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1. Problem Set 1

Exercise 1.1.

(i) Prove that for any sets A,B and C we have

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(ii) Let S be an index set and let As be a family of subsets of some setX. Let Ac := XrA.
Prove De Morgan’s laws(⋃

s∈S

As

)c

=
⋂
s∈S

Acs,

(⋂
s∈S

As

)c

=
⋃
s∈S

Acs.

Proof of (i). Let P,Q and R be statements. We use ∧ to denote “and,” and we use ∨ to
denote “or.” We begin with the following truth table

P Q R P ∨ (Q ∧R) (P ∨Q) ∧ (P ∨R) P ∧ (Q ∨R) (P ∧Q) ∨ (P ∧R)
T T T T T T T
T F T T T T T
F T T T T F F
F F T F F F F
T T F T T T T
T F F T T F F
F T F F F F F
F F F F F F F

Table 1. A Truth Table

Date: May 9, 2013.
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Now, let P be the statement “x ∈ A,” let Q be the statement “x ∈ B,” and let R be
the statement “x ∈ C.” By the construction of Table 1, the rows of the table exhaust the
23 = 8 possibilities for the location of x. So, since the fourth and fifth columns of Table 1
are identical, we conclude that P ∨ (Q∧R) = (P ∨Q)∧ (P ∨R). By definitions of P,Q and
R, we get A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Also, since the sixth and seventh columns of
Table 1 are identical, we conclude that P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R). By definitions of
P,Q and R, we get A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). �

Proof of (ii). Let x ∈ ∪s∈SAs. Then x ∈ ∪s∈SAs if and only if there exists s′ ∈ S such that
x ∈ As′ . Let P be the statement x ∈ ∪s∈SAs. The statement x ∈ (∪s∈SAs)c is therefore
the negation of P . The negation of the statement “there exists s′ ∈ S such that x ∈ As′”
is “for all s ∈ S, x /∈ As.” So, x ∈ (∪s∈SAs)c if and only if, for all s ∈ S, x /∈ As. That
is, x ∈ (∪s∈SAs)c if and only if, for all s ∈ S, x ∈ Acs. That is, x ∈ (∪s∈SAs)c if and only
if, x ∈ ∩s∈SAcs. We have therefore proved the first required law. We now proceed with the
second law.

Let x ∈ ∩s∈SAs. Then x ∈ ∩s∈SAs if and only if for all s ∈ S, x ∈ As. Let P be the
statement x ∈ ∩s∈SAs. The statement x ∈ (∩s∈SAs)c is therefore the negation of P . The
negation of the statement “for all s ∈ S, x ∈ As” is “there exists s′ ∈ S such that x /∈ As′ .”
So, x ∈ (∩s∈SAs)c if and only if there exists s′ ∈ S with x /∈ As′ . That is, x ∈ (∩s∈SAs)c if
and only if there exists s′ ∈ S with x ∈ Acs′ . That is, x ∈ (∩s∈SAs)c if and only if x ∈ ∪s∈SAcs.
We have therefore proved the second required law. �

Exercise 1.2. Show that the scalar product 〈·, ·〉 on Rn satisfies the parallelogram law or
polarization identity

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .
What does this identity mean for the parallelogram spanned by x and y, i.e. the parallelo-
gram with vertices 0, x, y and x+ y?

Proof. Let x, y ∈ Rn. Then

|x+ y|2 + |x− y|2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉+ 〈x, y〉+ 〈y, y〉 − 2〈x, y〉
= 2〈x, x〉+ 2〈y, y〉
= 2 |x|2 + 2 |y|2 .

Geometrically, this identity says that the sum of the squared lengths of the diagonals of a
parallelogram is equal to the sum of the squared lengths of the edges of the parallelogram. �

Exercise 1.3.

(i) Prove that if A and B are closed, then A ∪ B is also closed. Find an example that
shows that infinite unions of closed sets are not necessarily closed.

(ii) Prove that if for each s ∈ S the set As is closed, then ∩s∈SAs is also closed.

