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1. Review

Proposition 1.1. Let (an)∞n=0 be a sequence of real numbers, and let L,L′ be a real numbers
with L 6= L′. Then (an)∞n=0 cannot simultaneously converge to L and converge to L′.

Theorem 1.2 (Limit Laws). Let (an)∞n=0, (bn)∞n=0 be convergent sequences. Let x, y be real
numbers such that x = limn→∞ an, y = limn→∞ bn.

(i) The sequence (an + bn) converges to x+ y. That is,

lim
n→∞

(an + bn) = ( lim
n→∞

an) + ( lim
n→∞

bn).

(ii) The sequence (anbn) converges to xy. That is,

lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn).

(iii) For any real number c, the sequence (can) converges to cx. That is,

c lim
n→∞

an = lim
n→∞

(can).

(iv) The sequence (an − bn) converges to x− y. That is,

lim
n→∞

(an − bn) = ( lim
n→∞

an)− ( lim
n→∞

bn).

(v) Suppose x 6= 0 and there exists m such that an 6= 0 for all n ≥ m. Then (a−1n )∞n=m
converges to x−1. That is,

lim
n→∞

a−1n = ( lim
n→∞

an)−1.

(vi) Suppose x 6= 0 and there exists m such that an 6= 0 for all n ≥ m. Then (bn/an)∞n=m
converges to y/x. That is,

lim
n→∞

(bn/an) = ( lim
n→∞

bn)/( lim
n→∞

an).

(vii) Suppose an ≥ bn for all n ≥ 0. Then x ≥ y.
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Exercise 1.3. Let (an)∞n=m be a sequence of real numbers converging to 0. Show that
(|an|)∞n=m also converges to zero.

Theorem 1.4 (Bolzano-Weierstrass). Let (an)∞n=0 be a bounded sequence. That is, there
exists a real number M such that |an| ≤ M for all n ∈ N. Then there exists a subsequence
of (an)∞n=0 which converges.

Theorem 1.5 (Least Upper Bound Property). Let E be a nonempty subset of R. If E
has some upper bound, then E has exactly one least upper bound.

Lemma 1.6 (Comparison Principle). Let (an)∞n=m, (bn)∞n=m be sequences of real numbers.
Assume that an ≤ bn for all n ≥ m. Then

• lim supn→∞ an ≤ lim supn→∞ bn.
• lim infn→∞ an ≤ lim infn→∞ bn.

In particular, limn→∞ an and limn→∞ bn exist, then limn→∞ an ≤ limn→∞ bn.

Corollary 1.7 (Squeeze Test/ Squeeze Theorem). Let (an)∞n=m, (bn)∞n=m, (cn)∞n=m be
sequences of real numbers such that there exists a natural number M such that, for all n ≥M ,

an ≤ bn ≤ cn.

Assume that (an)∞n=m and (cn)∞n=m converge to the same limit L. Then (bn)∞n=m converges to
L.

2. Functions on the real line

We now focus our attention on functions on the real line R, rather than functions on N
(i.e. sequences). The properties of the real line R, most notably its completeness property,
allow functions on R to have additional properties that functions on N do not have. For
example, we can define and understand continuity and differentiability.

Definition 2.1. Let X, Y be sets and let f : X → Y be a function. That is, for every
x ∈ X, the function f assigns to x some element f(x) ∈ Y . We say that X is the domain
of f .

Example 2.2. Some common domains for functions on the real line are:

• The positive half-line R+ := {x ∈ R : x > 0}.
• The negative half-line R− := {x ∈ R : x < 0}.
• The closed intervals [a, b] := {x ∈ R : a ≤ x ≤ b}, a, b ∈ R.
• The open intervals (a, b) := {x ∈ R : a < x < b}, a, b ∈ R.
• The half-open intervals (a, b] := {x ∈ R : a < x ≤ b} and [a, b) := {x ∈ R : a ≤
x < b}, a, b ∈ R.
• [a,∞) := {x ∈ R : a ≤ x <∞}, (−∞, a] := {x ∈ R : −∞ < x ≤ a}.
• (a,∞) := {x ∈ R : a < x <∞}, (−∞, a) := {x ∈ R : −∞ < x < a}.
• The entire real line R = (−∞,∞).

Definition 2.3 (Restriction). Given a function f : R → R and given a subset X ⊆ R,
define the restriction f |X of f to X so that, for any x ∈ X, f |X(x) := f(x).

Remark 2.4. One can similarly restrict the range of a function, if the function only takes
values in a smaller range. For example, the function f(x) := x2 is a function f : R→ R, but
it can also be considered as a function f : R→ [0,∞).

2



Remark 2.5. There is a distinction between a function f : R → R and its value f(x) for
x ∈ R, but it is not that important. For example, if we use f(x) := x2 with f : R→ R, and
we let g := f |[0,1], then g(x) = f(x) for all x ∈ [0, 1]. But f and g are not considered to be
the same function, since their domains are different.

Definition 2.6 (Composition). Let f : X → Y and let g : Y → Z be functions. We define
the composition g ◦ f by the formula (g ◦ f)(x) := g(f(x)).

Definition 2.7 (Arithmetic of Functions). Real valued functions inherit the arithmetic
of the real numbers as follows. Let f, g : X → R. Then the sum (f + g) : X → R is defined
so that, for all x ∈ X,

(f + g)(x) := f(x) + g(x).

The difference (f − g) : X → R is defined so that, for all x ∈ X,

(f − g)(x) := f(x)− g(x).

The product (fg) : X → R is defined so that, for all x ∈ X,

(fg)(x) := f(x)g(x).

If g(x) 6= 0 for all x ∈ X, then the quotient (f/g) : X → R is defined so that, for all x ∈ X,

(f/g)(x) := f(x)/g(x).

If c ∈ R, then the function cf : X → R is defined so that, for all x ∈ X,

(cf)(x) := c(f(x)).

2.1. Limits of Functions.

Definition 2.8 (Adherent Point). Let E be a subset of R, and let x be a real number.
We say that x is an adherent point of E if and only if, for all ε > 0, there exists y ∈ E
such that |x− y| < ε.

Remark 2.9. All points in E are adherent points of E.

Definition 2.10 (Closure). Let E be a subset of R. Then the closure of E, denoted E,
is defined to be the set of adherent points of E.

