Analysis 1 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due December 11, in the discussion section.

Assignment 9

Exercise 1. Let a < b be real numbers, and let $f, g: [a, b] \to \mathbf{R}$ be Riemann integrable functions on [a,b]. Then

- (i) The function f + g is Riemann integrable on [a, b], and $\int_a^b (f + g) = (\int_a^b f) + (\int_a^b g)$.
- (ii) For any real number c, cf is Riemann integrable on [a,b], and $\int_a^b (cf) = c(\int_a^b f)$. (iii) The function f-g is Riemann integrable on [a,b], and $\int_a^b (f-g) = (\int_a^b f) (\int_a^b g)$.
- (iv) If $f(x) \ge 0$ for all $x \in [a, b]$, then $\int_a^b f \ge 0$.
- (v) If $f(x) \ge g(x)$ for all $x \in [a, b]$, then $\int_a^b f \ge \int_a^b g$.
- (vi) If there exists a real number c such that f(x) = c for $x \in [a, b]$, then $\int_a^b f = c(b a)$.
- (vii) Let c, d be real numbers such that $c \leq a < b \leq d$. Then [c, d] contains [a, b]. Define F(x) := f(x) for all $x \in [a, b]$ and F(x) := 0 otherwise. Then F is Riemann integrable on [c,d], and $\int_c^d F = \int_a^b f$. (viii) Let c be a real number such that a < c < b. Then $f|_{[a,c]}$ and $f|_{[c,b]}$ are Riemann
- integrable on [a, c] and [c, b] respectively, and

$$\int_{a}^{b} f = \int_{a}^{c} f|_{[a,c]} + \int_{c}^{b} f|_{[c,b]}.$$

Exercise 2. Let a < b be real numbers. Let $f: [a, b] \to \mathbf{R}$ be a bounded function. Let $c \in [a, b]$. Assume that, for each $\delta > 0$, we know that f is Riemann integrable on the set $\{x \in [a,b]: |x-c| \geq \delta\}$. Then f is Riemann integrable on [a,b].

Exercise 3. Find a function $f:[0,1]\to \mathbf{R}$ such that f is not Riemann integrable on [0,1], but such that |f| is Riemann integrable on [0,1].

Exercise 4. Let a < b be real numbers. Let $f: [a, b] \to \mathbf{R}$ be a bounded function. So, there exists a real number M such that $|f(x)| \leq M$ for all $x \in [a,b]$. Let P be a partition of [a,b].

- Using the identity $\alpha^2 \beta^2 = (\alpha + \beta)(\alpha \beta)$, where $\alpha, \beta \in \mathbf{R}$, show that $U(f^2, P) - L(f^2, P) < 2M(U(f, P) - L(f, P)).$
- Show that if f is Riemann integrable on [a, b], then f^2 is also Riemann integrable on [a,b].
- Let $f, g: [a, b] \to \mathbf{R}$ be Riemann integrable functions on [a, b]. Using the identity $4\alpha\beta = (\alpha + \beta)^2 - (\alpha - \beta)^2$, where $\alpha, \beta \in \mathbf{R}$, show that fg is Riemann integrable on [a,b].

Exercise 5. Let $f: [0,1] \to [0,\infty)$ be a continuous function such that $\int_0^1 f = 0$. Prove that f(x) = 0 for all $x \in [0,1]$.

Exercise 6. The following exercise deals with metric properties of the space of Riemann integrable functions.

• Let α, β be real numbers. Prove that $\alpha\beta \leq (\alpha^2 + \beta^2)/2$. Now, let a < b be real numbers, and let $f, g \colon [a, b] \to \mathbf{R}$ be two Riemann integrable functions. Assume that $\int_a^b f^2 = 1$ and $\int_a^b g^2 = 1$. (Recall that since f, g are Riemann integrable, we know that f^2, g^2 and fg are also Riemann integrable by Exercise 4.) Prove that

$$\int_{a}^{b} fg \le 1.$$

• Let a < b be real numbers, and let $f, g \colon [a, b] \to \mathbf{R}$ be two Riemann integrable functions. Prove the Cauchy-Schwarz inequality:

$$\left| \int_a^b fg \right| \le \left(\int_a^b f^2 \right)^{1/2} \left(\int_a^b g^2 \right)^{1/2}$$

• Let a < b be real numbers, and let $f, g, h \colon [a, b] \to \mathbf{R}$ be Riemann integrable functions. Define

$$d(f,g) := \left(\int_a^b (f-g)^2 \right)^{1/2}$$
.

Prove the triangle inequality for d. That is, show that

$$d(f,g) \le d(f,h) + d(h,g).$$