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1. Review

Exercise 1.1. Let (X, 〈·, ·〉) be a (real or complex) inner product space. Define ‖·‖ : X →
[0,∞) by ‖x‖ :=

√
〈x, x〉. Then (X, ‖·‖) is a normed linear space. Consequently, if we define

d : X ×X → [0,∞) by d(x, y) :=
√
〈(x− y), (x− y)〉, then (X, d) is a metric space.

Exercise 1.2 (Cauchy-Schwarz Inequality). Let (X, 〈·, ·〉) be a complex inner product
space. Let x, y ∈ X. Then

|〈x, y〉| ≤ 〈x, x〉1/2〈y, y〉1/2.

Exercise 1.3. Let (X, 〈·, ·〉) be a complex inner product space. Let x, y ∈ X. As usual, let

‖x‖ :=
√
〈x, x〉. Prove Pythagoras’s theorem: if 〈x, y〉 = 0, then ‖x+ y‖2 = ‖x‖2 +‖y‖2.

Theorem 1.4 (Weierstrass M-test). Let (X, d) be a metric space and let (fj)
∞
j=1 be a

sequence of bounded real-valued continuous functions on X such that the series (of real num-
bers)

∑∞
j=1 ‖fj‖∞ is absolutely convergent. Then the series

∑∞
j=1 fj converges uniformly to

some continuous function f : X → R.

2. Introduction

A general problem in analysis is to approximate a general function by a series that is
relatively easy to describe. With the Weierstrass Approximation theorem, we saw that it is
possible to achieve this goal by approximating compactly supported continuous functions by
polynomials. The notion of approximation here uses the sup norm. After our discussion of
general series of functions, we focused on power series. In this case, real analytic functions
can be written exactly in terms of their power series expansions. However, power series do
not provide the best approximations for general functions.
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There is a different notion of approximation of general functions which we will now discuss.
We will focus on periodic functions, and we will try to approximate these functions by
trigonometric polynomials. As before, there are many choices of metrics in which we can say
how close the approximating function is to the original function. These issues will be dealt
with below, in our discussion of Fourier series. The topic of Fourier analysis can occupy
more than one course, so we only select the introductory parts in this course.

3. Periodic Functions

Fourier series begins with the analysis of complex-valued, periodic functions.

Definition 3.1. Let L > 0 be a real number. A function f : R → C is periodic with
period L, or L−periodic, if and only if f(x+ L) = f(x) for every real number x.

Example 3.2. The functions sin(x), cos(x) and eix are all 2π-periodic. They are also 4π-
periodic, 6π-periodic, and so on. The function f(x) = x is not periodic. The constant
function f(x) = 1 is L-periodic for every L > 0.

Remark 3.3. If a function f : R → C is L-periodic, then f(x + kL) = f(x) for every
integer k. In particular, if f is 1-periodic, then f(x + k) = f(x) for every integer k. So,
1-periodic functions are sometimes called Z-periodic functions (and L-periodic functions
are sometimes called LZ-periodic functions.)

Example 3.4. For any integer n, the functions sin(2πnx), cos(2πnx) and e2πinx are Z-
periodic. For another example, consider the function where f(x) = 1 when x ∈ [n, n+ 1/2)
for any integer n, and f(x) = −1 when x ∈ [n+ 1/2, n+ 1) for any integer n. This function
is an example of a square wave.

Remark 3.5. For simplicity, we will only deal with Z-periodic functions below. The theory
of general L-periodic functions follows relatively easily once the Z-periodic theory has been
developed. Note that a Z-periodic function f is entirely determined by its values on the
interval [0, 1), since any x ∈ R can be written as x = k + y where k ∈ Z and y ∈ [0, 1), so
that f(x) = f(k + y) = f(y). Consequently, we sometimes describe a Z-periodic function f
by defining the function f on [0, 1), and we then say that f is extended periodically by
setting f(k + y) = f(x) := f(y). (As before, we write x ∈ R as x = k + y where k ∈ Z and
y ∈ [0, 1).)