Proposition 2.11. Let a < b be real numbers. Let I be any of the four intervals (a, b), (a, b],
[a, b) or [a, b]. Then the closure of I is [a, b].

Exercise 2.12. Prove Proposition 2.11.

Lemma 2.13. Let X be a subset of R, and let x be an element of R. Then x is an ad-
herent point of X if and only if there exists a sequence (an)∞n=0 of elements of X such that
limn→∞ an = x.

Definition 2.14 (Convergence of a function). Let X be a subset of R, let f : X → R
be a function, let E be a subset of X, let x0 be an adherent point of E, and let L be a real
number. We say that f converges to L at x0 in E, and we write limx→x0;x∈E f(x) = L if
and only if: for all ε > 0, there exists δ = δ(ε) such that, for all x ∈ E with |x− x0| < δ, we
have |f(x)− L| < ε.

If f does not converge to any real number L at x0, we say that f diverges at x0, and we
leave limx→x0;x∈E f(x) undefined.
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Remark 2.15. We will often omit the set E from our notation and just write limx→x0 f(x).
However, we must be careful when doing this.

We can equivalently talk about convergence of f in terms of sequences in the domain of
f , as we now show.

Proposition 2.16. Let X be a subset of R, let f : X → R be a function, let E be a subset
of X, let x0 be an adherent point of E, and let L be a real number. Then the following two
statements are equivalent. (That is, one statement is true if and only if the other statement
is true.)

• f converges to L at x0 in E.
• For every sequence (an)∞n=0 which consists entirely of elements of E, and which con-

verges to x0, the sequence (f(an))∞n=0 converges to L.

Exercise 2.17. Prove Proposition 2.16.

Remark 2.18. Due to Proposition 2.16, we will sometimes say “f(x) goes to L as x→ x0 in
E” or “f has limit L at x0 in E” instead of “f converges to L at x0” or “limx→x0 f(x) = L”.

Corollary 2.19. Let X be a subset of R, let f : X → R be a function, let E be a subset of
X, let x0 be an adherent point of E. Then f can have at most one limit at x0 in E.

Proof. Suppose f has two limits L,L′ at x0 in E. We will show that L = L′. Since x0 is an
adherent point of E, Lemma 2.13 says that there exists a sequence (an)∞n=0 of elements of E
such that an → x0 as n → ∞. By Proposition 2.16, the sequence (f(an))∞n=0 converges to
both L and L′ as n→∞. By Proposition 1.1, we conclude that L = L′, as desired. �

By Proposition 2.16, the Limit Laws for sequences (Theorem 1.2) then give analogous
limit laws for functions.

Proposition 2.20 (Limit Laws for functions). Let X be a subset of R, let f, g : X → R
be functions, let E be a subset of X, let x0 be an adherent point of E, and let c be a real
number. Assume that f has limit L at x0 in E, and g has limit M at x0 in E. Then f + g
has limit L + M at x0 in E, f − g has limit L −M at x0 in E, fg has limit LM at x0 in
E, and cf has limit cL at x0 in E. If additionally g(x) 6= 0 for all x ∈ E and M 6= 0, then
f/g has limit L/M at x0 in E.

Proof. We only prove the first claim, since the others are proven similarly. Since x0 is an
adherent point of E, Lemma 2.13 says that there exists a sequence (an)∞n=0 of elements of
E such that an → x0 as n → ∞. By Proposition 2.16, the sequence (f(an))∞n=0 converges
to L. Similarly, the sequence (g(an))∞n=0 converges to M . By the Limit Laws for sequences
(Theorem 1.2), the sequence (f(an) + g(an))∞n=0 converges to L + M . By Proposition 2.16,
we conclude that f + g has limit L+M at x0 in E. �

Remark 2.21. Let c ∈ R. Using Proposition 2.16, we can verify the following limits

lim
x→x0;x∈R

c = c.

lim
x→x0;x∈R

x = x0.

Then, using the limit laws of Proposition 2.16, we can e.g. compute

lim
x→x0;x∈R

x2 = x20.
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lim
x→x0;x∈R

(x2 + x) = x20 + x0.

Example 2.22. Let f : R→ R so that

f(x) =

{
1 , if x > 0

0 , if x ≤ 0
.

Then limx→0;x∈(0,∞) f(x) = 1 and limx→0;x∈(−∞,0) f(x) = 0. However, limx→0;x∈[0,∞) f(x) and
limx→0;x∈R f(x) are both undefined.

Example 2.23. Let f : R→ R so that

f(x) =

{
1 , if x = 0

0 , if x 6= 0
.

Then limx→0;x∈Rr{0} f(x) = 0, but limx→0;x∈R f(x) is undefined.

Example 2.24. Let f : R→ R so that

f(x) =

{
1 , if x ∈ Q
0 , if x /∈ Q

.

Then limx→0;x∈R f(x) does not exist. To see this, consider the sequences (1/n)∞n=1 and

(
√

2/n)∞n=1. Both sequences converge to zero as n → ∞, though the first sequence consists
of rational numbers, and the second sequence consists of irrational numbers. So, f(1/n)→ 1
as n→∞, while f(

√
2/n)→ 0 as n→∞. Therefore, limx→0;x∈R f(x) does not exist.

The following proposition says that the limit of f at x0 depends only on points near x0.

Proposition 2.25. Let X be a subset of R, let f : X → R be a function, let E be a subset
of X, let x0 be an adherent point of E, let L be a real number, and let δ be a positive real
number. Then the following two statements are equivalent:

• limx→x0;x∈E f(x) = L.
• limx→x0;x∈E∩(x0−δ,x0+δ) f(x) = L.

Exercise 2.26. Prove Proposition 2.25.

3. Continuous Functions

As we saw from the examples in the previous section, there are many functions that behave
very strangely with respect to limits. However, there are still large classes of functions that
behave well with respect to limits. Such functions are called continuous.

When learning a new concept (such as continuous functions), it is often beneficial to
consider various examples which satisfy or do not satisfy the properties of the new concept.
We will therefore continue our family of examples from the previous section.

Definition 3.1 (Continuous Function). Let X be a subset of R and let f : X → R be a
function. Let x0 be an element of X. We say that f is continuous at x0 if and only if

lim
x→x0;x∈X

f(x) = f(x0).

That is, the limit of f at x0 in X exists, and this limit is equal to f(x0). We say that f is
continuous on X (or we just say that f is continuous) if and only if f is continuous at x0
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for every x0 ∈ X. We say that f is discontinuous at x0 if and only if f is not continuous
at x0.

