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1. Review

Remark 1.1. From now on, unless otherwise specified, Rn refers to Euclidean space Rn

with n ≥ 1 a positive integer, and where we use the metric d`2 on Rn. In particular, R refers
to the metric space R equipped with the metric d(x, y) = |x− y|.

Proposition 1.2. Let (X, d) be a metric space. Let (x(j))∞j=k be a sequence of elements of X.

Let x, x′ be elements of X. Assume that the sequence (x(j))∞j=k converges to x with respect to

d. Assume also that the sequence (x(j))∞j=k converges to x′ with respect to d. Then x = x′.

Proposition 1.3. Let a < b be real numbers, and let f : [a, b] → R be a function which
is both continuous and strictly monotone increasing. Then f is a bijection from [a, b] to
[f(a), f(b)], and the inverse function f−1 : [f(a), f(b)]→ [a, b] is also continuous and strictly
monotone increasing.

Theorem 1.4 (Inverse Function Theorem). Let X, Y be subsets of R. Let f : X → Y be
bijection, so that f−1 : Y → X is a function. Let x0 ∈ X and y0 ∈ Y such that f(x0) = y0. If
f is differentiable at x0, if f−1 is continuous at y0, and if f ′(x0) 6= 0, then f−1 is differentiable
at y0 with

(f−1)′(y0) =
1

f ′(x0)
.

Date: February 14, 2015.

1



2. Sequences of Functions

As we have seen in analysis, it is often desirable to discuss sequences of points that
converge. Below, we will see that it is similarly desirable to discuss sequences of functions
that converge in various senses. There are many distinct ways of discussing the convergence of
sequences of functions. We will only discuss two such modes of convergence, namely pointwise
and uniform convergence. Before beginning this discussion, we discuss the limiting values
of functions between metric spaces, which should generalize our notion of limiting values of
functions on the real line.

2.1. Limiting Values of Functions.

Definition 2.1. Let (X, dX) and (Y, dY ) be metric spaces, let E be a subset of X, let
f : X → Y be a function, let x0 ∈ X be an adherent point of E, and let L ∈ Y . We say that
f(x) converges to L in Y as x converges to x0 in E, and we write limx→x0;x∈E f(x) = L,
if and only if, for every ε > 0, there exists δ = δ(ε) > 0 such that, if x ∈ E satisfies
dX(x, x0) < δ, then dY (f(x), L) < ε.

Remark 2.2. So, f is continuous at x0 if and only if

lim
x→x0;x∈X

f(x) = f(x0). (∗)

And f is continuous on X if and only if, for all x0 ∈ X, (∗) holds.

Remark 2.3. When the domain of x of the limit limx→x0;x∈X f(x) is clear, we will often
instead write limx→x0 f(x).

The following equivalence is generalized from its analogue on the real line.

Proposition 2.4. Let (X, dX) and (Y, dY ) be metric spaces, let E be a subset of X, let
f : X → Y be a function, let x0 ∈ X be an adherent point of E, and let L ∈ Y . Then the
following statements are equivalent.

• limx→x0;x∈E f(x) = L.
• For any sequence (x(j))∞j=1 in E which converges to x0 with respect to the metric dX ,

the sequence (f(x(j)))∞j=1 converges to L with respect to the metric dY .

Exercise 2.5. Prove Proposition 2.4.

Remark 2.6. From Propositions 2.4 and 1.2, the function f can converge to at most one
limit L as x converges to x0.

Remark 2.7. The notation limx→x0;x∈E f(x) implicitly refers to a convergence of the function
values f(x) in the metric space (Y, dY ). Strictly speaking, it would be better to write dY
somewhere next to the notation limx→x0;x∈E f(x). However, this omission of notation should
not cause confusion.

2.2. Pointwise Convergence and Uniform Convergence.

Definition 2.8 (Pointwise Convergence). Let (X, dX) and (Y, dY ) be metric spaces. Let
(fj)

∞
j=1 be a sequence of functions from X to Y . Let f : X → Y be another function. We

say that (fj)
∞
j=1 converges pointwise to f on X if and only if, for every x ∈ X, we have

lim
j→∞

fj(x) = f(x).
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That is, for all x ∈ X, we have

lim
j→∞

dY (fj(x), f(x)) = 0.

That is, for every x ∈ X and for every ε > 0, there exists J > 0 such that, for all j > J , we
have dY (fj(x), f(x)) < ε.

Remark 2.9. Note that, if we change the point x, then the limiting behavior of fj(x)
can change quite a bit. For example, let j be a positive integer, and consider the functions
fj : [0, 1]→ R where fj(x) = j for all x ∈ (0, 1/j), and fj(x) = 0 otherwise. Let f : [0, 1]→ R
be the zero function. Then fj converges pointwise to zero, since for any x ∈ (0, 1], we have
fj(x) = 0 for all j > 1/x. (And fj(0) = 0 for all positive integers j.) However, given any

fixed positive integer j, there exists an x such that fj(x) = j. Moreover,
∫ 1

0
fj = 1 for all

positive integers j, but
∫ 1

0
f = 0. So, we see that pointwise convergence does not preserve

the integral of a function.

Remark 2.10. Pointwise convergence also does not preserve continuity. For example, con-
sider fj : [0, 1] → R defined by fj(x) = xj, where j ∈ N and x ∈ [0, 1]. Define f : [0, 1] → R
so that f(1) = 1 and so that f(x) = 0 for x ∈ [0, 1). Then fj converges pointwise to f as
j →∞, and each fj is continuous, but f is not continuous.

In summary, pointwise convergence doesn’t really preserve any useful analytic quantities.
The above remarks show that some points are changing at much different rates than other
points as j → ∞. A stronger notion of convergence will then fix these issues, where all
points in the domain are controlled simultaneously.

Definition 2.11 (Uniform Convergence). Let (X, dX) and (Y, dY ) be metric spaces. Let
(fj)

∞
j=1 be a sequence of functions from X to Y . Let f : X → Y be another function. We

say that (fj)
∞
j=1 converges uniformly to f on X if and only if, for every ε > 0, there exists

J > 0 such that, for all j > J and for all x ∈ X we have dY (fj(x), f(x)) < ε.

Remark 2.12. Note that the difference between uniform and pointwise convergence is that
we simply moved the quantifier “for all x ∈ X” within the statement. This change means
that the integer J does not depend on x in the case of uniform convergence.

Remark 2.13. The sequences of functions from Remarks 2.9 and 2.10 do not converge
uniformly. So, pointwise convergence does not imply uniform convergence. However, uniform
convergence does imply pointwise convergence.