The space of continuous complex-valued Z-periodic functions is denoted by C(R/Z;C).
The notation R/Z comes from algebra, where we consider the quotient of the additive group
R by the additive group Z. When we say that f is continuous and Z-periodic, we mean that
f is continuous on all of R. If f is only continuous on the interval [0, 1], then f may have a
discontinuity at 0, so f may not be in C(R/Z;C). For any integer n, the functions sin(2πnx),
cos(2πnx) and e2πinx are in C(R/Z;C). However, the square wave is not in C(R/Z;C). Also,
sin(x) is not in C(R/Z;C) since it is not Z-periodic.

Lemma 3.6.

(a) (Continuous periodic functions are bounded.) If f ∈ C(R/Z;C), then f is bounded.
(That is, given f ∈ C(R/Z;C), there exists M > 0 such that |f(x)| ≤ M for all
x ∈ R.)
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(b) (Continuous periodic functions form a vector space and an algebra.) Let f, g ∈
C(R/Z;C). Then f + g, f − g and fg are all in C(R/Z;C). Also, if c ∈ C, then
cf ∈ C(R/Z;C).

(c) (Uniform limits of continuous periodic functions are continuous periodic.) Let (fj)
∞
j=1

be a sequence of functions in C(R/Z;C) which converges uniformly to a function
f : R→ C. Then f ∈ C(R/Z;C).

Exercise 3.7. Prove Lemma 3.6. (Hint: for (i), first show that f is bounded on [0, 1].)

Remark 3.8. C(R/Z;C) becomes a metric space by re-introducing the sup-norm metric.
Let f, g ∈ C(R/Z;C), and define

d∞(f, g) := sup
x∈R
|f(x)− g(x)| = sup

x∈[0,1)
|f(x)− g(x)| .

In fact, C(R/Z;C) is a normed linear space with the norm

‖f‖∞ := sup
x∈R
|f(x)| = sup

x∈[0,1)
|f(x)| .

One can also show that C(R/Z;C) is a complete metric space.

4. Inner Products on Periodic Functions

We just discussed how to make C(R/Z;C) a normed linear space. We can also realize
C(R/Z;C) as a complex inner product space. However, the norm that is induced by this
inner product will be different then the sup-norm. As we have mentioned above, there are
many different norms in which we deal with functions. In this particular case, the most
natural norm will not be the sup-norm. Instead, we will see that the norm that comes from
the inner product will be more natural. We will discuss this issue further below, but for now
we begin by defining the inner product on C(R/Z;C).

Definition 4.1. Let f, g ∈ C(R/Z;C). We define the (complex) inner product 〈f, g〉 to
be the quantity

〈f, g〉 :=

∫ 1

0

f(x)g(x)dx.

Exercise 4.2. Verify that this inner product on C(R/Z;C) satisfies the axioms of a complex
inner product space.

Remark 4.3. In order to integrate a general complex-valued function of the form f(x) =

g(x) + ih(x) where h(x), g(x) ∈ R for all x ∈ [a, b], we define
∫ b
a
f := (

∫ b
a
g) + i(

∫ b
a
h). For

example, ∫ 1

0

(1 + ix) = 1 + i(

∫ 1

0

xdx) = 1 + i/2.

One can verify that all standard rules of calculus (integration by parts, the fundamental
theorem of calculus, substitution, etc.) still hold when the function is complex-valued instead
of real-valued.

Example 4.4. Let f, g ∈ C(R/Z;C) be the functions f(x) = 1 and g(x) = e2πix, for all
x ∈ R. Then

〈f, g〉 =

∫ 1

0

e2πixdx =

∫ 1

0

e−2πixdx =
e−2πix

−2πi
|x=1
x=0 =

e−2πi − 1

−2πi
= 0.
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Remark 4.5. Let f, g ∈ C(R/Z;C). In general, 〈f, g〉 will be a complex number. Note also
that since f, g are bounded and continuous, the function fg is Riemann integrable.