Example 3.2. Let f : R→ R so that

f(x) =

{
1 , if x > 0

0 , if x ≤ 0
.

Then f is continuous on Rr {0}, but f is discontinuous at 0.

Example 3.3. Let f : R→ R so that

f(x) =

{
1 , if x = 0

0 , if x 6= 0
.

Then f is continuous on R r {0}, but f is discontinuous at 0. However, if we redefine f so
that f(0) := 0, then f would be continuous on R. We therefore say that f has a removable
discontinuity at 0.

Example 3.4. Let f : R→ R so that

f(x) =

{
1 , if x ∈ Q
0 , if x /∈ Q

.

As we saw previously, f is discontinuous at zero. In fact, f is discontinuous on all of R.

Proposition 3.5. Let X be a subset of R, let f : X → R be a function, and let x0 ∈ X.
Then the following three statements are equivalent.

• f is continuous at x0
• For every sequence (an)∞n=0 consisting of elements of X such that limn→∞ an = x0,

we have limn→∞ f(an) = f(x0).
• For every ε > 0, there exists a δ = δ(ε) > 0 such that, for all x ∈ X with |x− x0| < δ,

we have |f(x)− f(x0)| < ε.

Exercise 3.6. Prove Proposition 3.5

Proposition 3.7. Let X be a subset of R, and let f, g : X → R be functions. Let x0 ∈ X.
If f, g are both continuous at x0, then f + g and f · g are continuous at x0. If g is nonzero
on X, then f/g is continuous at x0.

Proof. Apply the Limit Laws (Proposition 2.20) and Definition 3.1. �

Remark 3.8. Let x, c ∈ R. Note that the constant function f(x) := c and the function
f(x) := x are continuous. Then, Proposition 3.7 implies that polynomials are continuous,
and rational functions are continuous whenever the denominator is nonzero. For example,
the function (x2 + 1)/(x− 1) is continuous on Rr {1}.
Proposition 3.9. The function f(x) := |x| is continuous on R.

Proof. Let x0 ∈ R. We split into three cases: x0 > 0, x0 < 0 and x0 = 0. Suppose first that
x0 > 0. Define δ := |x0| /2. We show that f is continuous at x0. From Proposition 2.25, it
suffices to show that

x0 = lim
x→x0;x∈(x0−δ,x0+δ)

f(x) = lim
x→x0;x∈(x0/2,3x0/2)

f(x).
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If x ∈ (x0/2, 3x0/2), since x0 > 0, we know that x > 0. So, f(x) = x. Therefore,

lim
x→x0;x∈(x0/2,3x0/2)

f(x) = lim
x→x0;x∈(x0/2,3x0/2)

x = x0,

as desired. The case x0 < 0 is similar.
We now conclude with the case x0 = 0. Let (an)∞n=0 be a sequence of real numbers

converging to zero. From Proposition 3.5, it suffices to show that (f(an))∞n=0 converges to
zero. That is, it suffices to show: if (an)∞n=0 converges to zero, then (|an|)∞n=0 converges to
zero. This follows from Exercise 1.3. �

Proposition 3.10. Let X, Y be subsets of R. Let f : X → Y and let g : Y → R be functions.
Let x0 ∈ X. If f is continuous at x0, and if g is continuous at f(x0), then g◦f is continuous
at x0.

Exercise 3.11. Prove Proposition 3.10.

3.1. Left and Right Limits.

Definition 3.12. Let X be a subset of R, let f : X → R be a function, and let x0 be a real
number. If x0 is an adherent point of X ∩ (x0,∞), then we define the right limit f(x+0 ) of
f at x0 by the formula

f(x+0 ) := lim
x→x0;x∈X∩(x0,∞)

f(x).

If this limit does not exist, or if x0 is not an adherent point of X ∩ (x0,∞), we leave this
limit undefined. Similarly, if x0 is an adherent point of X ∩ (−∞, x0), then we define the
left limit f(x−0 ) of f at x0 by the formula

f(x−0 ) := lim
x→x0;x∈X∩(−∞,x0)

f(x).

If this limit does not exist, or if x0 is not an adherent point of X ∩ (x0,∞), we leave this
limit undefined.

Remark 3.13. Sometimes, we write limx→x+0
f(x) instead of limx→x0;x∈X∩(x0,∞) f(x), and

sometimes, we write limx→x−0
f(x) instead of limx→x0;x∈X∩(−∞,x0) f(x).

The following proposition shows that, if both the left and right limits of a function exist
at a point x0, and if these limits are equal to f(x0), then f is continuous at x0.

Proposition 3.14. Let X be a subset of R containing a real number x0. Suppose x0 is an
adherent point of both X∩ (x0,∞) and X∩ (−∞, x0). Let f : X → R be a function. If f(x+0 )
and f(x−0 ) both exist, and we have f(x+0 ) = f(x−0 ) = f(x0), then f is continuous at x0.

3.2. The Maximum Principle. We can now begin to prove some of properties of continu-
ous functions. The Maximum Principle says that a continuous function on a closed interval
[a, b] achieves its maximum and minimum values on [a, b].

Definition 3.15. Let X be a subset of R, and let f : X → R be a function. We say that f
is bounded from above if and only if there exists a real number M such that f(x) ≤ M
for all x ∈ X. We say that f is bounded from below if and only if there exists a real
number M such that f(x) ≥ M for all x ∈ X. We say that f is bounded if and only if
there exists a real number M such that |f(x)| ≤M for all x ∈ X.
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Remark 3.16. A function is bounded if and only if it is bounded from above and from
below.

Remark 3.17. Some continuous functions are not bounded. For example, the function
f : R → R defined by f(x) := x is unbounded on R. Also, the function f(x) := 1/x is
unbounded on (0, 1).

However, if f is continuous on a closed interval, then it is automatically bounded, as we
now show, using the Bolzano-Weierstrass Theorem in an indirect manner.

Lemma 3.18. Let a < b be real numbers. Let f : [a, b]→ R be a continuous function. Then
f is bounded.

