,

SN − aN+1 ≤ SN+2k+1 ≤ SN+2k ≤ SN .

In summary, for any integer n ≥ N ,

SN − aN+1 ≤ Sn ≤ SN .

Using the assumption an → 0, if we are given any ε > 0, there exists a natural number N
such that, for all n > N , we have |an| < ε, so that

SN − ε ≤ Sn ≤ SN .

That is, for any ε > 0, there exists a natural number N such that, for all j, k > N , we have
|Sj − Sk| < ε. So, the sequence (Sn)∞n=m is a Cauchy sequence, and it therefore converges by
Theorem 3.10. �

The following Proposition should be contrasted with Lemma 7.3. Note in particular the
extra assumptions that are needed in the following statements.

Proposition 7.24.

• Let
∑∞

n=m an be a series of real numbers converging to x, and let
∑∞

n=m bn be a series
of real numbers converging to y. Then

∑∞
n=m(an + bn) is a convergent series that

converges to x+ y. That is,

∞∑
n=m

(an + bn) = (
∞∑

n=m

an) + (
∞∑

n=m

bn).

• Let
∑∞

n=m an be a series of real numbers converging to x, and let c be a real number.
Then

∑∞
n=m(can) is a convergent series that converges to cx. That is,

∞∑
n=m

(can) = c(
∞∑

n=m

an).
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• Let
∑∞

n=m an be a series of real numbers, and let k be a natural number. If one of
the two series

∑∞
n=m an or

∑∞
n=m+k an converges, then the other also converges, and

we have
∞∑

n=m

an = (
m+k−1∑
n=m

an) + (
∞∑

n=m+k

an).

• Let
∑∞

n=m an be a series of real numbers converging to x, and let k be an integer.
Then

∑∞
n=m+k an−k also converges to x.

Exercise 7.25. Prove Proposition 7.24.

Remark 7.26. From Proposition 7.24, changing any finite number of terms of a series
does not affect the convergence of the series. We will therefore eventually de-emphasize the
starting index of a series.

7.3. Sums of Nonnegative Numbers. From Proposition 7.21, if a series converges abso-
lutely, then it also converges. In practice, we often show that a series converges by showing
that it is absolutely convergent. Therefore, it is nice to have several ways to show whether
or not a series is absolutely convergent. In other words, given a series of nonnegative num-
bers, it is desirable to verify its convergence. So, in this section, we will discuss series of
nonnegative numbers.

Let
∑∞

n=m an be a series of nonnegative real numbers. Since an ≥ 0 for all n ≥ m, the

partial sums SN :=
∑N

n=m an are increasing. That is, SN+1 ≥ SN for all integers N ≥ m.
From Remark 5.9, (SN)∞N=m is convergent if and only if it has an upper bound M . We
summarize this discussion as follows.

Proposition 7.27. Let
∑∞

n=m an be a formal series of nonnegative real numbers. Then this
series is convergent if and only if there exists a real number M such that, for all integers
N ≥ m, we have

N∑
n=m

an ≤M.

Corollary 7.28 (Comparison Test). Let
∑∞

n=m an,
∑∞

n=m bn be formal series of real num-
bers. Assume that |an| ≤ bn for all n ≥ m. If

∑∞
n=m bn is convergent, then

∑∞
n=m an is

absolutely convergent. Moreover,∣∣∣∣∣
∞∑

n=m

an

∣∣∣∣∣ ≤
∞∑

n=m

|an| ≤
∞∑

n=m

bn.

Exercise 7.29. Prove Corollary 7.28.

Remark 7.30. The contrapositive of Corollary 7.28 says: if |an| ≤ bn for all n ≥ m, and if∑∞
n=m an is absolutely divergent, then

∑∞
n=m bn does not converge.

Example 7.31. Let x be a real number and consider the series

∞∑
n=0

xn.
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If |x| ≥ 1, then this series diverges by the Zero Test (Corollary 7.17). If |x| < 1, then we can
use induction to show that the partial sums satisfy

N∑
n=0

xn = (1− xN+1)/(1− x). (∗)

If |x| < 1 then limN→∞ x
N = 0 by Exercise 6.26. So, using the Limit Laws,

lim
N→∞

(1− xN+1)/(1− x) = 1/(1− x).

So,
∑∞

n=0 x
n converges to 1/(1 − x) when |x| < 1. Moreover, this convergence is absolute,

by Corollary 7.28.