3. Uniform Convergence and Continuity

We saw that pointwise convergence does not preserve continuity. However, uniform con-
vergence does preserve continuity.

Theorem 3.1. Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of

functions from X to Y . Let f : X → Y be another function. Let x0 ∈ X. Suppose fj
converges uniformly to f on X. Suppose that, for each j ≥ 1, we know that fj is continuous
at x0. Then f is also continuous at x0.
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Exercise 3.2. Prove Theorem 3.1. Hint: it is probably easiest to use the ε− δ definition of
continuity. Once you do this, you may require the triangle inequality in the form

dY (f(x), f(x0)) ≤ dY (f(x), fj(x)) + dY (fj(x), fj(x0)) + dY (fj(x0), f(x0)).

Corollary 3.3. Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of

functions from X to Y . Let f : X → Y be another function. Suppose (fj)
∞
j=1 converges

uniformly to f on X. Suppose that, for each j ≥ 1, we know that fj is continuous on X.
Then f is also continuous on X.

Uniform limits of bounded functions are also bounded. Recall that a function f : X → Y
between metric spaces (X, dX) and (Y, dY ) is bounded if and only if there exists a radius
R > 0 and a point y0 ∈ Y such that f(x) ∈ B(Y,dY )(y0, R) for all x ∈ X.

Proposition 3.4. Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of

functions from X to Y . Let f : X → Y be another function. Suppose (fj)
∞
j=1 converges

uniformly to f on X. Suppose also that, for each j ≥ 1, we know that fj is bounded. Then
f is also bounded.

Exercise 3.5. Prove Proposition 3.4.

3.1. The Metric of Uniform Convergence. We will now see one advantage to our ab-
stract approach to analysis on metric spaces. We can in fact talk about uniform convergence
in terms of a metric on a space of functions, as follows.

Definition 3.6. Let (X, dX) and (Y, dY ) be metric spaces. Let B(X;Y ) denote the set
of functions f : X → Y that are bounded. Let f, g ∈ B(X;Y ). We define the metric
d∞ : B(X;Y )×B(X;Y )→ [0,∞) by

d∞(f, g) := sup
x∈X

dY (f(x), g(x)).

This metric is known as the sup norm metric or the L∞ metric. We also use dB(X;Y ) as
a synonym for d∞. Note that d∞(f, g) <∞ since f, g are assumed to be bounded.

Exercise 3.7. Show that the space (B(X;Y ), d∞) is a metric space.

Example 3.8. Let X = [0, 1] and let Y = R. Consider the functions f(x) = x and g(x) = 2x
where x ∈ [0, 1]. Then f, g are bounded, and

d∞(f, g) = sup
x∈[0,1]

|x− 2x| = sup
x∈[0,1]

|x| = 1.

Here is our promised characterization of uniform convergence in terms of the metric d∞.

Proposition 3.9. Let (X, dX) and (Y, dY ) be metric spaces. Let (fj)
∞
j=1 be a sequence of

functions in B(X;Y ). Let f ∈ B(X;Y ). Then (fj)
∞
j=1 converges uniformly to f on X if and

only if (fj)
∞
j=1 converges to f in the metric dB(X;Y ).

Exercise 3.10. Prove Proposition 3.9.

Definition 3.11. Let (X, dX) and (Y, dY ) be metric spaces. Define the set of bounded
continuous functions from X to Y as

C(X;Y ) := {f ∈ B(X;Y ) : f is continuous}.
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Note that C(X;Y ) ⊆ B(X;Y ) by the definition of C(X;Y ). Also, by Corollary 3.3,
C(X;Y ) is closed in B(X;Y ) with respect to the metric d∞. In fact, more is true.

Theorem 3.12. Let (X, dX) be a metric space, and let (Y, dY ) be a complete metric space.
Then the space (C(X;Y ), dB(X;Y )|C(X;Y )×C(X;Y )) is a complete subspace of B(X;Y ). That
is, every Cauchy sequence of functions in C(X;Y ) converges to a function in C(X;Y ).

Exercise 3.13. Prove Theorem 3.12

4. Series of Functions and the Weierstrass M-test

For each positive integer j, let fj : X → R be a function. We will now consider infinite
series of the form

∑∞
j=1 fj. The most natural thing to do now is to determine in what sense

the series
∑∞

j=1 fj is a function, and if it is a function, determine if it is continuous. Note
that we have restricted the range to be R since it does not make sense to add elements in a
general metric space. Power series and Fourier series perhaps give the most studied examples
of series of functions. If x ∈ [0, 1] and if aj are real numbers for all j ≥ 1, we want to make
sense of the series

∑∞
j=1 aj cos(2πjx). We want to know in what sense this infinite series is

a function, and if it is a function, do the partial sums converge in any reasonable manner?
We will return to these issues later on.

Definition 4.1. Let (X, dX) be a metric space. For each positive integer j, let fj : X → R
be a function, and let f : X → R be another function. If the partial sums

∑J
j=1 fj converge

pointwise to f as J →∞, then we say that the infinite series
∑∞

j=1 fj converge pointwise

to f , and we write f =
∑∞

j=1 fj. If the partial sums
∑J

j=1 fj converge uniformly to f as

J → ∞, then we say that the infinite series
∑∞

j=1 fj converge uniformly to f , and we

write f =
∑∞

j=1 fj. (In particular, the notation f =
∑∞

j=1 fj is ambiguous, since the nature

of the convergence of the series is not specified.)

Remark 4.2. If a series converges uniformly then it converges pointwise. However, the
converse is false in general.

Exercise 4.3. Let x ∈ (−1, 1). For each integer j ≥ 1, define fj(x) := xj. Show that the
series

∑∞
j=1 fj converges pointwise, but not uniformly, on (−1, 1) to the function f(x) =

x/(1 − x). Also, for any 0 < t < 1, show that the series
∑∞

j=1 fj converges uniformly to f

on [−t, t].

Definition 4.4. Let f : X → R be a bounded real-valued function. We define the sup-norm
‖f‖∞ of f to be the real number

‖f‖∞ := sup
x∈X
|f(x)| .

Exercise 4.5. Let X be a set. Show that ‖·‖∞ is a norm on the space B(X;R).