Definition 4.6. Let f, g ∈ C(R/Z;C). From Exercise 4.2, we see that C(R/Z;C) is a

complex inner product space when equipped with the inner product 〈f, g〉 =
∫ 1

0
fg. So, from

Exercise 1.1, we recall that this inner product makes C(R/Z;C) a normed linear space. We
refer to this norm ‖f‖2 as the L2-norm of f :

‖f‖2 :=
√
〈f, f〉 =

(∫ 1

0

f(x)f(x)dx

)1/2

=

(∫ 1

0

|f(x)|2 dx
)1/2

.

The norm ‖f‖2 is sometimes called the root mean square of f .

Example 4.7. Let f(x) := e2πix. Then

‖f‖2 = (

∫ 1

0

e2πixe−2πixdx)1/2 = (1)1/2 = 1.

Exercise 4.8. Let M > 0 be any positive real number. Find a function f ∈ C(R/Z;C)
such that ‖f‖2 ≤ 1 but such that ‖f‖∞ > M . On the other hand, if g ∈ C(R/Z;C), show
that ‖g‖2 ≤ ‖g‖∞. So, the L2 and sup-norms on C(R/Z;C) are related, but they can also
be very different.

Definition 4.9. Due to Pythagoras’s Theorem (Exercise 1.3), if f, g ∈ C(R/Z;C) satisfy
〈f, g〉 = 0, we sometimes say that f, g are orthogonal.

Definition 4.10. Let f, g ∈ C(R/Z;C). From Exercise 1.1, we recall that the inner product
on C(R/Z;C) also gives a metric on C(R/Z;C). We refer to this metric dL2 as the L2-metric:

dL2(f, g) :=
√
〈(f − g), (f − g)〉 = ‖f − g‖2 =

(∫ 1

0

|f(x)− g(x)|2 dx
)1/2

.

The L2 metric shares many characteristics with the `2-metric on Rn.

Remark 4.11. A sequence of functions (fj)
∞
j=1 in C(R/Z;C) will converge in the L2

metric to f ∈ C(R/Z;C) if and only if dL2(fj, f)→ 0 as j →∞. Equivalently,

lim
j→∞

∫ 1

0

|fj(x)− f(x)|2 dx = 0.

As we now show, convergence in the L2 metric is different than both uniform convergence
and pointwise convergence.

Exercise 4.12. Let (fj)
∞
j=1 be a sequence of functions in C(R/Z;C), and let f be another

function in C(R/Z;C).

• Show that if (fj)
∞
j=1 converges uniformly to f , then (fj)

∞
j=1 also converges to f in the

L2 metric.
• Find a sequence (fj)

∞
j=1 in C(R/Z;C) which converges to some f ∈ C(R/Z;C) in the

L2 metric, so that (fj)
∞
j=1 does not converge to f uniformly. (Hint: consider f = 0

and use Exercise 4.8.)
• Find a sequence (fj)

∞
j=1 in C(R/Z;C) which converges to some f ∈ C(R/Z;C) in the

L2 metric, so that (fj)
∞
j=1 does not converge pointwise to f . (Hint: consider f = 0

and try to make the functions fj large at one point.)
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• Find a sequence (fj)
∞
j=1 in C(R/Z;C) which converges to some f ∈ C(R/Z;C) point-

wise, so that (fj)
∞
j=1 does not converge to f in the L2 metric. (Hint: consider f = 0

and try to make the functions fj large in L2 norm.)

Remark 4.13. Even though C(R/Z;C) is complete with respect to the sup-norm metric,
it turns out that C(R/Z;C) is not complete with respect to the L2 metric. For example, try
to find a sequence of continuous functions that converges to the (discontinuous) square wave
function.

5. Trigonometric Polynomials

In the theory of power series, we approximated functions by linear combinations of the
monomials xn where n is a positive integer. Now, in our discussion of Fourier series, we
will approximate functions by linear combinations of the functions e2πinx where n ∈ Z. The
functions e2πinx are sometimes called characters.

To keep some simplicity in our notation, we make the following definition.