Proposition 7.32 (Dyadic Criterion). Let (an)∞n=1 be a decreasing sequence of nonnegative
real numbers. That is, an+1 ≤ an and an ≥ 0 for all n ≥ 1. Then the series

∑∞
n=1 an

converges if and only if the following series converges:
∞∑
k=0

2ka(2k) = a1 + 2a2 + 4a4 + 8a8 + · · · .

Proof. Let N be a positive integer and let K be a natural number. Let SN :=
∑N

n=1 an, and

let TK :=
∑K

k=0 2ka2k . We claim that

S2K+1−1 ≤ TK ≤ 2S2K . (∗)
We prove this claim by induction on K. In the case K = 0, we want to show S1 ≤ T0 ≤ 2S1.
Now, S1 = a1 and T0 = a1, so S1 ≤ T0 ≤ 2S1 holds.

We now prove the inductive step. Suppose (∗) holds for some K. Then, note that

S2K+2−1 = S2K+1−1 +
2K+2−1∑
n=2K+1

an ≤ S2K+1−1 +
2K+2−1∑
n=2K+1

a2K+1 = S2K+1−1 + 2K+1a2K+1 .

Similarly,

S2K+1 = S2K +
2K+1∑

n=2K+1

an ≥ S2K +
2K+1∑

n=2K+1

a2K+1 = S2K + 2Ka2K+1 .

So, applying the inductive hypothesis,

S2K+2−1 ≤ TK + 2K+1a2K+1 = TK+1.

2S2K+1 ≥ TK + 2K+1a2K+1 = TK+1

So, we have completed the inductive step for (∗), thereby proving (∗).
We can now use (∗) to complete the proof. If

∑∞
n=1 an converges, then the partial sums S2K

are bounded as K → ∞ by Proposition 7.27. So the right inequality of (∗) shows that the
partial sums TK are bounded as K → ∞. So, by Proposition 7.27,

∑∞
k=0 2ka(2k) converges.

Conversely, suppose
∑∞

k=0 2ka(2k) converges. Then the partial sums TK are bounded as
K → ∞ by Proposition 7.27. By (∗), the partial sums S2K are bounded as K → ∞. Now,
for any positive integer n, there exists a natural number N such that n ≤ 2N . So, since
Sn ≤ Sn+1 for all natural numbers n, we conclude that Sn ≤ S2N . So, the partial sums Sn

are bounded as n→∞. That is,
∑∞

n=1 an converges, by Proposition 7.27. �
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Corollary 7.33. Let q > 0 be a rational number. Then the series
∑∞

n=1 1/nq is convergent
when q > 1 and it is divergent when q ≤ 1.

Proof. The sequence (1/nq)∞n=1 is nonnegative and decreasing by Lemma 6.21(iv). We can
therefore apply the Dyadic Criterion (Theorem 7.32). The series

∑∞
n=1 1/nq is then conver-

gent if and only if the following series is convergent
∞∑
k=0

2k 1

(2k)q
=
∞∑
k=0

(21−q)k.

In the last equality, we used Lemma 6.21(ii). In Example 7.31, we showed that the geometric
series

∑∞
k=0 x

k is convergent if and only if |x| < 1. So, the series
∑∞

n=1 1/nq is convergent if
and only if |21−q| < 1, i.e. if and only if q > 1. (The last claim follows by Lemma 6.21.) �

Remark 7.34. In particular, the harmonic series
∑∞

n=1 1/n diverges.

7.4. Rearrangement of Series. Let (an)Nn=1 be a sequence of real numbers. From Exercise
7.6, any rearrangement of a finite series gives the same sum. That is, for any bijection
g : {1, . . . , n} → {1, . . . , n}, we have

N∑
n=1

an =
N∑

n=1

ag(n).

The corresponding statement for infinite series is false. For example, consider the sequence
an = (−1)n+1/(n+1). Recall that

∑∞
n=0 an converges by the Alternating Series Test (Propo-

sition 7.23). However, there exists a bijection g : N→ N such that
∑∞

n=0 an actually diverges.
So, we cannot rearrange convergent infinite series and expect the sum of the rearranged series
to be the same or even to converge at all.

Exercise 7.35. For any n ∈ N, define an := (−1)n+1/(n + 1). Find a bijection g : N → N
such that the series

∑∞
n=0 ag(n) diverges.