Proof. We argue by contradiction. Assume f is not bounded. Then, for every natural
number n, there exists a point xn ∈ [a, b] such that |f(xn)| > n. Since the sequence (xn)∞n=0

is contained in the closed interval [a, b], the Bolzano-Weierstrass Theorem (Theorem 1.4)
shows that there exists a subsequence (xnj

)∞j=0 of (xn)∞n=0 such that (xnj
)∞j=0 converges to

some real number y as j → ∞. Note that nj ≥ j by the definition of a subsequence. Since
(xnj

)∞j=0 is a convergent sequence contained in [a, b], we know that y is an adherent point of
[a, b]. From Proposition 2.11, we conclude that y is also in [a, b], so that y is in the domain
of f . Now, since f is continuous on [a, b], it is continuous at y so

lim
j→∞

f(xnj
) = f(y). (∗)

Since nj ≥ j, the definition of the sequence (xn)∞n=0 shows that
∣∣f(xnj

)
∣∣ ≥ nj ≥ j. That is,

for all natural numbers j > 1+|f(y)|, we have
∣∣f(xnj

)
∣∣ ≥ j > 1+|f(y)|. So, limj→∞ f(xnj

) 6=
f(y), contradicting (∗). Since we have achieved a contradiction, the proof is concluded. �

Definition 3.19. Let f : X → R be a function, and let x0 ∈ X. We say that f attains
its maximum at x0 if and only if f(x0) ≥ f(x) for all x ∈ X. We say that f attains its
minimum at x0 if and only if f(x0) ≤ f(x) for all x ∈ X.

We can now modify the proof of Lemma 3.18 a bit to give a stronger statement.

Theorem 3.20 (The Maximum Principle). Let a < b be real numbers and let f : [a, b]→
R be a function that is continuous on [a, b]. Then f attains its maximum and minimum on
[a, b].

Proof. We will show that f attains its maximum on [a, b]. Such a result applied to −f then
implies that f also attains its minimum on [a, b].

From Lemma 3.18, there exists a real number M such that −M ≤ f(x) ≤ M for all
x ∈ [a, b]. Define

E := f([a, b]) = {f(x) : x ∈ [a, b]}.
Note that E is a nonempty subset of R that is bounded from above (and below). From the
Least Upper Bound property (Theorem 1.5), E has a least upper bound S := sup(E).

For each positive integer n, the real number S− 1/n is not an upper bound for E, since S
is the least upper bound of E. So, there exists some xn ∈ [a, b] such that f(xn) ≥ S − 1/n.
We are now once again in a position to apply the Bolzano-Weierstrass Theorem. Since the
sequence (xn)∞n=1 is contained in the closed interval [a, b], the Bolzano-Weierstrass Theorem
(Theorem 1.4) shows that there exists a subsequence (xnj

)∞j=1 of (xn)∞n=1 such that (xnj
)∞j=1
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converges to some real number y as j → ∞. Note that nj ≥ j by the definition of a
subsequence, so −1/nj ≥ −1/j. Since (xnj

)∞j=1 is a convergent sequence contained in [a, b],
we know that y is an adherent point of [a, b]. From Proposition 2.11, we conclude that y
is also in [a, b], so that y is in the domain of f . Now, since f is continuous on [a, b], it is
continuous at y so

lim
j→∞

f(xnj
) = f(y). (∗)

Since nj ≥ j, the definition of the sequence (xn)∞n=1 shows that

f(xnj
) ≥ S − 1/nj ≥ S − 1/j.

Also, since S is the supremum of f , we have f(xnj
) ≤ S. So, letting j → ∞ and using

the Squeeze Theorem (Corollary 1.7), we conclude that S = limj→∞ f(xnj
) = f(y), as

desired. �

Remark 3.21. For a function f : [a, b] → R, we write supx∈[a,b] f(x) as shorthand for
sup{f(x) : x ∈ [a, b]}, and we write infx∈[a,b] f(x) as shorthand for inf{f(x) : x ∈ [a, b]}

Remark 3.22. The assumptions of Theorem 3.20 cannot be weakened in general. For
example, consider the function f(x) := x on the open interval (0, 1). Then supx∈(0,1) f(x) = 1
and infx∈(0,1) f(x) = 0, but f does not take the value 1 or 0 on the open interval (0, 1), even
though f is continuous.

Also, consider the function f : [−1, 1]→ R defined by

f(x) :=


x+ 1 , if x ∈ [−1, 0)

0 , if x = 0

x− 1 , if x ∈ (0, 1]

.

Then supx∈[−1,1] f(x) = 1 and infx∈[−1,1] f(x) = −1, but f does not take the value 1 or −1
on the closed interval [−1, 1]. Note that f is discontinuous at x = 0, so Theorem 3.20 does
not apply.

3.3. The Intermediate Value Theorem. From Theorem 3.20, we know that a continuous
function f : [a, b] → R attains its minimum and maximum on [a, b]. We now show that f
also attains all values in between the maximum and minimum.

Theorem 3.23 (Intermediate Value Theorem). Let a < b be real numbers. Let f : [a, b]→
R be function that is continuous on [a, b]. Let y be a real number between f(a) and f(b), so
that either f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b). Then there exists a c ∈ [a, b] such that
f(c) = y.

Proof. Without loss of generality, assume that f(a) ≤ y ≤ f(b). If y = f(a) or y = f(b), we
just set c = a or c = b as needed. We therefore assume that f(a) < y < f(b). Define

E := {x ∈ [a, b] : f(x) < y}.
Since f(a) < y, E is nonempty. Since E is contained in [a, b], E is bounded from above. By
the Least Upper Bound property (Theorem 1.5), E has a least upper bound c := sup(E).
We will prove that f(c) = y.

Since b is an upper bound for E, we know that c ≤ b. Since a ∈ E, we know that a ≤ c.
So, c ∈ [a, b]. By looking to the left of c, we will show that f(c) ≤ y, and then by looking to
the right of c, we will show that f(c) ≥ y.
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We now show that f(c) ≤ y. Let n be a positive integer. Then c− 1/n < c = sup(E), so
c−1/n is not an upper bound for E. So, there exists a point xn ∈ E such that xn > c−1/n.
Since c is an upper bound for E, xn ≤ c. So

c− 1/n ≤ xn ≤ c.

Letting n → ∞, we conclude by the Squeeze Theorem (Corollary 1.7) that limn→∞ xn = c.
Since f is continuous at c, we have limn→∞ f(xn) = f(c). Since xn ∈ E for every positive
integer n, we have f(xn) < y for every positive integer n. By the Comparison Principle
(Lemma 1.6), we conclude that

f(c) = lim
n→∞

f(xn) ≤ y.