Theorem 4.6 (Weierstrass M-test). Let (X, d) be a metric space and let (fj)
∞
j=1 be a

sequence of bounded real-valued continuous functions on X such that the series (of real num-
bers)

∑∞
j=1 ‖fj‖∞ is absolutely convergent. Then the series

∑∞
j=1 fj converges uniformly to

some continuous function f : X → R.
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Exercise 4.7. Prove Theorem 4.6. (Hint: first, show that the partial sums
∑J

j=1 fj form a

Cauchy sequence in C(X;R). Then, use Theorem 3.12 and the completeness of the real line
R.)

Remark 4.8. The Weierstrass M-test will be useful in our investigation of power series.

5. Uniform Convergence and Integration

Theorem 5.1. Let a < b be real numbers. For each integer j ≥ 1, let fj : [a, b] → R be a
Riemann integrable function on [a, b]. Suppose fj converges uniformly on [a, b] to a function
f : [a, b]→ R, as j →∞. Then f is also Riemann integrable, and

lim
j→∞

∫ b

a

fj =

∫ b

a

f.

Remark 5.2. Before we begin, recall that we require any Riemann integrable function g to

be bounded. Also, for a Riemann integrable function g, we denote
∫ b
a
g as the supremum of

all lower Riemann sums of g over all partitions of [a, b]. And we denote
∫ b
a
g as the infimum

of all upper Riemann sums of g over all partitions of [a, b]. Recall also that a function g is

defined to be Riemann integrable if and only if
∫ b
a
g =

∫ b
a
g.

Proof. We first show that f is Riemann integrable. First, note that fj is bounded for all
j ≥ 1, since that is part of the definition of being Riemann integrable. So, f is bounded
by Proposition 3.4. Now, let ε > 0. Since fj converges uniformly to f on [a, b], there exists
J > 0 such that, for all j > J , we have

fj(x)− ε ≤ f(x) ≤ fj(x) + ε, ∀x ∈ [a, b].

Integrating this inequality on [a, b], we have∫ b

a

(fj(x)− ε) ≤
∫ b

a

f ≤
∫ b

a

f ≤
∫ b

a

(fj(x) + ε).

Since fj is Riemann integrable for all j ≥ 1, we therefore have

−(b− a)ε+

∫ b

a

fj ≤
∫ b

a

f ≤
∫ b

a

f ≤ (b− a)ε+

∫ b

a

fj. (∗)

In particular, we get

0 ≤
∫ b

a

f −
∫ b

a

f ≤ 2(b− a)ε.

Since ε > 0 is arbitrary, we conclude that
∫ b
a
f =

∫ b
a
f , so f is Riemann integrable.

Now, from (∗), we have: for any ε > 0, there exists J such that, for all j > J , we have∣∣∣∣∫ b

a

f −
∫ b

a

fj

∣∣∣∣ ≤ (b− a)ε.

Since this holds for any ε > 0, we conclude that limj→∞
∫ b
a
fj =

∫ b
a
f , as desired. �
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Remark 5.3. In summary, if a sequence of Riemann integrable functions (fj)
∞
j=1 converges

to f uniformly, then we can interchange limits and integrals

lim
j→∞

∫
fj =

∫
lim
j→∞

fj.

Recall that this equality does not hold if we only assume that the functions converge point-
wise.

An analogous statement holds for series.

Theorem 5.4. Let a < b be real numbers. For each integer j ≥ 1, let fj : [a, b] → R be a
Riemann integrable function on [a, b]. Suppose

∑∞
j=1 fj converges uniformly on [a, b]. Then∑∞

j=1 fj is also Riemann integrable, and

∞∑
j=1

∫ b

a

fj =

∫ b

a

∞∑
j=1

fj.

Exercise 5.5. Prove Theorem 5.4.

Example 5.6. Let x ∈ (−1, 1). We know that
∑∞

j=1 x
j = x/(1− x), and the convergence is

uniform on [−r, r] for any 0 < r < 1. Adding 1 to both sides, we get
∞∑
j=0

xj =
1

1− x
.

And this sum also converges uniformly on [−r, r] for any 0 < r < 1. Applying Theorem 5.4
and integrating on [0, r], we get

∞∑
j=0

rj+1

j + 1
=
∞∑
j=0

∫ r

0

xj =

∫ r

0

1

1− x
.

The last function is equal to− log(1−r), though we technically have not defined the logarithm
function yet. We will define the logarithm further below.

6. Uniform Convergence and Differentiation

We now investigate the relation between uniform convergence and differentiation.

Remark 6.1. Suppose a sequence of differentiable functions (fj)
∞
j=1 converges uniformly

to a function f . We first show that f need not be differentiable. Consider the functions
fj(x) :=

√
x2 + 1/j, where x ∈ [−1, 1]. Let f(x) = |x|. Note that

|x| ≤
√
x2 + 1/j ≤ |x|+ 1/

√
j.

These inequalities follow by taking the square root of x2 ≤ x2 + 1/j ≤ x2 + 1/j + 2 |x| /
√
j.

So, by the Squeeze Theorem, (fj)
∞
j=1 converges uniformly to f on [−1, 1]. However, f is not

differentiable at 0. In conclusion, uniform convergence does not preserve differentiability.

Remark 6.2. Suppose a sequence of differentiable functions (fj)
∞
j=1 converge uniformly to

a function f . Even if f is assumed to be differentiable, we show that (fj)
′ may not converge

to f ′. Consider the functions fj(x) := j−1/2 sin(jπx), where x ∈ [−1, 1]. (We will assume
some basic properties of trigonometric functions which we will prove later on. Since we are

7



only providing a motivating example, we will not introduce any circular reasoning.) Let f
be the zero function. Since |sin(jπx)| ≤ 1, we have d∞(fj, f) ≤ j−1/2, so (fj)

∞
j=1 converges

uniformly on [−1, 1]. However, f ′j(x) = j1/2π cos(jπx). So, f ′j(0) = j1/2π. That is, (f ′j)
∞
j=1

does not converge pointwise to f . So, (f ′j)
∞
j=1 does not converge uniformly to f ′ = 0. In

conclusion, uniform convergence does not imply uniform convergence of derivatives.

However, the converse statement is true, as long as the sequence of functions converges at
one point.

Theorem 6.3. Let a < b. For every integer j ≥ 1, let fj : [a, b] → R be a differentiable
function whose derivative (fj)

′ : [a, b] → R is continuous. Assume that the derivatives (fj)
′

converge uniformly to a function g : [a, b] → R as j → ∞. Assume also that there exists a
point x0 ∈ [a, b] such that limj→∞ fj(x0) exists. Then the functions fj converge uniformly to
a differentiable function f as j →∞, and f ′ = g.