Definition 5.1. For every integer n, let en ∈ C(R/Z;C) denote the function

en(x) := e2πinx, x ∈ R.
We sometimes refer to en as the character with frequency n.

Definition 5.2. A function f ∈ C(R/Z;C) is said to be a trigonometric polynomial if
and only if there exists an integer N ≥ 0 and there exists a sequence of complex numbers
(cn)Nn=−N such that

f =
N∑

n=−N

cnen.

Example 5.3. The function f = 2e−2 + 1 + 3e1 is a trigonometric polynomial. More
explicitly, for all x ∈ R, we have

f(x) = 2e−4πix + 1 + 3e2πix.

Example 5.4. For any integer n, the function cos(2πnx) is a trigonometric polynomial, since
cos(2πnx) = (1/2)(e2πinx + e−2πinx). Similarly, for any integer n, the function sin(2πnx) is
a trigonometric polynomial, since sin(2πnx) = (1/(2i))(en(x) − e−n(x)). In particular, any
linear combination of sines and cosines of this form is a trigonometric polynomial. For
example, sin(4πx) + 3i cos(2πx) is a trigonometric polynomial.

Remark 5.5. It turns out that any function in C(R/Z;C) can be written as an infinite sum
of characters. That is, any function in C(R/Z;C) can be written as its Fourier series. The
analogous statement for power series is that any real analytic function is equal to its power
series.

The key fact used in proving this statement is given by the following computation.

Lemma 5.6 (Characters are an Orthonormal System). Let n,m be integers. If n = m,
then 〈en, em〉 = 1. If n 6= m, then 〈en, em〉 = 0. Also, ‖en‖2 = 1.

Exercise 5.7. Prove Lemma 5.6.

Consequently, there is a nice formula to find the coefficients of a trigonometric polynomial.
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Corollary 5.8. Let f =
∑N

n=−N cnen be a trigonometric polynomial. Then, for all integers
−N ≤ n ≤ N , we have

cn = 〈f, en〉.
Also, for any integer n with |n| > N , we have 〈f, en〉 = 0. And, we have the identity

‖f‖22 =
N∑

n=−N

|cn|2 .

Exercise 5.9. Prove Corollary 5.8. (Hint: for the final identity, use either the Pythagorean

Theorem and induction, or substitute f =
∑N

n=−N cnen into ‖f‖22 and expand out all of the
terms.)

Definition 5.10. Let f ∈ C(R/Z;C), and let n ∈ Z. We define the nth Fourier coefficient

of f , denoted f̂(n), to be the complex number

f̂(n) := 〈f, en〉 =

∫ 1

0

f(x)e−2πinxdx.

The function f̂ : Z→ C is called the Fourier transform of f .

We now restate Corollary 5.8. From Corollary 5.8, whenever f =
∑N

n=−N cnen is a trigono-
metric polynomial, we have

f =
N∑

n=−N

〈f, en〉en =
∞∑

n=−∞

〈f, en〉en.

That is, we have the Fourier inversion formula

f =
∞∑

n=−∞

f̂(n)en.

Put another way, for all x ∈ R,

f(x) =
∞∑

n=−∞

f̂(n)e2πinx.

Also, from the second part of Corollary 5.8, we have Plancherel’s formula

‖f‖22 =
∞∑

n=−∞

|f̂(n)|2.

Note that even though we have written these sums as infinite sums, they are actually finite
sums, so there is no issue talking about their convergence. Below, we will extend the Fourier
inversion and Plancherel formulas to general functions in C(R/Z;C). These formulas hold
on even larger classes of functions, but we may not have time to elaborate on this point. To
prove the Fourier inversion formula, we will need a version of the Weierstrass approximation
theorem for trigonometric polynomials. This proof will be analogous to the proof of the
previous case of Weierstrass approximation (which we omitted).
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6. Periodic Convolutions

In this section we will prove the following theorem.

Theorem 6.1 (Weierstrass approximation theorem for trigonometric polynomi-
als). Let f ∈ C(R/Z;C) and let ε > 0. Then there exists a trigonometric polynomial P such
that ‖f − P‖∞ < ε.