In fact, given any real number L, the series
∑∞

n=1(−1)n/n can be rearranged so that the
rearranged series converges to L.

Theorem 7.36. Let
∑∞

n=0 an be a convergent series which is not absolutely convergent. Let
L be a real number. Then there exists a bijection g : N→ N such that

∑∞
n=0 ag(n) converges

to L.

However, we can rearrange absolutely convergent series.

Proposition 7.37. Let
∑∞

n=0 an be an absolutely convergent series of real numbers. Let
g : N→ N be a bijection. Then

∑∞
m=0 ag(m) is also convergent. Moreover,

∞∑
n=0

an =
∞∑

m=0

ag(m).

8. Ratio and Root Tests

The following test for series generalizes our investigation of the convergence of the geo-
metric series from Example 7.31.
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Theorem 8.1 (Root Test). Let
∑∞

n=m an be a series of real numbers. Define α :=

lim supn→∞ |an|
1/n.

• If α < 1, then the series
∑∞

n=m an is absolutely convergent. In particular, the series∑∞
n=m an is convergent.

• If α > 1, then the series
∑∞

n=m an is divergent.
• If α = 1, no conclusion is asserted.

Proof. First assume that α < 1. Since |an|1/n ≥ 0 for every positive integer n, we know that
α ≥ 0. Let ε > 0 so that ε+α < 1. (For example, we could let ε := (1−α)/2.) By Proposition

6.7(i), there exists an integer N such that, for all n ≥ N , we have |an|1/n ≤ (α+ ε). That is,
|an| ≤ (α + ε)n. Since 0 < α + ε < 1, the geometric series

∑∞
n=N(α + ε)n converges. So, by

the Comparison Test (Corollary 7.28),
∑∞

n=N an converges. Therefore,
∑∞

n=m an converges
by Lemma 7.3, since a finite number of terms do not affect the convergence of the infinite
sum.

Now, assume that α > 1. By Proposition 6.7(ii), for every N ≥ m there exists n ≥ N such

that |an|1/n ≥ 1. That is, |an| ≥ 1. In particular, an does not converge to zero as n → ∞.
So, by the Zero Test (Corollary 7.17), we conclude that

∑∞
n=m an does not converge. �

The Root Test is not always easy to use directly, but we can replace the roots by ratios,
which are sometimes easier to handle.

Lemma 8.2. Let (bn)∞n=m be a sequence of positive numbers. Then

lim inf
n→∞

bn+1

bn
≤ lim inf

n→∞
b1/nn ≤ lim sup

n→∞
b1/nn ≤ lim sup

n→∞

bn+1

bn
.

Proof. The middle inequality is Proposition 6.7(iii). We will only then prove the right in-
equality.

Let L := lim supn→∞
bn+1

bn
. If L = +∞ there is nothing to show, so we assume that

L < +∞. Since bn is positive for each n ≥ m, we know that L ≥ 0.
Let ε > 0. From Proposition 6.7(i), there exists an integer N ≥ m such that, for all

n ≥ N , we have (bn+1/bn) ≤ L + ε. That is, bn+1 ≤ (L + ε)bn. By induction, we conclude
that, for all n ≥ N ,

bn ≤ (L+ ε)n−NbN .

That is, for all n ≥ N ,

b1/nn ≤ (bN(L+ ε)−N)1/n(L+ ε). (∗)
Letting n→∞ on the right side of (∗), and applying the Limit Laws and Lemma 6.27,

lim
n→∞

(bN(L+ ε)−N)1/n(L+ ε) = L+ ε.

So, applying the Comparison Principle (Lemma 6.10 to (∗),
lim sup
n→∞

b1/nn ≤ L+ ε.

Since ε > 0 is arbitrary, we conclude that lim supn→∞ b
1/n
n ≤ L, as desired. �

Exercise 8.3. Prove the left inequality of Lemma 8.2.

Combining Theorem 8.1 and Lemma 8.2 gives the following.
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Corollary 8.4 (Ratio Test). Let
∑∞

n=m an be a series of nonzero numbers. (So, an+1/an
is defined for any n ≥ m.)

• If lim supn→∞
|an+1|
|an| < 1, then the series

∑∞
n=m an is absolutely convergent. In par-

ticular,
∑∞

n=m an is convergent.