We now show that f(c) ≥ y. Since f(c) ≤ y < f(b), we have c 6= b. Since c ∈ [a, b], we
then have c < b. So, there exists a positive integer m such that, for all n ≥ m, c+ 1/n < b.
Then c + 1/n > c. Since c = sup(E), we conclude that c + 1/n /∈ E. Also, c + 1/n ∈ [a, b].
So, by the definition of E, we have f(c + 1/n) ≥ y. Since f is continuous at c, we have
limn→∞ f(c+ 1/n) = f(c). By the Comparison Principle (Lemma 1.6), we conclude that

f(c) = lim
n→∞

f(c+ 1/n) ≥ y.

Finally, y ≤ f(c) ≤ y, so f(c) = y, as desired. �

Remark 3.24. The assumption that f is continuous is necessary for Theorem 3.23. For
example, consider the function

f(x) :=

{
0 , if x < 0

1 , if x ≥ 0
.

Remark 3.25. Theorem 3.23 gives another way to prove the existence of nth roots. For
example, for x ∈ R, define f(x) := x2, f : [0, 2] → R. Then f(0) = 0, f(2) = 4, so choosing
y = 2, there exists at least one c ∈ [0, 2] such that f(c) = c2 = 2.

Corollary 3.26. Let a < b be real numbers. Let f : [a, b] → R be a continuous function on
[a, b]. Let M := supx∈[a,b] f(x) be the maximum value of f on [a, b], and let m := infx∈[a,b] f(x)
be the minimum value of f on [a, b]. Let y be a real number such that m ≤ y ≤ M . Then
there exists c ∈ [a, b] such that f(c) = y. Moreover, f([a, b]) = [m,M ].

Exercise 3.27. Prove Corollary 3.26.

3.4. Monotone Functions.

Definition 3.28. Let X be a subset of R and let f : X → R be a function. We say that f
is monotone increasing if and only if f(y) ≥ f(x) for all x, y ∈ X with y > x. We say
that f is strictly monotone increasing if and only if f(y) > f(x) for all x, y ∈ X with
y > x. Similarly, we say that f is monotone decreasing if and only if f(y) ≤ f(x) for
all x, y ∈ X with y > x. We say that f is strictly monotone decreasing if and only if
f(y) < f(x) for all x, y ∈ X with y > x. We say that f is monotone if and only if it is
either monotone increasing or monotone decreasing. We say that f is strictly monotone
if and only if it is either strictly monotone increasing or strictly monotone decreasing.

A strictly monotone and continuous function has a continuous inverse, as we now show.
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Proposition 3.29. Let a < b be real numbers, and let f : [a, b] → R be a function which
is both continuous and strictly monotone increasing. Then f is a bijection from [a, b] to
[f(a), f(b)], and the inverse function f−1 : [f(a), f(b)]→ [a, b] is also continuous and strictly
monotone increasing.

Exercise 3.30. Prove Proposition 3.29. (Hint: To prove that f−1 is continuous, use the ε–δ
definition of continuity.)

3.5. Uniform Continuity. There is a bit of an odd point in the definition of continuity.
A function f : R → R is continuous if and only if it is continuous at every x ∈ R. That is,
given any x0 ∈ R and any ε > 0, there exists a δ = δ(x0, ε) such that, if |x− x0| < δ, then
|f(x)− f(x0)| < ε. Note in particular that δ may depend on x0. For example, the function
f : (0,∞) → R defined by f(x) := 1/x is continuous on (0,∞), but f is not bounded. The
problem here is that, if ε > 0 is fixed, then δ(x0, ε) must be chosen to be smaller and smaller
as x0 → 0+. It would be nicer if we could select δ in a way that does not depend on x0, as
in the following definition.

Definition 3.31 (Uniform Continuity). Let X be a subset of R, and let f : X → R be
a function. We say that f is uniformly continuous if and only if, for every ε > 0 there
exists δ > 0 such that, if x, x0 ∈ X satisfy |x− x0| < δ, then |f(x)− f(x0)| < ε.

Remark 3.32. A uniformly continuous function is continuous.

Example 3.33. The function f : R → R defined by f(x) := x is uniformly continuous.
On the other hand, the function f : (0,∞) → R defined by f(x) := 1/x is not uniformly
continuous.

Just as in the case of continuity, there is a way to characterize uniform continuity using
sequences. We now explore this characterization.

Definition 3.34. Let (an)∞n=m, (bn)∞n=m be two sequences of real numbers. We say that
(an)∞n=m and (bn)∞n=m are equivalent if and only if for every real ε > 0, there exists an
integer N = N(ε) > m such that, for all n ≥ N , we have |an − bn| < ε.

Lemma 3.35. Let (an)∞n=m, (bn)∞n=m be two sequences of real numbers. Then (an)∞n=m and
(bn)∞n=m are equivalent if and only if limn→∞(an − bn) = 0.

Exercise 3.36. Prove Lemma 3.35.

Note that equivalent sequences need not converge.

Proposition 3.37. Let X be a subset of R and let f : X → R be a function. Then the
following two statements are equivalent.

• f is uniformly continuous on X.
• For any two equivalent sequences (an)∞n=m, (bn)∞n=m, the sequences (f(an))∞n=m, (f(bn))∞n=m

are also equivalent sequences.

Exercise 3.38. Prove Proposition 3.37.

Remark 3.39. From Proposition 3.5, we saw that continuous functions map convergent
sequences to convergent sequences. Proposition 3.37 then says that uniformly continuous
functions map equivalent sequences to equivalent sequences.
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Corollary 3.40. Let X be a subset of R and let f : X → R be a uniformly continuous
function. Let x0 be an adherent point of X. Then limx→x0 f(x) exists (and so it is a real
number.)

Exercise 3.41. Prove Corollary 3.40

Remark 3.42. Note that Corollary 3.40 is false in general, if f is just continuous. For
example, consider again f(x) := 1/x, where f : (0,∞) → R. Then limx→0+ f(x) does not
exist. But also recall that f is not uniformly continuous.

Uniformly continuous functions also map bounded sets to bounded sets.

Proposition 3.43. Let X be a subset of R, and let f : X → R be a uniformly continuous
function. Assume that E is a bounded subset of X. Then f(E) is also bounded.

Exercise 3.44. Prove Proposition 3.43.