Proof of (i). Let A,B be closed sets. By the definition of closedness, Ac and Bc are open.
From De Morgan’s law, (A∪B)c = Ac∩Bc. We have therefore exhibited (A∪B)c as a finite
intersection of open sets. Therefore, (A ∪ B)c is open, and its complement A ∪ B is closed,
as desired.
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We now claim that (0, 1) = ∪n≥3[1/n, 1− (1/n)]. Let x ∈ (0, 1). Then there exists n ∈ Z,
n ≥ 3 such that 1/n ≤ x ≤ 1 − (1/n). So, (0, 1) ⊆ ∪n≥3[1/n, 1 − (1/n)]. Now, let x ∈
∪n≥3[1/n, 1− (1/n)]. Then there exists n ∈ N, n ≥ 3 such that x ∈ [1/n, 1− (1/n)] ⊆ (0, 1).
Therefore, ∪n≥3[1/n, 1− (1/n)] ⊆ (0, 1). Therefore (0, 1) = ∪n≥3[1/n, 1− (1/n)]. �

Proof of (ii). Let As be closed, s ∈ S. Then Acs is open for all s ∈ S. From De Morgan’s
law, (∩s∈SAs)c = ∪s∈SAcs. Since an arbitrary union of open sets is open, we conclude that
(∩s∈SAs)c is open. Therefore, its complement ∩s∈SAs is closed, as desired. �

Exercise 1.4.

(i) Show that

f−1(A ∩B) = f−1(A) ∩ f−1(B), f−1(A ∪B) = f−1(A) ∪ f−1(B).

(ii) Show that

f(A ∪B) = f(A) ∪ f(B), f(A ∩B) ⊆ f(A) ∩ f(B).

Find an example to show that, in general, f(A ∩ B) is not equal to f(A) ∩ f(B).
Show that if f is injective, then we have

f(A ∩B) = f(A) ∩ f(B).

Proof of (i). We first show that f−1(A ∩B) = f−1(A) ∩ f−f (B).

x ∈ f−1(A ∩B)⇐⇒ f(x) ∈ A ∩B
⇐⇒ f(x) ∈ A and f(x) ∈ B
⇐⇒ x ∈ f−1(A) andx ∈ f−1(B)

⇐⇒ x ∈ (f−1(A)) ∩ (f−1(B)).

We now show that f−1(A ∪B) = f−1(A) ∪ f−1(B).

x ∈ f−1(A ∪B)⇐⇒ f(x) ∈ A ∪B
⇐⇒ f(x) ∈ A or f(x) ∈ B
⇐⇒ x ∈ f−1(A) orx ∈ f−1(B)

⇐⇒ x ∈ (f−1(A)) ∪ (f−1(B)).

�

Proof of (ii). We first show that f(A ∪B) = f(A) ∪ f(B).

x ∈ f(A ∪B)⇐⇒ ∃ y ∈ A ∪B such that f(y) = x

⇐⇒ ∃ y ∈ A or∃ y ∈ B such that f(y) = x

⇐⇒ x ∈ f(A) orx ∈ f(B)

⇐⇒ x ∈ f(A) ∪ f(B).

We now prove that f(A∩B) ⊆ f(A)∩f(B). Let x ∈ f(A∩B). Then there exists y ∈ A∩B
such that f(y) = x. So, y ∈ A and y ∈ B, and f(y) = x. Then x ∈ f(A) and x ∈ f(B), so
x ∈ f(A) ∩ f(B). Combining our implications, we conclude that f(A ∩B) ⊆ f(A) ∩ f(B).
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We now construct a function f and two sets A,B such that f(A∩B) 6= f(A)∩ f(B). Let
f : R→ R with f(x) = x2, let A = [−1, 0] and let B = [0, 1]. Then

f(A ∩B) = f(0) = 0 6= [0, 1] = [0, 1] ∩ [0, 1] = f(A) ∩ f(B).

Now, assume that f is injective. We show the reverse implication f(A∩B) ⊇ f(A)∩f(B).
Let x ∈ f(A) ∩ f(B). Then x ∈ f(A) and x ∈ f(B). So, there exist y ∈ A and y′ ∈ B such
that f(y) = x and f(y′) = x. Since f is injective and f(y) = f(y′), we conclude that y = y′.
Since y ∈ A and y ∈ B, we conclude that y ∈ A ∩ B. Since f(y) = x, we conclude that
x ∈ f(A ∩B). Combining our implications, we conclude that f(A ∩B) ⊇ f(A) ∩ f(B). �

Exercise 1.5.