Proof. Let x ∈ [a, b]. From the Fundamental Theorem of Calculus, for each j ≥ 1,

fj(x)− fj(x0) =

∫ x

x0

f ′j. (∗)

By assumption, L := limj→∞ fj(x0) exists. From Theorem 3.1, g is continuous, and in
particular, g is Riemann integrable on [a, b]. Also, by Theorem 5.1, limj→∞

∫ x
x0
f ′j exists and

is equal to
∫ x
x0
g. We conclude by (∗) that limj→∞ fj(x) exists, and

lim
j→∞

fj(x) = L+

∫ x

x0

g.

Define the function f on [a, b] so that

f(x) = L+

∫ x

x0

g.

We know so far that (fj)
∞
j=1 converges pointwise to f . We now need to show that this

convergence is in fact uniform. We defer this part to the exercises. �

Exercise 6.4. Complete the proof of Theorem 6.3.

Corollary 6.5. Let a < b. For every integer j ≥ 1, let fj : [a, b] → R be a differentiable
function whose derivative f ′j : [a, b]→ R is continuous. Assume that the series of real numbers∑∞

j=1 ‖f ′j‖∞ is absolutely convergent. Assume also that there exists x0 ∈ [a, b] such that the

series of real numbers
∑∞

j=1 fj(x0) converges. Then the series
∑∞

j=1 fj converges uniformly

on [a, b] to a differentiable function. Moreover, for all x ∈ [a, b],

d

dx

∞∑
j=1

fj(x) =
∞∑
j=1

d

dx
fj(x)

Exercise 6.6. Prove Corollary 6.5.

The following exercise is a nice counterexample to keep in mind, and it also shows the
necessity of the assumptions of Corollary 6.5.
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Exercise 6.7. (For this exercise, you can freely use facts about trigonometry that you
learned in your previous courses.) Let x ∈ R and let f : R → R be the function f(x) :=∑∞

j=1 4−j cos(32jπx). Note that this series is uniformly convergent by the Weierstrass M-test

(Theorem 4.6). So, f is a continuous function. However, at every point x ∈ R, f is not
differentiable, as we now discuss.

• Show that, for all positive integers j,m, we have

|f((j + 1)/32m)− f(j/32m)| ≥ 4−m.

(Hint: for certain sequences of numbers (aj)
∞
j=1, use the identity

∞∑
j=1

aj = (
m−1∑
j=1

aj) + am +
∞∑

j=m+1

aj.

Also, use the fact that the cosine function is periodic with period 2π, and the summa-
tion

∑∞
j=0 r

j = 1/(1−r) for all−1 < r < 1. Finally, you should require the inequality:

for all real numbers x, y, we have |cos(x)− cos(y)| ≤ |x− y|. This inequality follows
from the Mean Value Theorem or the Fundamental Theorem of Calculus.)
• Using the previous result, show that, for ever x ∈ R, f is not differentiable at x.

(Hint: for every x ∈ R and for every positive integer m, there exists an integer j such
that j ≤ 32mx ≤ j + 1.)
• Explain briefly why this result does not contradict Corollary 6.5.

7. Uniform Approximation by Polynomials

Definition 7.1 (Polynomial). Let a < b be real numbers and let x ∈ [a, b]. A polynomial

on [a, b] is a function f : [a, b]→ R of the form f(x) =
∑k

j=0 ajx
j, where k is a natural number

and a0, . . . , ak are real numbers. If ak 6= 0, then k is called the degree of f .

From the previous exercise, we have seen that general continuous functions can behave
rather poorly, in that they may never be differentiable. Polynomials on the other hand are
infinitely differentiable. And it is often beneficial to deal with polynomials instead of general
functions. So, we mention below a result of Weierstrass which says: any continuous function
on an interval [a, b] can be uniformly approximated by polynomials.

This fact seems to be related to power series, but it is something much different. It may
seem possible to take a general (infinitely differentiable) function, take a high degree Taylor
polynomial of this function, and then claim that this polynomial approximates our original
function well. There are two problems with this approach. First of all, the continuous
function that we start with may not even be differentiable. Second of all, even if we have an
infinitely differentiable function, its power series may not actually approximate that function
well. Recall that the function f(x) = e−1/x

2
(where f(0) := 0) is infinitely differentiable, but

its Taylor polynomial is identically zero at x = 0. In conclusion, we need to use something
other than Taylor series to approximate a general continuous function by polynomials.

The proof of the Weierstrass approximation theorem introduces several useful ideas, but
it is typically only proven in the honors class. However, later on, we will prove a version of
this theorem for trigonometric polynomials, and this proof will be analogous to the proof of
the current theorem.
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Theorem 7.2 (Weierstrass approximation). Let a < b be real numbers. Let f : [a, b]→ R
be a continuous function, and let ε > 0. Then there exists a polynomial P on [a, b] such that
d∞(P, f) < ε. (That is, |f(x)− P (x)| < ε for all x ∈ [a, b].)

Remark 7.3. We can also state this Theorem using metric space terminology. Recall that
C([a, b];R) is the space of continuous functions from [a, b] to R, equipped with the sup-norm
metric d∞. Let P ([a, b];R) be the space of all polynomials on [a, b], so that P ([a, b];R) is a
subspace of C([a, b];R), since polynomials are continuous. Then the Weierstrass approxima-
tion theorem says that every continuous function is an adherent point of P ([a, b];R). Put
another way, the closure of P ([a, b];R) is C([a, b];R).

P ([a, b];R) = C([a, b];R).

Put another way, every continuous function on [a, b] is the uniform limit of polynomials.

8. Power Series

We now focus our discussion of series to power series.

Definition 8.1 (Power Series). Let a be a real number, let (aj)
∞
j=0 be a sequence of real

numbers, and let x ∈ R. A formal power series centered at a is a series of the form
∞∑
j=0

aj(x− a)j,

For a natural number j, we refer to aj as the jth coefficient of the power series.

Remark 8.2. We refer to these power series as formal since their convergence is not guar-
anteed. Note however that any formal power series centered at a converges at x = a. It
turns out that we can precisely identify where a formal power series converges just from the
asymptotic behavior of the coefficients.

Definition 8.3 (Radius of Convergence). Let
∑∞

j=0 aj(x− a)j be a formal power series.
The radius of convergence R ≥ 0 of this series is defined to be

R :=
1

lim supj→∞ |aj|
1/j
.

In the definition of R, we use the convention that 1/0 = +∞ and 1/(+∞) = 0. Note that it
is possible for R to then take any value between and including 0 and +∞. Note also that R
always exists as a nonnegative real number, or as +∞, since the limit superior of a positive
sequence always exists as a nonegative number, or +∞.