Since uniformly continuous functions have such nice properties, it is helpful to have some
conditions to easily verify uniform continuity, as in the following Theorem.

Theorem 3.45. Let a < b be real numbers, and let f : [a, b] → R be a function which is
continuous on [a, b]. Then f is also uniformly continuous on [a, b].

Proof. We argue by contradiction. Suppose f is not uniformly continuous on [a, b]. So, using
Proposition 3.37, there exist two equivalent sequences (an)∞n=m, (bn)∞n=m contained in [a, b]
such that (f(an))∞n=m, (f(bn))∞n=m are not equivalent. That is, there exists an ε > 0 such
that, for all integers N > m, there exists an integer n ≥ N such that

|f(an)− f(bn)| ≥ ε. (∗)

In particular, the following set is infinite

A := {n ∈ N : |f(an)− f(bn)| ≥ ε}.

That is, given any set of natural numbers n0 < n1 < · · · < nj in A, there exists an integer
nj+1 > nj so that

∣∣f(anj
)− f(bnj

)
∣∣ ≥ ε. So, consider the sequences (anj

)∞j=0, (bnj
)∞j=0 which

are equivalent and contained in [a, b]. By the Bolzano-Weierstrass Theorem, there exists a
subsequence (anjk

)∞k=0 of (anj
)∞j=0 such that (anjk

)∞k=0 converges as k →∞. From Lemma 3.35,

since (anjk
)∞k=0 and (bnjk

)∞k=0 are equivalent sequences, we conclude that (bnjk
)∞k=0 converges

as k → ∞ as well. Using Lemma 3.35 again, (anjk
)∞k=0 and (bnjk

)∞k=0 converge to the same

point c ∈ [a, b]. So, using the Limit Laws (Proposition 2.20),

lim
k→∞

(f(anjk
)− f(bnjk

)) = 0

Since this violates (∗), we have achieved a contradiction, concluding the proof. �

3.6. Limits at Infinity.

Definition 3.46. Let X be a subset of R. We say that +∞ is an adherent point of X if
and only if for every M ∈ R there exists an x ∈ X such that x > M . We say that −∞ is an
adherent point of X if and only if for every M ∈ R there exists an x ∈ X such that x < M .

12



Definition 3.47. Let X be a subset of R such that +∞ is an adherent point of X. Let
f : X → R be a function and let L be a real number. We say that f(x) converges to L as
x→ +∞ if and only if, for every ε > 0, there exists a real M such that, for all x ∈ X with
x > M , we have |f(x)− L| < ε. Similarly, if −∞ is an adherent point of X, then we say
that f(x) converges to L as x→ −∞ if and only if, for every ε > 0, there exists a real M
such that, for all x ∈ X with x < M , we have |f(x)− L| < ε.

Example 3.48. Let f : (0,∞)→ R be defined by f(x) := 1/x. Then limx→+∞ f(x) = 0.

4. Derivatives

We will soon define a derivative, but before doing so, we adjust slightly the definition of
adherent point.

Definition 4.1. Let X be a subset of R and let x be a real number. We say that x is a
limit point of X (or x is a cluster point of X) if and only if x is an adherent point of
X r {x}.

Remark 4.2. That is, x is a limit point of X if and only if, for every real ε > 0, there exists
a y ∈ X with y 6= x such that |y − x| < ε.

Lemma 2.13 then implies the following.

Lemma 4.3. Let X be a subset of R, and let x be a real number. Then x is a limit point of
X if and only if there exists a sequence (an)∞n=m of elements of X r {x} such that (an)∞n=m
converges to x.

Lemma 4.4. Let I be a (possibly infinite) interval. That is, I is equal to a set of the form
(a, b), [a, b], (a, b], [a, b), (a,+∞), [a,+∞), (−∞, b), (−∞, b] or (−∞,∞) where a, b ∈ R
and a < b. Then every element of I is a limit point of I.

Proof. We only prove the case I = [a, b] and leave the rest as exercises.
Suppose x ∈ [a, b). Then there exists a positive integer N such that, for all n ≥ N ,

x + 1/n < b. So, the sequence (x + 1/n)∞n=N is contained in I r {x}, and this sequence
converges to x. Therefore, x is a limit point of [a, b], by Lemma 4.3. To deal with the
remaining case of x = b, we do the same thing but we use the sequence (x− 1/n)∞n=N . �

We can now define derivatives.

Definition 4.5. Let X be a subset of R, and let x0 be an element of X which is also a limit
point of X. Let f : X → R be a function. If the limit

lim
x→x0;x∈Xr{x0}

f(x)− f(x0)

x− x0
.

converges to a real number L, then we say that f is differentiable at x0 on X with
derivative L, and we write f ′(x0) := L. If this limit does not exist, or if x0 is not a limit
point of X, we leave f ′(x0) undefined, and we say that f is not differentiable at x0 on X.

Remark 4.6. Note that we need x0 to be a limit point of X r {x0}, otherwise the limit in
the definition of the derivative would be undefined. Often, the set X will be an interval as
in Lemma 4.4, so this issue will not arise.
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Example 4.7. Let f : R→ R be defined by f(x) := x. Then

f ′(x0) = lim
x→x0;x∈Rr{x0}

x− x0
x− x0

= 1.

Let f : R→ R be defined by f(x) := x2. Then

f ′(x0) = lim
x→x0;x∈Rr{x0}

x2 − x20
x− x0

= lim
x→x0;x∈Rr{x0}

(x+ x0)(x− x0)
x− x0

= lim
x→x0;x∈Rr{x0}

(x+ x0) = 2x0.

In general, if k is a positive integer, and if f(x) := xk, f : R→ R, then

f ′(x0) = lim
x→x0;x∈Rr{x0}

xk − xk0
x− x0

= lim
x→x0;x∈Rr{x0}

(
∑k

j=1 x
k−jxj−10 )(x− x0)
x− x0

= lim
x→x0;x∈Rr{x0}

k∑
j=1

xk−jxj−10 =
k∑
j=1

xk−10 = kxk−10 .

Remark 4.8. Sometimes one writes f ′(x) as df/dx, but we will not do so here.

We now give an example of a continuous function that is not differentiable at zero.