(i) Let A1, A2, A3, . . . be subsets of some set X, and define

U :=
∞⋂
n=1

∞⋃
k=n

Ak, V :=
∞⋃
n=1

∞⋂
k=n

Ak.

Which one of U ∪ V and V ∪ U is true? Prove your claim.
(ii) Let (fk)k∈N be a sequence of functions on some set X, and let f be a function on X.

Show that the set of convergence C defined by

C :=
{
x ∈ X : lim

k→∞
fk(x) = f(x)

}
may be written as

C =
∞⋂
`=1

∞⋃
n=1

∞⋂
k=n

{
x ∈ X : |fk(x)− f(x)| ≤ 1

`

}
.

Proof of (i). We show that V ⊆ U , but in general, U 6= V . Observe

x ∈ ∩∞n=1 ∪∞k=n Ak ⇐⇒ ∀n ≥ 1, x ∈ ∪∞k=nAk
⇐⇒ ∀n ≥ 1, ∃ k ≥ n such thatx ∈ Ak
⇐⇒ there exist infinitely many k ≥ 1 such that x ∈ Ak. (∗)

x ∈ ∪∞n=1 ∩∞k=n Ak ⇐⇒ ∃n ≥ 1, such that x ∈ ∩∞k=nAk
⇐⇒ ∃n ≥ 1, such that ∀ k ≥ n, x ∈ Ak. (∗∗)

Now, let x ∈ V . From (∗∗), ∃ n ≥ 1 such that ∀ k ≥ n, x ∈ Ak. In particular, there exist
infinitely many k ≥ n ≥ 1 such that x ∈ Ak. Therefore, from (∗), x ∈ U . We conclude that
V ⊆ U .

However, in general, V 6= U . For example, for k even, let Ak := [0, 1], and for k odd, let
Ak := [−1, 0). From (∗∗), V = ∅, and from (∗), U = [−1, 1]. So, in this case, U 6= V . �

Proof of (ii). Let U` := ∪∞n=1 ∩∞k=n
{
x ∈ X : |fk(x)− f(x)| ≤ 1

`

}
. From (∗∗), x ∈ U` if and

only if: there exists n ≥ 1 such that, for all k ≥ n, |fk(x)− f(x)| ≤ 1/`. So, x ∈ ∩∞`=1 if and
only if: for all ` ≥ 1, there exists n ≥ 1 such that, for all k ≥ n, |fk(x)− f(x)| ≤ 1/`. And
the latter condition is the definition of the statement limk→∞ fk(x) = f(x). We conclude
that C = ∩∞`=1U`, as desired. �
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Exercise 1.6. Prove that a sequence in Rn converges if and only if all of its components
converge.

Proof. Let x = (x1, . . . , xn) ∈ Rn, ε > 0. Let B2(x, ε) := {y ∈ Rn : |x− y| < ε}, and let
B∞(x, ε) := {y ∈ Rn : maxi=1,...,n |xi − yi| ≤ ε}. Note that

|x| =

(
n∑
i=1

x2i

)1/2

≤
(
n max
i=1,...,n

x2i

)1/2

=
√
n max
i=1,...,n

|xi| ≤
√
n

(
n∑
i=1

x2i

)1/2

.

These inequalities imply the following set containments

B2(x, ε) ⊆ B∞(x, ε) ⊆ B2(x, ε
√
n) (∗)

We now prove the forward implication of the exercise. Let x(j) → x in Rn as j → ∞.
Then x(j) → x if and only if: ∀ ε > 0, ∃ N ∈ N such that, for all j ≥ N , x(j) ∈ B2(x, ε). So,
using (∗), ∀ ε > 0, ∃ N ∈ N such that, for all j ≥ N , x(j) ∈ B∞(x, ε). By the definition of

B∞(x, ε), ∀i = 1, . . . , n, ∀ ε > 0, ∃ N ∈ N such that, for all j ≥ N , |x(j)i − xi| < ε. That is,
each component of the sequence converges.