Example 8.4. The radius of convergence of the series
∑∞

j=0 j(−2)j(x− 3)j is

1

lim supj→∞ |j(−2)j|1/j
=

1

lim supj→∞ 2j1/j
=

1

2
.

The radius of convergence of the series
∑∞

j=0 2j
2
(x+ 2)j is

1

lim supj→∞ 2j
=

1

+∞
= 0.
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The radius of convergence of the series
∑∞

j=0 2−j
2
(x+ 2)j is

1

lim supj→∞ 2−j
=

1

0
= +∞.

As we now show, the radius of convergence tells us exactly where the power series con-
verges.

Theorem 8.5. Let
∑∞

j=0 aj(x − a)j be a formal power series, and let R be its radius of
convergence.

(a) (Divergence outside of the radius of convergence) If x ∈ R satisfies |x− a| > R, then
the series

∑∞
j=0 aj(x− a)j is divergent at x.

(b) (Convergence inside the radius of convergence) If x ∈ R satisfies |x− a| < R, then
the series

∑∞
j=0 aj(x− a)j is convergent at x.

• For the following items (c),(d) and (e), we assume that R > 0. Then, let f : (a −
R, a+R) be the function f(x) =

∑∞
j=0 aj(x− a)j, which exists by part (b).

(c) (Uniform convergence on compact intervals) For any 0 < r < R, we know that the
series

∑∞
j=0 aj(x− a)j converges uniformly to f on [a− r, a+ r]. In particular, f is

continuous on (a−R, a+R) (by Theorem 3.1.)
(d) (Differentiation of power series) The function f is differentiable on (a − R, a + R).

For any 0 < r < R, the series
∑∞

j=0 jaj(x − a)j−1 converges uniformly to f ′ on the

interval [a− r, a+ r].
(e) (Integration of power series) For any closed interval [y, z] contained in (a−R, a+R),

we have ∫ z

y

f =
∞∑
j=0

aj
(z − a)j+1 − (y − a)j+1

j + 1
.

Exercise 8.6. Prove Theorem 8.5. (Hints: for parts (a),(b), use the root test. For part (c),
use the Weierstrass M-test. For part (d), use Theorem 6.3. For part (e), use Theorem 5.4.)

Remark 8.7. A power series may converge or diverge when |x− a| = R.

Exercise 8.8. Give examples of formal power series centered at 0 with radius of convergence
R = 1 such that

• The series diverges at x = 1 and at x = −1.
• The series diverges at x = 1 and converges at x = −1.
• The series converges at x = 1 and diverges at x = 1.
• The series converges at x = 1 and at x = −1.

We now discuss functions that are equal to convergent power series.

Definition 8.9. Let a ∈ R and let r > 0. Let E be a subset of R such that (a−r, a+r) ⊆ E.
Let f : E → R. We say that the function f is real analytic on (a− r, a+ r) if and only if
there exists a power series

∑∞
j=0 aj(x− a)j centered at a with radius of convergence R such

that R ≥ r and such that this power series converges to f on (a− r, a+ r).

Example 8.10. The function f : (0, 2)→ R defined by f(x) =
∑∞

j=0 j(x−1)j is real analytic

on (0, 2).
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From Theorem 8.5, if a function f is real analytic on (a − r, a + r), then f is continuous
and differentiable. In fact, f is can be differentiated any number of times, as we now show.

Definition 8.11. Let E be a subset of R. We say that a function f : E → R is once differ-
entiable on E if and only if f is differentiable on E. More generally, for any integer k ≥ 2,
we say that f : E → R is k times differentiable on E, or just k times differentiable, if
and only if f is differentiable and f ′ is k−1 times differentiable. If f is k times differentiable,
we define the kth derivative f (k) : E → R by the recursive rule f (1) := f ′ and f (k) := (f (k−1))′,
for all k ≥ 2. We also define f (0) := f . A function is said to be infinitely differentiable if
and only if f is k times differentiable for every k ≥ 0.

Example 8.12. The function f(x) = |x|3 is twice differentiable on R, but not three times
differentiable on R. Note that f ′′(x) = 6 |x|, which is not differentiable at x = 0.

Proposition 8.13. Let a ∈ R and let r > 0. Let f be a function that is real analytic on
(a− r, a+ r), with the power series expansion

f(x) =
∞∑
j=0

aj(x− a)j, ∀x ∈ (a− r, a+ r).

Then, for any integer k ≥ 0, the function f is k times differentiable on (a − r, a + r), and
the kth derivative is given by

f (k)(x) =
∞∑
j=0

aj+k(j + 1)(j + 2) · · · (j + k)(x− a)j, ∀x ∈ (a− r, a+ r).

Exercise 8.14. Prove Proposition 8.13.

Corollary 8.15 (Taylor’s formula). Let a ∈ R and let r > 0. Let f be a function that is
real analytic on (a− r, a+ r), with the power series expansion

f(x) =
∞∑
j=0

aj(x− a)j, ∀x ∈ (a− r, a+ r).

Then, for any integer k ≥ 0, we have

f (k)(a) = k!ak,

where k! = 1×2×· · ·×k, and we denote 0! := 1. In particular, we have Taylor’s formula

f(x) =
∞∑
j=0

f (j)(a)

j!
(x− a)j, ∀x ∈ (a− r, a+ r).

Exercise 8.16. Prove Corollary 8.15 using Proposition 8.13.

Remark 8.17. The series
∑∞

j=0
f (j)(a)
j!

(x − a)j is sometimes called the Taylor series of f

around a. Taylor’s formula says that if f is real analytic, then f is equal to its Taylor series.
In the following exercise, we see that even if f is infinitely differentiable, it may not be equal
to its Taylor series.
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Exercise 8.18. Define a function f : R → R by f(0) := 0 and f(x) := e−1/x
2

for x 6= 0.
Show that f is infinitely differentiable, but f (k)(0) = 0 for all k ≥ 0. So, being infinitely dif-
ferentiable does not imply that f is equal to its Taylor series. (You may freely use properties
of the exponential function that you have learned before.)

Corollary 8.19 (Uniqueness of power series). Let a ∈ R and let r > 0. Let f be a
function that is real analytic on (a− r, a+ r), with two power series expansions

f(x) =
∞∑
j=0

aj(x− a)j, ∀x ∈ (a− r, a+ r).

f(x) =
∞∑
j=0

bj(x− a)j, ∀x ∈ (a− r, a+ r).