In other words, any continuous periodic function can be uniformly approximated by
trigonometric polynomials. In other words, if we let P (R/Z;C) denote the space of all
trigonometric polynomials, then the closure of P (R/Z;C) in the L∞ metric is C(R/Z;C).

The main tool in proving the Weierstrass approximation theorem is convolution.

Definition 6.2 (Convolution). Let f, g ∈ C(R/Z;C). Then we define the periodic con-
volution f ∗ g : R→ C of f and g by the formula

f ∗ g(x) :=

∫ 1

0

f(y)g(x− y)dy, x ∈ R.

For a fixed x ∈ R, we can consider f ∗ g(x) to be a shifted average of the values of f and
g. Below, we will see that the convolution can also be understood by looking at the Fourier
transform of f ∗ g.

Lemma 6.3 (Properties of Convolution). Let f, g, h ∈ C(R/Z;C).

(a) The convolution f ∗ g is continuous and Z-periodic. That is, f ∗ g ∈ C(R/Z;C).
(b) f ∗ g = g ∗ f .
(c) f ∗ (g + h) = f ∗ g + f ∗ h and (f + g) ∗ h = f ∗ g + g ∗ h. For any complex number

c, we have c(f ∗ g) = (cf) ∗ g = f ∗ (cg).

Exercise 6.4. Prove Lemma 6.3. (Hints: to prove (a), you may need to use the uniform
continuity of f and the boundedness of g, or vice versa. To prove f ∗ g = g ∗ f , you may
need to use periodicity to “cut and paste” the interval [0, 1].)

Let f ∈ C(R/Z;C) and let n ∈ Z. Then

f ∗ en = f̂(n)en.

Indeed, note that

f ∗ en =

∫ 1

0

f(y)e2πin(x−y)dy = e2πinx
∫ 1

0

f(y)e−2πinydy

= e2πinxf̂(n) = f̂(n)en.

More generally, from Lemma 6.3(c), if P =
∑N

n=−N cnen is any trigonometric polynomial,
then

f ∗ P =
N∑

n=−N

cn(f ∗ en) =
N∑

n=−N

f̂(n)cnen (‡)

In particular, we have the following

Lemma 6.5. Let f ∈ C(R/Z;C) and let P be a trigonometric polynomial. Then f ∗ P is
also a trigonometric polynomial.
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We can actually rewrite the equation (‡) as

f̂ ∗ P (n) = f̂(n)cn = f̂(n)P̂ (n).

In fact, even more generally, for any f, g ∈ C(R/Z;C), we have

f̂ ∗ g(n) = f̂(n)ĝ(n). (†)

In particular, even though the convolution can look a bit strange, we can instead interpret
f ∗ g as simply being a function whose Fourier transform multiplies the Fourier transforms
of f and g. The identity (†) is very important, though we will not use it this course.

Our strategy for proving the Weierstrass approximation theorem is the following. We will
find a trigonometric polynomial P such that f ∗ P is close to f . From Lemma 6.5, we know
that f ∗P is a trigonometric polynomial. So, the strategy reduces to finding a trigonometric
polynomial P such that f ∗ P is close to f . Since f ∗ P can be considered an average of the
values of f and P , it turns out that we want to choose the polynomial P to be a positive
function whose integral on [0, 1] is mostly concentrated at a single point in [0, 1]. So, if P is
very concentrated, then f ∗ P (x) will be mostly an average of the values of f near x. Then,
the (uniform) continuity of f will guarantee that this average will be close to f(x).

With this strategy in mind, we therefore look for a polynomial P that is positive and
mostly concentrated at a single point. We call such a function an approximation of the
identity.

Definition 6.6. Let ε > 0 and let 0 < δ < 1/2. A function f ∈ C(R/Z;C) is said to be an
(ε, δ) approximation of the identity if and only if the following properties hold:

• f(x) ≥ 0 for all x ∈ R, and
∫ 1

0
f = 1.

• f(x) < ε for all x with δ ≤ |x| ≤ 1− δ.