We now prove the reverse implication of the exercise. Suppose that, for all i = 1, . . . , n,

x
(j)
i → xi as j →∞. Then, ∀ ε > 0, ∃N(i) ∈ N such that, for all j ≥ N(i), |x(j)i −xi| < ε/

√
n.

Define N ′ := maxi=1,...,nN(i). Then, ∀ ε > 0, ∃ N = N ′ ∈ N such that, for all j ≥ N ,

|x(j)i − xi| < ε/
√
n ∀ i = 1, . . . , n. By the definition of B∞(x, ε), ∀ ε > 0, ∃ N ∈ N such

that, for all j ≥ N , x ∈ B∞(x, ε/
√
n). Using (∗), ∀ ε > 0, ∃ N ∈ N such that, for all j ≥ N ,

x ∈ B2(x, ε). That is, x(j) → x, as desired. �

Exercise 1.7. Given a set A, the closure A of A is defined as

A :=
⋂

B⊇A :
B closed

B.

(i) Prove that A is closed. Hence, A is the smallest closed set containing A.
(ii) Show that

A = A ∪ {limit points ofA}.
(iii) Show that A ∪B = A ∪B and A ∩B ⊆ A ∩B.
(iv) Find an example that shows that A ∩B 6= A ∩B in general.

Proof of (i). From De Morgan’s law, (A)c = ∪B⊇A : B closedB
c. Since each set B is closed,

(A)c is a union of open sets. That is, (A)c is open, and therefore A is closed. �

Proof of (ii). From the definition of A, we know that A ⊆ A. So, to prove our desired
equality, it suffices to show that Ar A = {limit points ofA}r A.

We first show that ArA ⊆ {limit points ofA}rA. Let x ∈ ArA. Suppose for the sake
of contradiction that x ∈ ({limit points ofA}rA)c = {limit points ofA}c∪A. Since x /∈ A,
x ∈ {limit points ofA}c. Then, by negating the definition of the limit points, there exists
r > 0 such that B2(x, r) ∩ (A r {x}) = ∅. Since x ∈ A r A, x /∈ A. So, there exists r > 0
such that B2(x, r) ∩ A = ∅. Since B2(x, r) is open, A ⊆ B2(x, r)

c, and B2(x, r)
c is a closed

set. So, A ⊆ B2(x, r)
c. In particular, x /∈ A, a contradiction. We therefore conclude that

Ar A ⊆ {limit points ofA}r A.
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We now show that A r A ⊇ {limit points ofA} r A. Let x be a limit point of A such
that x /∈ A. Since x is a limit point of A, for n ∈ N, there exists xn ∈ A ∩ B(x, 2−n)
with xn 6= x. We need to show that x ∈ B. We argue by contradiction. Assume that
x ∈ (ArA)c = (A)c∪A. Since x /∈ A, x ∈ (A)c. From De Morgan’s law, x ∈ ∪B⊇A,B closedB

c.
That is, there exists a closed B such that B ⊇ A and such that x /∈ B. Since B is closed, Bc is
open, so there exists ε > 0 such that B(x, ε)∩B = ∅. But if we choose N such that 2−N < ε,
then xN ∈ A ∩ B(x, 2−N) ⊆ A ∩ B(x, ε). But since A ⊆ B, xN ∈ B(x, ε) ⊆ Bc ⊆ Ac.
The latter statement contradicts xN ∈ A. We therefore conclude that x ∈ A r A, i.e.
Ar A ⊇ {limit points ofA}r A. �

Proof of (iii). We first show that A ∪B ⊆ A∪B. From (ii), we know that A ∪B = A∪B∪
{limit points ofA∪B}. If x is a limit point of A∪B, then ∀ r > 0, B(x, r)∩((A∪B)r{x}) 6=
∅. So, ∀ n ≥ 1, there exists xn ∈ (B(x, 2−n) r {x}) ∩ (A ∪ B). By taking a subsequence
of the sequence (xn)n∈N, we may assume that either (xnj

)j∈N ⊆ A or (xnj
)j∈N ⊆ B. So,

either B(x, r) ∩ (Ar {x}) 6= ∅ for all r > 0, or B(x, r) ∩ (B r {x}) 6= ∅ for all r > 0. That
is, x is a limit point of A, or x is a limit point of B. So, from (ii), x ∈ A ∪ B. That is,
{limit points ofA ∪ B} ⊆ A ∪ B. Therefore, A ∪B = A ∪ B ∪ {limit points ofA ∪ B} ⊆
A ∪B ∪ (A ∪B) = A ∪B, proving our first containment.