Example 4.9. Define f(x) := |x|. For x0 ∈ (−∞, 0) ∪ (0,∞), one can show that f is
differentiable. However, f is not differentiable at 0. To see this, observe that

lim
x→0;x∈(0,∞)

f(x)− f(0)

x− 0
= lim

x→0;x∈(0,∞)

x− f(0)

x− 0
= 1.

lim
x→0;x∈(−∞,0)

f(x)− f(0)

x− 0
= lim

x→0;x∈(−∞,0)

−x− f(0)

x− 0
= −1.

Therefore, limx→0;x∈Rr{0}
f(x)−f(0)

x−0 does not exist. So, f is not differentiable at 0.

Even though a function may be continuous but not differentiable at a point, a function
that is differentiable at a point is always continuous at that point.

Proposition 4.10. Let X be a subset of R, let x0 be a limit point of X, and let f : X → R
be a function. If f is differentiable at x0, then f is also continuous at x0.

Exercise 4.11. Prove Proposition 4.10

If a function is differentiable at x0, then it is approximately linear at x0 in the following
sense.

Proposition 4.12. Let X be a subset of R, let x0 be a limit point of X, let f : X → R be a
function, and let L be a real number. Then the following two statements are equivalent.

• f is differentiable at x0 on X with derivative L.
• For every ε > 0, there exists a δ = δ(ε) > 0 such that, if x ∈ X satisfies |x− x0| < δ,

then
|f(x)− [f(x0) + L(x− x0)]| ≤ ε |x− x0| .

Exercise 4.13. Prove Proposition 4.12.

Remark 4.14. The second item is understood informally as f(x) ≈ f(x0) + f ′(x0)(x− x0).
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Definition 4.15. Let X be a subset of R and let f : X → R be a function. We say that f
is differentiable on X if and only if f is differentiable at x0 for all x0 ∈ X.

Using this definition and Proposition 4.10, we get the following.

Corollary 4.16. Let X be a subset of R and let f : X → R be a function that is differentiable
on X. Then f is continuous on X.

Theorem 4.17 (Properties of Derivatives). Let X be a subset of R, let x0 be a limit
point of X, and let f : X → R and g : X → R be functions.

(i) If f is constant, so that there exists c ∈ R such that f(x) = c for all x ∈ X, then f
is differentiable at x0 and f ′(x0) = 0.

(ii) If f is the identity function, so that f(x) = x for al x ∈ X, then f is differentiable
at x0 and f ′(x0) = 1.

(iii) If f, g are differentiable at x0, then f + g is differentiable at x0, and (f + g)′(x0) =
f ′(x0) + g′(x0). (Sum Rule)

(iv) If f, g are differentiable at x0, then fg is differentiable at x0, and (fg)′(x0) =
f ′(x0)g(x0) + g′(x0)f(x0). (Product Rule)

(v) If f is differentiable at x0, and if c ∈ R, then cf is differentiable at x0, and (cf)′(x0) =
cf ′(x0).

(vi) If f, g are differentiable at x0, then f − g is differentiable at x0, and (f − g)′(x0) =
f ′(x0)− g′(x0).

(vii) If g is differentiable at x0, and if g(x) 6= 0 for all x ∈ X, then 1/g is differentiable

at x0, and (1/g)′(x0) = − g′(x0)
(g(x0))2

.

(viii) If f, g are differentiable at x0, and if g(x) 6= 0 for all x ∈ X, then f/g is differentiable
at x0, and

(f/g)′(x0) =
g(x0)f

′(x0)− f(x0)g
′(x0)

(g(x0))2
. (Quotient Rule)

Exercise 4.18. Prove Theorem 4.17. For the product rule, you may need the following
identity

f(x)g(x)− f(x0)g(x0) = f(x)(g(x)− g(x0)) + g(x0)(f(x)− f(x0)).

Theorem 4.19 (Chain Rule). Let X, Y be subsets of R, let x0 ∈ X be a limit point of X,
and let y0 ∈ Y be a limit point of Y . Let f : X → Y be a function such that f(x0) = y0 and
such that f is differentiable at x0. Let g : Y → R be a function that is differentiable at y0.
Then the function g ◦ f : X → R is differentiable at x0, and

(g ◦ f)′(x0) = g′(y0)f
′(x0).

Exercise 4.20. Prove Theorem 4.19. (Hint: using Proposition 2.16, it suffices to consider
a sequence (an)∞n=0 of elements of X converging to x0. Also, from Proposition 4.10, f is
continuous, so (f(an))∞n=0 converges to f(x0).)

4.1. Local Extrema.

Definition 4.21. Let f : X → R be a function, and let x0 ∈ X. We say that f attains
a local maximum at x0 if and only if there exists a δ > 0 such that the restriction
f |X∩(x0−δ,x0+δ) attains a maximum at x0. We say that f attains a local minimum at x0 if
and only if there exists a δ > 0 such that the restriction f |X∩(x0−δ,x0+δ) attains a minimum
at x0.
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Remark 4.22. If f : X → R attains a maximum at x0, then we sometimes say that f attains
a global maximum at x0.

Proposition 4.23. Let a < b be real numbers, and let f : (a, b) → R be a function. If
x0 ∈ (a, b), if f is differentiable at x0, and if f attains a local maximum or minimum at x0,
then f ′(x0) = 0.

Exercise 4.24. Prove Proposition 4.23.

Remark 4.25. Note that Proposition 4.23 is not true if f we assume that f : [a, b] → R
achieves a local maximum or minimum. For example, the function f : [0, 1]→ R defined by
f(x) := x satisfies f ′(x) = 1 for all x ∈ [0, 1], while f achieves a local maximum at x = 1
and a local minimum at x = 0.

Theorem 4.26 (Rolle’s Theorem). Let a < b be real numbers, and let f : [a, b]→ R be a
continuous function which is differentiable on (a, b). Assume that f(a) = f(b). Then there
exists x ∈ (a, b) such that f ′(x) = 0.

Exercise 4.27. Prove Theorem 4.26. (Hint: use Proposition 4.23 and the Maximum Prin-
ciple, Theorem 3.20.)

Theorem 4.26 then has the following useful corollary.

Corollary 4.28 (Mean Value Theorem). Let a < b be real numbers, and let f : [a, b]→ R
be a continuous function which is differentiable on (a, b). Then there exists x ∈ (a, b) such
that

f ′(x) =
f(b)− f(a)

b− a
.