Lemma 6.7. For every ε > 0 and 0 < δ < 1/2, there exists a trigonometric polynomial P
such that P is an (ε, δ) approximation of the identity.

Proof. Let N ≥ 1. We define the Fejér kernel FN to be the function

FN :=
N∑

n=−N

(
1− |n|

N

)
en.

Note that FN is a trigonometric polynomial. Also,

FN =
1

N

N∑
`=−N

(N − |`|)e` =
1

N

N∑
`=−N

( ∑
−N+1≤j≤0≤k≤N−1: j+k=`

e`

)

=
1

N

N∑
`=−N

( ∑
−N+1≤j≤0≤k≤N−1: j+k=`

ejek

)
=

1

N

N−1∑
k=0

ek
(N−1∑
j=0

ej
)

=
1

N

∣∣∣∣∣
N−1∑
n=0

en

∣∣∣∣∣
2

. (∗)

And from the geometric series formula, for any real x that is not an integer,

N−1∑
n=0

en(x) =
e2πiNx − 1

e2πix − 1
=
eπiNx

eπix
· e

πiNx − e−πiNx

eπix − e−πix
=
eπi(N−1)x sin(Nπx)

sin(πx)
.
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Combining this equation with (∗), we have for any real x that is not an integer,

FN(x) =
sin2(Nπx)

N sin2(πx)
. (∗∗)

Also, when x is an integer, we see directly from (∗) that FN(x) = N . So, FN(x) ≥ 0 for all
real x. And by the definition of FN and Lemma 5.6,∫ 1

0

FN =
N∑

n=−N

(
1− |n|

N

)∫ 1

0

en = (1− 0/N)1 = 1.

Finally, since |sin(πNx)| ≤ 1, we conclude by (∗∗) that, if δ ≤ |x| ≤ 1− δ, then

FN(x) ≤ 1

N sin2(πx)
≤ 1

N sin2(πδ)
.

The last inequality follows since sin is increasing on [0, π/2], it is decreasing on [π/2, π],
and sin(πδ) = sin(−πδ) = sin(π(1 − δ)), which uses that sin is odd and Z-periodic. So, by
choosing N large enough, we have |FN(x)| < ε for all x with δ ≤ |x| ≤ 1− δ. �

We can now prove the Weierstrass approximation theorem.

Proof of Theorem 6.1. Let f ∈ C(R/Z;C). Then f is bounded, so there exists M > 0 such
that |f(x)| ≤M for all x ∈ R.

Let ε > 0. Since f is uniformly continuous, there exists δ > 0 such that, if |x− y| < δ,
then |f(x)− f(y)| < ε. By Lemma 6.7, let P be a trigonometric polynomial that is also
an (ε, δ) approximation of the identity. Then f ∗ P is also a trigonometric polynomial by
Lemma 6.5. So, it remains to show that ‖f − f ∗ P‖∞ < ε(2M + 2). Let x ∈ R. Then

|f(x)− f ∗ P (x)| =
∣∣∣∣f(x)−

∫ 1

0

P (y)f(x− y)dy

∣∣∣∣
=

∣∣∣∣∫ 1

0

P (y)f(x)dy −
∫ 1

0

P (y)f(x− y)dy

∣∣∣∣ , since

∫ 1

0

P (y)dy = 1

=

∣∣∣∣∫ 1

0

P (y)[f(x)− f(x− y)]dy

∣∣∣∣
≤
∫ 1

0

P (y) |f(x)− f(x− y)| dy , using P (y) ≥ 0

=

∫ δ

0

P (y) |f(x)− f(x− y)| dy +

∫ 1−δ

δ

P (y) |f(x)− f(x− y)| dy

+

∫ 1

1−δ
P (y) |f(x)− f(x− y)| dy

≤
∫ δ

0

P (y)εdy +

∫ 1−δ

δ

P (y)2Mdy +

∫ 1

1−δ
P (y) |f(x− 1)− f(x− y)| dy

≤ ε+ 2Mε+

∫ 1

1−δ
P (y)εdy ≤ ε(2M + 2).