We now show that A ∪B ⊇ A ∪ B. Let x ∈ A ∪ B. From (ii), A ∪ B = A ∪ B ∪
{limit points ofA} ∪ {limit points ofB}. Let x ∈ {limit points ofA} ∪ {limit points ofB}.
That is, x is a limit point of A, or x is a limit point of B. So, either B(x, r)∩ (Ar {x}) 6= ∅
for all r > 0, or B(x, r) ∩ (B r {x}) 6= ∅ for all r > 0. In either case, B(x, r) ∩ ((A ∪
B) r {x}) 6= ∅ for all r > 0. So, x is a limit point of A ∪ B. And from (ii), x ∈ A ∪B.
That is, {limit points ofA} ∪ {limit points ofB} ⊆ A ∪B. Therefore, A ∪ B = A ∪ B ∪
{limit points ofA} ∪ {limit points ofA} ⊆ A ∪ B ∪ A ∪B = A ∪B, proving our second
containment.

We now show thatA ∩B ⊆ A∩B. From (ii), A ∩B = A∩B∪{limit points ofA∩B}. Since
A ⊆ A and B ⊆ B, A∩B ⊆ A∩B. So, it suffices to show that {limit points ofA∩B} ⊆ A∩B.
Let x be a limit point of A∩B. Then ∀ r > 0, B(x, r)∩ ((A∩B)r {x}) 6= ∅. In particular,
for all r > 0, and B(x, r) ∩ (B r {x}) 6= ∅, and for all r > 0, B(x, r) ∩ (Ar {x}) 6= ∅. That
is, x is a limit point of A and x is a limit point of B. So, from (ii), x ∈ A and x ∈ B. That
is, x ∈ A ∩B. In conclusion, A ∩B ⊆ A ∩B. �

Proof of (iv). Let A := [0, 1] ∩ Q, and let B := [0, 1] r A. By the density of the rationals,
∀ x ∈ [0, 1] and for all r > 0, ∃ y ∈ A with 0 < |y − x| < r. Also, by the density of the
irrationals, ∀ x ∈ [0, 1] and for all r > 0, ∃ y ∈ A with 0 < |y − x| < r. So, from (ii),
[0, 1] ⊆ B and [0, 1] ⊆ A. Since [0, 1] is closed and [0, 1] ⊇ A, [0, 1] ⊇ B, the definition of
the closure shows that [0, 1] ⊇ A and [0, 1] ⊇ B. Combining our containments shows that
A = B = [0, 1], so that A ∩ B = [0, 1]. However, by construction, A ∩ B = ∅, so by the
definition of A ∩B, A ∩B = ∅. In particular, A ∩B = [0, 1] 6= ∅ = A ∩B. �

Exercise 1.8.

(i) Prove the following characterization of continuity. A function f is continuous at a
if and only if every sequence (xk)k∈N that converges to a has a subsequence (xkj)j∈N
such that limj→∞ f(xkj) = f(a).
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(ii) Suppose that f is a continuous, bijective function defined on a compact set A. Show
that f−1 is also continuous.

(iii) Can you find an example of a continuous, bijective function f such that f−1 is not
continuous?

Proof of (i). The forward implication follows directly from the limit point definition of conti-
nuity. We therefore prove the reverse implication. We first consider the case that f : Rn → R
is our function. Assume that every sequence (xk)k∈N that converges to a has a subsequence
(xkj)j∈N such that limj→∞ f(xkj) = f(a). We prove by contradiction that f is continu-
ous. Assume for the sake of contradiction that f is not continuous. Then there exists
a ∈ Rn and there exists a sequence (xk)k∈N such that xk → a as k → ∞, and either
(1) limk→∞ f(xk) 6= f(a), or (2) the limit limk→∞ f(xk) does not exist. In either case, let
(xkj)j∈N be the subsequence guaranteed by our assumption such that limj→∞ f(xkj) = f(a).
In case (1), we have limk→∞ f(xk) = limj→∞ f(xkj) = f(a), a contradiction. In case (2), let
(ak)k∈N, (bk)k∈N be subsequences of (xk)k∈N such that limk→∞ f(ak) = lim supk→∞ f(xk) and
such that limk→∞ f(bk) = lim infk→∞ f(xk). By assumption, we can take subsequences of akj
and bkj such that limj→∞ f(akj) = f(a) and such that limj→∞ f(bkj) = f(a). But then