Then aj = bj for all j ≥ 0.

Proof. By Corollary 8.15, we have k!ak = f (k)(a) = k!bk for all k ≥ 0. Since k! 6= 0 for all
k ≥ 0, we divide by k! to get ak = bk for all k ≥ 0. �

Remark 8.20. Note however that a power series can have very different expansions if we
change the center of the expansion. For example, the function f(x) = 1/(1− x) satisfies

f(x) =
∞∑
j=0

xj, ∀x ∈ (−1, 1).

However, at the point 1/2, we have the different expansion

f(x) =
1

1− x
=

2

1− 2(x− 1/2)
=
∞∑
j=0

2(2(x− 1/2))j =
∞∑
j=0

2j+1(x− 1/2)j, ∀x ∈ (0, 1).

Note also that the first series has radius of convergence 1 and the second series has radius
of convergence 1/2.

8.1. Multiplication of Power Series.

Lemma 8.21 (Fubini’s Theorem for Series). Let f : N×N→ R be a function such that∑
(j,k)∈N×N f(j, k) is absolutely convergent. (That is, for any bijection g : N → N × N, the

sum
∑∞

`=0 f(g(`)) is absolutely convergent.) Then
∞∑
j=1

(
∞∑
k=1

f(j, k)) =
∑

(j,k)∈N×N

f(j, k) =
∞∑
k=1

(
∞∑
j=1

f(j, k)).

Proof Sketch. We only consider the case f(j, k) ≥ 0 for all (j, k) ∈ N. The general case then
follows by writing f = max(f, 0)−min(f, 0), and applying this special case to max(f, 0) and
min(f, 0), separately.

Let L :=
∑

(j,k)∈N×N f(j, k). For any J,K > 0, we have
∑J

j=1

∑K
k=1 f(j, k) ≤ L. Letting

J,K → ∞, we conclude that
∑∞

j=1

∑∞
k=1 f(j, k) ≤ L. Let ε > 0. It remains to find J,K

such that
∑J

j=1

∑K
k=1 > L − ε. Since

∑
(j,k)∈N×N f(j, k) converges absolutely, there exists

a finite set X ⊆ N × N such that
∑

(j,k)∈X f(j, k) > L − ε. But then we can choose J,K

sufficiently large such that {(j, k) ∈ X} ⊆ {(j, k) : 1 ≤ j ≤ J, 1 ≤ k ≤ K}. Therefore,∑J
j=1

∑K
k=1 f(j, k) ≥

∑
(j,k)∈X f(j, k) > L− ε, as desired. �
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Theorem 8.22. Let a ∈ R and let r > 0. Let f and g be functions that are real analytic on
(a− r, a+ r), with power series expansions

f(x) =
∞∑
j=0

aj(x− a)j, ∀x ∈ (a− r, a+ r).

g(x) =
∞∑
j=0

bj(x− a)j, ∀x ∈ (a− r, a+ r).

Then the function fg is also real analytic on (a − r, a + r). For each j ≥ 0, define cj :=∑j
k=0 akbj−k. Then fg has the power series expansion

f(x)g(x) =
∞∑
j=0

cj(x− a)j, ∀x ∈ (a− r, a+ r).

Proof. Fix x ∈ (a − r, a + r). By Theorem 8.5, both f and g have radius of convergence
R ≥ r. So, both

∑∞
j=0 aj(x− a)j and

∑∞
j=0 bj(x− a)j are absolutely convergent. Define

C :=
∞∑
j=0

∣∣aj(x− a)j
∣∣ , D :=

∞∑
j=0

∣∣bj(x− a)j
∣∣ .

Then both C,D are finite.
For any N ≥ 0, consider the partial sum

N∑
j=0

N∑
k=0

∣∣aj(x− a)jbk(x− a)k
∣∣ .

We can re-write this sum as
N∑
j=0

∣∣aj(x− a)j
∣∣ N∑
k=0

∣∣bk(x− a)k
∣∣ ≤ N∑

j=0

∣∣aj(x− a)j
∣∣D ≤ CD.

Since this inequality holds for all N ≥ 0, the series∑
(j,k)∈N×N

∣∣aj(x− a)jbk(x− a)k
∣∣

is convergent. That is, the following series is absolutely convergent.∑
(j,k)∈N×N

aj(x− a)jbk(x− a)k.

Now, using Lemma 8.21,∑
(j,k)∈N×N

aj(x−a)jbk(x−a)k =
∞∑
j=0

aj(x−a)j
∞∑
k=0

bk(x−a)k =
∞∑
j=0

aj(x−a)jg(x) = f(x)g(x).

Rewriting this equality,

f(x)g(x) =
∑

(j,k)∈N×N

aj(x− a)jbk(x− a)k =
∑

(j,k)∈N×N

ajbk(x− a)j+k.
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Since the sum is absolutely convergent, we can rearrange the order of summation. For any
fixed positive integer `, we sum over all positive integers j, k such that j + k = `. That is,
we have

f(x)g(x) =
∞∑
`=0

∑
(j,k)∈N×N : j+k=`

ajbk(x− a)` =
∞∑
`=0

(x− a)`
∑̀
s=0

asbs−`.

�

9. The Exponential and Logarithm

We can now use the material from the previous sections to define and investigate various
special functions.

Definition 9.1. For every real number x, we define the exponential function exp(x) to
be the real number

exp(x) :=
∞∑
j=0

xj

j!
.

Theorem 9.2 (Properties of the Exponential Function).

(a) For every real number x, the series
∑∞

j=0
xj

j!
is absolutely convergent. So, exp(x)

exists and is a real number for every x ∈ R, the power series
∑∞

j=0
xj

j!
has radius of

convergence R = +∞, and exp is an analytic function on (−∞,+∞).
(b) exp is differentiable on R, and for every x ∈ R, we have exp′(x) = exp(x).

(c) exp is continuous on R, and for all real numbers a < b, we have
∫ b
a

exp = exp(b) −
exp(a).

(d) For every x, y ∈ R, we have exp(x+ y) = exp(x) exp(y).
(e) exp(0) = 1. Also, for every x ∈ R, we have exp(x) > 0, and exp(−x) = 1/ exp(x).
(f) exp is strictly monotone increasing. That is, whenever x, y are real numbers with

x < y, we have exp(x) < exp(y).