In conclusion, ‖f − f ∗ P‖∞ ≤ ε(2M + 2). Since ε > 0 is arbitrary, we can find f ∗ P
arbitrarily close to f in the sup norm, as desired. �
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7. Fourier Inversion and Plancherel Theorems

Using the Weierstrass approximation (Theorem 6.1), we can now prove the Fourier inver-
sion and Plancherel theorems for arbitrary functions in C(R/Z;C). The general theme here
is that, Fourier inversion holds for any trigonometric polynomial, but trigonometric polyno-
mials approximate functions in C(R/Z;C) arbitrarily well, so Fourier inversion also holds
for functions in C(R/Z;C). Analogously, we know that a continuous function F : R → R
which is zero on rational numbers is actually zero on all of R.

Theorem 7.1 (Fourier inversion/ Best approximation). For any f ∈ C(R/Z;C), the

series
∑N

n=−N f̂(n)en converges to f in the L2 metric. That is,

lim
N→∞

‖f −
N∑

n=−N

f̂(n)en‖2 = 0.

Proof. Let ε > 0. We need N0 such that, for all N > N0, we have ‖f−
∑N

n=−N f̂(n)en‖2 < ε.
From the Weierstrass approximation theorem, there exists a natural number N0 and

there exists a trigonometric polynomial P =
∑N0

n=−N0
cnen such that ‖f − P‖∞ < ε. So,

‖f − P‖2 ≤ ‖f − P‖∞ < ε.

Let N > N0, and let fN :=
∑N

n=−N f̂(n)en. We will conclude by showing that ‖f − fN‖2 <
ε. First, note that, for any m ∈ Z with |m| ≤ N , we have by Lemma 5.6

〈f − fN , em〉 = 〈f, em〉 −
N∑

n=−N

f̂(n)〈en, em〉 = f̂(m)− f̂(m) = 0.

In particular, since fN − P is a linear combination of em where |m| ≤ N , we have

〈f − fN , fN − P 〉 = 0.

By the Pythagorean Theorem (Exercise 1.3), we therefore have

‖f − P‖22 = ‖f − fN‖22 + ‖fN − P‖22 .

Consequently,

‖f − fN‖2 ≤ ‖f − P‖2 < ε.

�

Remark 7.2. Note that we have only proven convergence in the L2 metric, and it is natural
to look for other kinds of convergence. However, in general, fN does not converge to f
pointwise, and fN does not converge to f uniformly. On the other hand, if we assume
more about the function f , then we can get better convergence results. For example, if f is
continuously differentiable, then fN converges to f pointwise. And if f is twice continuously
differentiable, then fN converges to f uniformly. We will not cover these results here, and
we instead defer them to the Fourier analysis course. Below, we only mention one theorem
concerning uniform convergence.
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Theorem 7.3. Let f ∈ C(R/Z;C), and assume that the series (of numbers)
∑∞

n=−∞ |f̂(n)|
is absolutely convergent. Then the series

∑∞
n=−∞ f̂(n)en converges uniformly to f . That is,

lim
N→∞

‖f −
N∑

n=−N

f̂(n)en‖∞ = 0.

Proof. By the Weierstrass M -test (Theorem 1.4), we know that
∑N

n=−N f̂(n)en converges
uniformly to some function g. (Strictly speaking, the Weierstrass M -test applies to functions
summed from n = 0 to n = −∞, but this result applies to the situation at hand by splitting
the double sum into two separate infinite sums.) By Lemma 3.6(c), g is continuous and
periodic. So,

lim
N→∞

‖g −
N∑

n=−N

f̂(n)en‖∞ = 0 (∗).

Since the L2 norm is bounded by the L∞ norm, we conclude that

lim
N→∞

‖g −
N∑

n=−N

f̂(n)en‖2 = 0.

By Theorem 7.1, we already know that

lim
N→∞

‖f −
N∑

n=−N

f̂(n)en‖2 = 0.