lim sup
k→∞

f(xk) = lim
k→∞

f(ak) = lim
j→∞

f(akj) = f(a) = lim
j→∞

f(bkj) = lim
k→∞

f(bk) = lim inf
k→∞

f(xk).

That is, limk→∞ f(xk) exists, a contradiction. So, in any case, we achieve a contradiction.
We conclude that f is in fact continuous, as desired.

We now note how to prove the general case, where our function is f : Rn → Rm. As before,
the forward implication follows directly from the limit point definition of continuity. We
therefore prove the reverse implication. Assume that every sequence (xk)k∈N that converges
to a has a subsequence (xkj)j∈N such that limj→∞ f(xkj) = f(a). We prove by contradiction
that f is continuous. Assume for the sake of contradiction that f is not continuous. Then
there exists a ∈ Rn and there exists a sequence (xk)k∈N such that xk → a as k → ∞,
and either (1) limk→∞ f(xk) 6= f(a), or (2) the limit limk→∞ f(xk) does not exist. Suppose
Case (1) occurs. From the contrapositive of Exercise 1.6, there exists some component
i ∈ {1, . . . ,m} of the vectors f(xk) such that limk→∞ f(xk)i 6= f(a)i. But then we repeat the
argument above for the function fi : Rn → R and Case (1), and we achieve a contradiction,
as above. Now, suppose Case (2) occurs. From the contrapositive of Exercise 1.6, there
exists some component i ∈ {1, . . . ,m} of the vectors f(xk) such that limk→∞ f(xk)i does not
exist. But then we repeat the argument above for the function fi : Rn → R and Case (2),
and we achieve a contradiction, as above. The exercise is therefore concluded. �

Proof of (ii). Let f : A → Y be a continuous, bijective function defined on a compact set
A. Since f is bijective, f−1 : Y → A is a well defined function. Let (yk)k∈N be a sequence
in Y such that yk → y. From part (i), it suffices to show that there exists a subsequence
(ykj)j∈N such that limj→∞ f

−1(ykj) = f−1(y). Let ak be the unique elements of A such that
f(ak) = yk, and let a be the unique element of A such that f(a) = y. Then (ak)k∈N is
a sequence in the compact set A, so there exists a subsequence (akj)j∈N and some a′ ∈ A
such that akj → a′ as j → ∞. Since f is continuous, limj→∞ f(akj) = f(a′). That is,
limj→∞ ykj = f(a′). However, since yk → y, we conclude that y = f(a′). And since y = f(a),
we conclude by bijectivity of f that a = a′. So, akj → a as j → ∞, i.e. f−1(ykj) → f−1(y)
as j →∞, as desired. �
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Proof of (iii). Define f : [0, 1)∪[2, 3]→ [0, 2] so that f(x) = x for x ∈ [0, 1), and f(x) = x−1
for x ∈ [2, 3]. We first show that f is injective. Let x, y ∈ [0, 1)∪ [2, 3] such that f(x) = f(y).
We break into three cases. In the first case x, y ∈ [0, 1), so by the definition of f , we must
have x = y. In the second case, x, y ∈ [2, 3], so by the definition of f , x − 1 = y − 1, i.e.
x = y. In the third and final case, x ∈ [0, 1) and y ∈ [2, 3], so x = y − 1. But y ∈ [2, 3]
implies y − 1 ∈ [1, 2], so it cannot happen that x = y − 1, i.e. this third case cannot occur.
In conclusion, if f(x) = f(y), we must have x = y, so f is injective.

We now prove surjectivity of f . Let y ∈ [0, 2]. If y ∈ [0, 1), then let x = y, and note
that f(x) = y and x ∈ [0, 1). If y ∈ [1, 2], then let x = y + 1, and note that f(x) = y and
x ∈ [2, 3]. In conclusion, every y ∈ [0, 2] has an x ∈ [0, 1) ∪ [2, 3] such that f(x) = y, so f is
surjective.