• If lim infn→∞
|an+1|
|an| > 1, then the series

∑∞
n=m an is divergent. In particular,

∑∞
n=m an

is not absolutely convergent.

9. Subsequences

Our investigation now shifts attention from series back to sequences. We focus our atten-
tion on ways to decompose a sequence into smaller parts which are easier to understand.
One popular paradigm in mathematics (and in science more generally) is to take a compli-
cated object and break it into pieces which are simpler to understand. Subsequences are one
manifestation of this paradigm.

Definition 9.1 (Subsequence). Let (an)∞n=0, (bn)∞n=0 be sequences of real numbers. We say
that (bn)∞n=0 is a subsequence of (an)∞n=0 if and only if there exists a function f : N → N
which is strictly increasing (i.e. f(n+ 1) > f(n) for all n ∈ N) such that, for all n ∈ N,

bn = af(n)

Example 9.2. The sequence (a2n)∞n=0 is a subsequence of (an)∞n=0, since f(n) := 2n is an
increasing function from N to N, and a2n = af(n).

Here are some basic properties of subsequences.

Lemma 9.3. Let (an)∞n=0, (bn)∞n=0, (cn)∞n=0 be sequences of real numbers. Then (an)∞n=0 is
a subsequence of (an)∞n=0. Also, if (bn)∞n=0 is a subsequence of (an)∞n=0, and if (cn)∞n=0 is a
subsequence of (bn)∞n=0, then (cn)∞n=0 is a subsequence of (an)∞n=0.

Exercise 9.4. Prove Lemma 9.3.

Subsequences and limits are closely related, as we now show.

Proposition 9.5. Let (an)∞n=0 be a sequence of real numbers, and let L be a real number.

• If the sequence (an)∞n=0 converges to L, then every subsequence of (an)∞n=0 converges
to L.
• Conversely, if every subsequence of (an)∞n=0 converges to L, then (an)∞n=0 itself con-

verges to L.

Exercise 9.6. Prove Proposition 9.5.

Proposition 9.7. Let (an)∞n=0 be a sequence of real numbers, and let L be a real number.

• Suppose L is a limit point of (an)∞n=0. Then there exists a subsequence of (an)∞n=0

which converges to L.
• Conversely, if there exists a sequence of (an)∞n=0 which converges to L, then L is a

limit point of (an)∞n=0.

Exercise 9.8. Prove Proposition 9.7.

The following important theorem says: every bounded sequence has a convergent subse-
quence.
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Theorem 9.9 (Bolzano-Weierstrass). Let (an)∞n=0 be a bounded sequence. That is, there
exists a real number M such that |an| ≤ M for all n ∈ N. Then there exists a subsequence
of (an)∞n=0 which converges.

Proof. Let L := lim supn→∞ an. From the Comparison Principle (Lemma 6.10), |L| ≤M . In
particular, L is a real number. So, by Proposition 6.7(v), L is a limit point of (an)∞n=0. By
Proposition 9.7, there exists a subsequence of (an)∞n=0 which converges to L. �

Remark 9.10. Note that we could have defined L := lim infn→∞ an and the proof would
have still worked.

10. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Z+ := {1, 2, 3, 4, . . .}, the positive integers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

R∗ = R ∪ {−∞} ∪ {+∞} denotes the set of extended real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

Let E be a subset of R ∪ {−∞} ∪ {+∞}. Let (an)∞n=0 be a sequence of real numbers.
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sup(E) denotes the smallest upper bound of E

inf(E) denotes the largest lower bound of E

lim sup
n→∞

an := lim
n→∞

sup
m≥n

(an)∞n=m

lim inf
n→∞

an := lim
n→∞

inf
m≥n

(an)∞n=m

10.1. Set Theory. Let X, Y be sets, and let f : X → Y be a function. The function
f : X → Y is said to be injective (or one-to-one) if and only if: for every x, x′ ∈ V , if
f(x) = f(x′), then x = x′.

The function f : X → Y is said to be surjective (or onto) if and only if: for every y ∈ Y ,
there exists x ∈ X such that f(x) = y.

The function f : X → Y is said to be bijective (or a one-to-one correspondence) if
and only if: for every y ∈ Y , there exists exactly one x ∈ X such that f(x) = y. A function
f : X → Y is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if and only if there exists a bijection
from X onto Y .
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