Exercise 9.3. Prove Theorem 9.2. (Hints: for part (a), use the ratio test. For parts (b)
and (c), use Theorem 8.5. For part (d), you may need the binomial formula (x + y)k =∑k

j=0
k!

j!(k−j)!x
jyk−j. For part (e), use part (d). For part (f), use part (d) and show that

exp(x) > 1 for all x > 0.)

Definition 9.4. We define the real number e by

e := exp(1) =
∞∑
j=0

1

j!

Proposition 9.5. For every real number x, we have

exp(x) = ex.

Exercise 9.6. Prove Proposition 9.5. (Hint: first prove the proposition for natural num-
bers x. Then, prove the proposition for integers. Then, prove the proposition for rational
numbers. Finally, use the density of the rationals to prove the proposition for real numbers.
You should find useful identifies for exponentiation by rational numbers.)
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From now on, we use exp(x) and ex interchangeably.

Remark 9.7. Since e > 1 by the definition of e, we have ex → +∞ as x→ +∞ and ex → 0
as x → −∞. So, from the Intermediate Value Theorem, the range of exp is (0,∞). Since
exp is strictly increasing on R, exp is therefore injective on R, so exp is a bijection from R
to (0,∞). Therefore, exp has an inverse function from (0,∞) to R.

Definition 9.8. We define the natural logarithm function log : (0,∞) → R (which is
also called ln) to be the inverse of the exponential function. So, exp(log(x)) = x for every
x ∈ (0,∞), and log(exp(x)) = x for every x ∈ R.

Remark 9.9. Since exp is continuous and strictly monotone increasing, log is also continuous
and strictly monotone increasing by Proposition 1.3. Since exp is differentiable and its
derivative is never zero, the Inverse Function Theorem (Theorem 1.4) implies that log is also
differentiable.

Theorem 9.10.

(a) For every x ∈ (0,∞), we have log′(x) = 1/x. So, by the Fundamental Theorem of

Calculus, for any 0 < a < b, we have
∫ b
a
(1/t)dt = log(b)− log(a).

(b) For all x, y ∈ (0,∞), we have log(x) + log(y) = log(xy).
(c) For all x ∈ (0,∞), we have log(1/x) = − log x. In particular, log(1) = 0.
(d) For any x ∈ (0,∞) and y ∈ R, we have log(xy) = y log x.
(e) For any x ∈ (−1, 1), we have

− log(1− x) =
∞∑
j=1

xj

j
.

In particular, log is analytic on (0, 2) with the power series expansion

log(x) =
∞∑
j=1

(−1)j+1

j
(x− 1)j, ∀x ∈ (0, 2).

Exercise 9.11. Prove Theorem 9.10. (Hints: for part (a), use the Inverse Function Theorem
or Chain Rule. For parts (b),(c) and (d), use Theorem 9.2 and the laws of exponentiation.
For part (e), let x ∈ (−1, 1), use the geometric series formula 1/(1 − x) =

∑∞
j=0 x

j and

integrate using Theorem 8.5.)

9.1. A Digression concerning Complex Numbers. Our investigation of trigonometric
functions below is significantly improved by the introduction of the complex number system.
We will also use the complex exponential in our discussion of Fourier series.

Definition 9.12 (Complex Numbers). A complex number is any expression of the form
a+ bi where a, b are real numbers. Formally, the symbol i is a placeholder with no intrinsic
meaning. Two complex numbers a + bi and c + di are said to be equal if and only if a = c
and b = d. Every real number x is considered a complex number, with the identification
x = x+0i. The sum of two complex numbers is defined by (a+bi)+(c+di) := (a+c)+(b+d)i.
The difference of two complex numbers is defined by (a+bi)−(c+di) := (a−c)+(b−d)i. The
product of two complex numbers is defined by (a+bi)(c+di) := (ac−bd)+(ad+bc)i. If c+di 6=
0, the quotient of two complex numbers is defined by (a+bi)/(c+di) := (a+bi)( c

c2+d2
− d
c2+d2

i).
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The complex conjugate of a complex number a + bi is defined by a+ bi := a − bi. The
absolute value of a complex number a + bi is defined by |a+ bi| :=

√
a2 + b2. The space of

all complex numbers is called C.

Remark 9.13. We write i as shorthand for 0 + i. Note that i2 = −1.

Remark 9.14. The complex numbers obey all of the usual rules of algebra. For example, if
v, w, z are complex numbers, then v(w+z) = vw+vz, v(wz) = (vw)z, and so on. Specifically,
the complex numbers C form a field. Also, the rules of complex arithmetic are consistent
with the rules of real arithmetic. That is, 3 + 5 = 8 whether or not we use addition in R or
addition in C.

The operation of complex conjugation preserves all of the arithmetic operations. If w, z
are complex numbers, then w + z = w+ z, w − z = w− z, w · z = w · z, and w/z = w/z for
z 6= 0. The complex conjugate and absolute value satisfy |z|2 = zz.

Remark 9.15. If z ∈ C, then |z| = 0 if and only if z = 0. If z, w ∈ C, then it can be shown
that |zw| = |z| |w|, and if w 6= 0, then |z/w| = |z| / |w|. Also, the triangle inequality holds:
|z + w| ≤ |z|+ |w|. So, C is a metric space if we use the metric d(z, w) := |z − w|. Moreover,
C is a complete metric space.

The theory we have developed to deal with series of real functions also covers complex-
valued functions, with almost no change to the proofs. For example, we can define the
exponential function of a complex number z by

exp(z) :=
∞∑
j=0

zj

j!
.

The ratio test then can be proven in exactly the same manner for complex series, and it
follows that exp(z) converges for every z ∈ C. Many of the properties of Theorem 9.2 still
hold, though we cannot deal with all of these properties in this class. However, the following
identity is proven in the exact same way as in the setting of real numbers: for any z, w ∈ C,
we have

exp(z + w) = exp(z) exp(w).

Also, we should note that exp(z) = exp(z), which follows by conjugating the partial sums∑J
j=0 z

j/j!, and then letting J →∞.
We briefly mention that the complex logarithm is more difficult to define, mainly because

the exponential function is not invertible on C. This topic is deferred to the complex analysis
class.

10. Trigonometric Functions

Besides the exponential and logarithmic functions, there are many different kinds of special
functions. Here, we will only mention the sine and cosine functions. One’s first encounter
with the sine and cosine functions probably involved their definition in terms of the edge
lengths of right triangles. However, we will show below an analytic definition of these
functions, which will also facilitate the investigation of the properties that they possess. The
complex exponential plays a crucial role in this development.
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Definition 10.1. Let x be a real number. We then define

cos(x) :=
eix + e−ix

2
.

sin(x) :=
eix − e−ix

2i
.