By the uniqueness of limits in metric spaces (in this case, uniqueness of limits with respect
to the L2 metric), we conclude that f = g. That is, (∗) concludes the proof. �

As a Corollary of Fourier inversion, we obtain the following theorem.

Theorem 7.4 (Plancherel theorem). Let f ∈ C(R/Z;C). Then the series (of numbers)∑∞
n=−∞ |f̂(n)|2 is absolutely convergent. Also,

‖f‖22 =
∞∑

n=−∞

|f̂(n)|2.

Proof. Let ε > 0. By the Fourier inversion theorem (Theorem 7.1), there exists N0 such
that, for all N > N0, we have

‖f −
N∑

n=−N

f̂(n)en‖2 < ε.

So, by the triangle inequality,

‖f‖2 − ε < ‖
N∑

n=−N

f̂(n)en‖2 ≤ ‖f‖2 + ε.

Moreover, by Corollary 5.8, we have

‖
N∑

n=−N

f̂(n)en‖2 = (
N∑

n=−N

|f̂(n)|2)1/2.
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Therefore,

(‖f‖2 − ε)
2 <

N∑
n=−N

|f̂(n)|2 < (‖f‖2 + ε)2.

Taking the limit superior and limit inferior, we have

(‖f‖2 − ε)
2 ≤ lim inf

N→∞

N∑
n=−N

|f̂(n)|2 ≤ lim sup
N→∞

N∑
n=−N

|f̂(n)|2 ≤ (‖f‖2 + ε)2.

Since ε > 0 is arbitrary, we conclude that limN→∞
∑N

n=−N |f̂(n)|2 = ‖f‖22, as desired. �
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8. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Z+ := {1, 2, 3, 4, . . .}, the positive integers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

R∗ = R ∪ {−∞} ∪ {+∞} denotes the set of extended real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Rn := {(x1, . . . , xn) : xi ∈ R, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

Let (X, d) be a metric space, let x0 ∈ X, let r > 0 be a real number, and let E be a subset
of X. Let (x1, . . . , xn) be an element of Rn, and let p ≥ 1 be a real number.

B(X,d)(x0, r) = B(x0, r) := {x ∈ X : d(x, x0) < r}.
E denotes the closure of E

int(E) denotes the interior of E

∂E denotes the boundary of E

‖(x1, . . . , xn)‖`p := (
n∑
i=1

|xi|p)1/p

‖(x1, . . . , xn)‖`∞ := max
i=1,...,n

|xi|
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Let f, g : (X, dX)→ (Y, dY ) be maps between metric spaces. Let V ⊆ X, and let W ⊆ Y .

f(V ) := {f(v) ∈ Y : v ∈ V }.
f−1(W ) := {x ∈ X : f(x) ∈ W}.
d∞(f, g) := sup

x∈X
dY (f(x), g(x)).

B(X;Y ) denotes the set of functions f : X → Y that are bounded.

C(X;Y ) := {f ∈ B(X;Y ) : f is continuous}.
Let f, g : R→ C be Z-periodic functions.

‖f‖∞ := sup
x∈[0,1)

|f(x)| .

〈f, g〉 := (

∫ 1

0

f(x)g(x)dx)1/2.

‖f‖2 :=
√
〈f, f〉 = (

∫ 1

0

|f(x)|2 dx)1/2

dL2(f, g) := ‖f − g‖2 = (

∫ 1

0

|f(x)− g(x)|2 dx)1/2.

8.1. Set Theory. Let X, Y be sets, and let f : X → Y be a function. The function f : X →
Y is said to be injective (or one-to-one) if and only if: for every x, x′ ∈ V , if f(x) = f(x′),
then x = x′.

The function f : X → Y is said to be surjective (or onto) if and only if: for every y ∈ Y ,
there exists x ∈ X such that f(x) = y.

The function f : X → Y is said to be bijective (or a one-to-one correspondence) if
and only if: for every y ∈ Y , there exists exactly one x ∈ X such that f(x) = y. A function
f : X → Y is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if and only if there exists a bijection
from X onto Y .

UCLA Department of Mathematics, Los Angeles, CA 90095-1555
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