Proof. Consider the function g : [a, b]→ R defined by

g(y) := f(y)− f(b)− f(a)

b− a
(y − a). (∗)

Note that g(a) = f(a) = g(b), g is continuous on [a, b] by Proposition 3.7, and g is differ-
entiable on (a, b) by Theorem 4.17(v) and (iii). So by Theorem 4.26, there exists x ∈ (a, b)
such that g′(x) = 0. Using (∗) and Theorem 4.17, g′(x) = 0 says that

0 = f ′(x)− f(b)− f(a)

b− a
.

�

4.2. Monotone Functions and Derivatives. We now explore the connection between the
monotonicity of a function and the sign of its derivative.

Proposition 4.29. Let X be a subset of R, let x0 be a limit point of X, and let f : X → R
be a function. If f is monotone increasing and if f is differentiable at x0, then f ′(x0) ≥ 0.
If f is monotone decreasing and if f is differentiable at x0, then f ′(x0) ≤ 0.

Exercise 4.30. Prove Proposition 4.29.
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Remark 4.31. Note that we need to assume that f is both monotone and differentiable,
since there exist functions that are monotone but not differentiable. Consider for example
f : R→ R defined by

f(x) :=

{
0 , if x < 0

1 , if x ≥ 0
.

A strictly monotone increasing function can have a zero derivative. Consider for example
f : R→ R defined by f(x) := x3, and note that f ′(0) = 0. However, a converse statement is
true, as we now show.

Proposition 4.32. Let a < b be real numbers, and let f : [a, b] → R be a differentiable
function. If f ′(x) > 0 for all x ∈ [a, b], then f is strictly monotone increasing. If f ′(x) < 0
for all x ∈ [a, b], then f is strictly monotone decreasing. If f ′(x) = 0 for all x ∈ [a, b], then
f is a constant function.

Exercise 4.33. Prove Proposition 4.32. (Hint: for the final statement, use the Mean-Value
Theorem.)

4.3. Inverse Functions and Derivatives. Let X, Y be subsets of R. If we have a bijective
function f : X → Y which is differentiable, then the derivative of f−1 is related nicely to the
derivative of f , as we now show.

Lemma 4.34. Let X, Y be subsets of R. Let f : X → Y be a bijection, so that f−1 : Y → X
is a function. Let x0 ∈ X and y0 ∈ Y such that f(x0) = y0. (Consequently, x0 = f−1(y0).)
If f is differentiable at x0 and if f−1 is differentiable at y0, then f ′(x0) 6= 0 and

(f−1)′(y0) =
1

f ′(x0)
.

Proof. Note that (f−1 ◦ f)(x) = x for all x ∈ X. So, from the Theorem 4.17(ii) and the
Chain Rule (Theorem 4.19),

1 = (f−1 ◦ f)′(x0) = (f−1)′(y0)f
′(x0).

Since (f−1)′(y0)f
′(x0) = 1, we know that f ′(x0) 6= 0, and (f−1)′(y0) = 1/f ′(x0) �

Remark 4.35. As a consequence of Lemma 4.34, we see that if f is differentiable at x0 with
f ′(x0) = 0, then f−1 is not differentiable at y0 = f(x0). For example, consider the function
f(x) := xn, where n is a positive integer and f : [0,∞) → [0,∞). Then f−1(x) = x1/n,
f−1 : [0,∞)→ [0,∞). And if n ≥ 2, then f ′(0) = 0, so f−1 is not differentiable at 0.

Lemma 4.34 is deficient, in that we need to assume that f−1 is differentiable at f(x0). It
would be more preferable to know that f−1 is differentiable by only using information about
f . Such a goal is accomplished in the following theorem.

Theorem 4.36 (Inverse Function Theorem). Let X, Y be subsets of R. Let f : X → Y be
bijection, so that f−1 : Y → X is a function. Let x0 ∈ X and y0 ∈ Y such that f(x0) = y0. If
f is differentiable at x0, if f−1 is continuous at y0, and if f ′(x0) 6= 0, then f−1 is differentiable
at y0 with

(f−1)′(y0) =
1

f ′(x0)
.
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Proof. We are required to show that

lim
y→y0;y∈Y r{y0}

f−1(y)− f−1(y0)
y − y0

=
1

f ′(x0)
.

By Proposition 2.16, given any sequence (yn)∞n=1 of elements in Y r {y0} that converges to
y0, it suffices to show that

lim
n→∞

f−1(yn)− f−1(y0)
yn − y0

=
1

f ′(x0)
. (∗)

Note that f is a bijection, so there exists a sequence of elements (xn)∞n=1 such that f(xn) =
yn for all n ≥ 1. Moreover, since (yn)∞n=1 is contained in Y r{y0}, since f(x0) = y0, and since
f is a bijection, the sequence (xn)∞n=1 is contained in X r {x0}. So, since f is differentiable
at x0, we have by Proposition 2.16 that

lim
n→∞

f(xn)− f(x0)

xn − x0
= f ′(x0).

That is,

lim
n→∞

yn − y0
f−1(yn)− f−1(y0)

= f ′(x0). (∗∗)

Since yn 6= y0 for all n ≥ 1, the numerator on the left of (∗∗) is nonzero. Also, by hypothesis,
f ′(x0) 6= 0. So, we can invert both sides of (∗∗) and apply the limit laws (Theorem 1.2(v))
to conclude that (∗) holds, as desired. �

5. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Z+ := {1, 2, 3, 4, . . .}, the positive integers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

R∗ = R ∪ {−∞} ∪ {+∞} denotes the set of extended real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”
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∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

Let E be a subset of R ∪ {−∞} ∪ {+∞}. Let (an)∞n=0 be a sequence of real numbers.

sup(E) denotes the smallest upper bound of E

inf(E) denotes the largest lower bound of E

lim sup(an)∞n=0 := lim
n→∞

sup
m≥n

(an)∞n=m

lim inf(an)∞n=0 := lim
n→∞

inf
m≥n

(an)∞n=m

5.1. Set Theory. Let X, Y be sets, and let f : X → Y be a function. The function f : X →
Y is said to be injective (or one-to-one) if and only if: for every x, x′ ∈ V , if f(x) = f(x′),
then x = x′.

The function f : X → Y is said to be surjective (or onto) if and only if: for every y ∈ Y ,
there exists x ∈ X such that f(x) = y.

The function f : X → Y is said to be bijective (or a one-to-one correspondence) if
and only if: for every y ∈ Y , there exists exactly one x ∈ X such that f(x) = y. A function
f : X → Y is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if and only if there exists a bijection
from X onto Y .
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