We refer to cos as the cosine function, and we refer to sin as the sine function.

Remark 10.2. Using the power series expansion for the exponential, we can then derive
power series expansions for sine and cosine as follows. Let x ∈ R. Then

eix = 1 + ix− x2/2!− ix3/3! + x4/4! + · · ·
e−ix = 1− ix− x2/2! + ix3/3! + x4/4!− · · ·

Therefore, using the definitions of sine and cosine,

cos(x) = 1− x2/2! + x4/4!− · · · =
∞∑
j=0

(−1)jx2j

(2j)!
.

sin(x) = x− x3/3! + x5/5!− · · · =
∞∑
j=0

(−1)jx2j+1

(2j + 1)!
.

So, if x ∈ R then cos(x) ∈ R and sin(x) ∈ R. Also, sine and cosine real analytic on
(−∞,∞), e.g. since their power series converge on (−∞,∞) by the ratio test. In particular,
the sine and cosine functions are continuous and infinitely differentiable.

Theorem 10.3 (Properties of Sine and Cosine).

(a) For any real number x we have cos(x)2 + sin(x)2 = 1. In particular, sin(x) ∈ [−1, 1]
and cos(x) ∈ [−1, 1] for all real numbers x.

(b) For any real number x, we have sin′(x) = cos(x), and cos′(x) = − sin(x).
(c) For any real number x, we have sin(−x) = − sin(x) and cos(−x) = cos(x).
(d) For any real numbers x, y we have cos(x + y) = cos(x) cos(y) − sin(x) sin(y) and

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).
(e) sin(0) = 0 and cos(0) = 1.
(f) For every real number x, we have eix = cos(x) + i sin(x) and e−ix = cos(x)− i sin(x).

Exercise 10.4. Prove Theorem 10.3. (Hints: whenever possible, write everything in terms
of exponentials.)

Lemma 10.5. There exists a positive real number x such that sin(x) = 0.

Proof. We argue by contradiction. Suppose sin(x) 6= 0 for all x > 0. We conclude that
cos(x) 6= 0 for all x > 0, since cos(x) = 0 implies that sin(2x) = 0, by Theorem 10.3(d).
Since cos(0) = 1, we conclude that cos(x) > 0 for all x > 0 by the Intermediate Value
Theorem. Since sin(0) = 0 and sin′(0) = 1 > 0, we know that sin is positive for small
positive x. Therefore, sin(x) > 0 for all x > 0 by the Intermediate Value Theorem.

Define cot(x) := cos(x)/ sin(x). Then cot is positive on (0,∞), and cot is differentiable
for x > 0. From the quotient rule and Theorem 10.3(a), we have cot′(x) = −1/ sin2(x). So,
cot′(x) ≤ −1 for all x > 0. Then, by the Fundamental Theorem of Calculus, for all x, s > 0,
we have cot(x+ s) ≤ cot(x)− s. Letting s→∞ shows that cot eventually becomes negative
on (0,∞), a contradiction. �
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Let E be the set E := {x ∈ (0,∞) : sin(x) = 0}, so that E is the set of zeros of the sine
function. By Lemma 10.5, E is nonempty. Also, since sin is continuous, E is a closed set.
(Note that E = sin−1(0).) In particular, E contains all of its adherent points, so E contains
inf(E).

Definition 10.6. We define π to be the number

π := inf{x ∈ (0,∞) : sin(x) = 0}.

Then π > 0 and sin(π) = 0. Since sin is nonzero on (0, π) and sin′(0) = 1 > 0, we conclude
that sin is positive on (0, π). Since cos′(x) = − sin(x), we see that cos is decreasing on (0, π).
Since cos(0) = 1, we therefore have cos(π) < 1. Since sin2(π) + cos2(π) = 1 and sin(π) = 0,
we conclude that cos(π) = −1.

We therefore deduce Euler’s famous formula

eiπ = cos(π) + i sin(π) = −1.

Here are some more properties of sine and cosine.

Theorem 10.7.

(a) For any real x we have cos(x+π) = − cos(x) and sin(x+π) = − sin(x). In particular,
we have cos(x + 2π) = cos(x) and sin(x + 2π) = sin(x), so that sin and cos are 2π-
periodic.

(b) If x is real, then sin(x) = 0 if and only if x/π is an integer.
(c) If x is real, then cos(x) = 0 if and only if x/π is an integer plus 1/2.

Exercise 10.8. Prove Theorem 10.7.
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11. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Z+ := {1, 2, 3, 4, . . .}, the positive integers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

R∗ = R ∪ {−∞} ∪ {+∞} denotes the set of extended real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Rn := {(x1, . . . , xn) : xi ∈ R, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

Let (X, d) be a metric space, let x0 ∈ X, let r > 0 be a real number, and let E be a subset
of X. Let (x1, . . . , xn) be an element of Rn, and let p ≥ 1 be a real number.

B(X,d)(x0, r) = B(x0, r) := {x ∈ X : d(x, x0) < r}.
E denotes the closure of E

int(E) denotes the interior of E

∂E denotes the boundary of E

‖(x1, . . . , xn)‖`p := (
n∑
i=1

|xi|p)1/p

‖(x1, . . . , xn)‖`∞ := max
i=1,...,n

|xi|
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Let f, g : (X, dX)→ (Y, dY ) be maps between metric spaces. Let V ⊆ X, and let W ⊆ Y .

f(V ) := {f(v) ∈ Y : v ∈ V }.
f−1(W ) := {x ∈ X : f(x) ∈ W}.
d∞(f, g) := sup

x∈X
dY (f(x), g(x)).

B(X;Y ) denotes the set of functions f : X → Y that are bounded.

C(X;Y ) := {f ∈ B(X;Y ) : f is continuous}.
Let X be a set, and let f : X → C be a complex-valued function.

‖f‖∞ := sup
x∈X
|f(x)| .

11.1. Set Theory. Let X, Y be sets, and let f : X → Y be a function. The function
f : X → Y is said to be injective (or one-to-one) if and only if: for every x, x′ ∈ V , if
f(x) = f(x′), then x = x′.

The function f : X → Y is said to be surjective (or onto) if and only if: for every y ∈ Y ,
there exists x ∈ X such that f(x) = y.

The function f : X → Y is said to be bijective (or a one-to-one correspondence) if
and only if: for every y ∈ Y , there exists exactly one x ∈ X such that f(x) = y. A function
f : X → Y is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if and only if there exists a bijection
from X onto Y .
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