We now prove continuity of f . Let xn → x, xn, x ∈ [0, 1) ∪ [2, 3]. In particular, for
ε = 1/2, there exists N such that k ≥ N implies |xk − x| < 1/2. So, by discarding finitely
many terms of the sequence (xn)n∈N, we may assume that either (1) xn, x ∈ [0, 1) ∀ n ∈ N
or (2) xn, x ∈ [2, 3] ∀ n ∈ N. In case (1), f is continuous since f(xn) = xn → x = f(x). In
case (2), f is continuous since f(xn) = xn − 1 → x − 1 = f(x). Since all cases have been
exhausted, we conclude that f is continuous.

We now show that f−1 is not continuous. Let yn = 1 + (−1)n/n. For n even, yn ∈ [1, 2],
and for n odd, yn ∈ [0, 1). From surjectivity of f , let xn such that f(xn) = yn. Then for n
even, xn = 1 − 1/n, and for n odd, xn = 2 + 1/n. In particular, the sequence (xn)n∈N does
not converge. So, there exists a sequence yn such that yn → y, but limn→∞ f

−1(yn) does not
exist. That is, f−1 is not continuous, as desired. �

Another proof of (iii). For a complex number z ∈ C, let Re(z) denote the real part of z,
and let Im(z) denote the imaginary part of z. The set of complex numbers is identified
with the set R × R by the bijection z 7→ (Re(z), Im(z)), and C is given the topology of

R × R. Also, define |z| :=
√

(Re(z))2 + (Im(z))2. Let S1 := {z ∈ C : |z|2 = 1}. Let
f : [0, 2π) → S1 be defined by f(t) = eit. Since |eit| = 1 for all t ∈ R, we know that the
range of f is S1 ⊆ C. Since each component of f(t) = (cos(t), sin(t)) is continuous, f is a
continuous map. We now prove bijectivity of f . Suppose f(t) = f(t′), t, t′ ∈ [0, 2π). Then
ei(t−t

′) = 1, and t − t′ ∈ (−2π, 2π). Since eiz = 1 only for z = 2kπ, k ∈ Z, we conclude
that t − t′ = 0, i.e. t = t′. Therefore f is injective. To see surjectivity of f , let z ∈ S1.
Then (Re(z))2 + (Im(z))2 = 1. So, there exists t ∈ [0, 2π) such that cos(t) = Re(z) and
sin(t) = Im(z). Therefore, f(t) = eit = (cos(t) + i sin(t)) = z, as desired.

We have shown that f is a continuous bijective function. We now show that the inverse
map is not continuous. Let n ≥ 1, n ∈ Z. For n even, let xn = 1/n, and for n odd, let
xn = 2π − 1/n. For n ≥ 1, let yn := f(xn). Then

|yn − 1|2 = |(cos(±1/n), sin(±1/n))− (1, 0)|2 = (cos(1/n)− 1)2 + sin2(1/n) ≤ 2/n2.

Therefore, yn → (1, 0) as n → ∞. However, f−1(yn) = xn does not converge as n → ∞.
If we restrict attention to even n, then xn → 0 as n → ∞. But if we restrict attention to
odd n, then xn → 2π. In particular, xn does not converge to any number. So, we have a
sequence yn such that yn → y, but limn→∞ f

−1(yn) does not exist. We conclude that f−1 is
not continuous, as desired. �
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2. Problem Set 2

Exercise 2.1. Prove that a uniformly continuous function is continuous.

Proof. Let f : X → Rn be uniformly continuous. Then, ∀ ε > 0, ∃ δ = δ(ε) > 0 such that,
∀ x, y ∈ X, if 0 < |x− y| < δ, then |f(x)− f(y)| < ε. In particular, if we fix x ∈ X, then ∀
ε > 0, ∃ δ = δ(ε) > 0 such that, ∀ y ∈ X, if 0 < |x− y| < δ, then |f(x)− f(y)| < ε. That
is, f is continuous. �

Exercise 2.2. Does the function

f(x, y) =
x3 − y3

|x− y|+ y2

have a limit as (x, y)→ 0? If yes, give a limit. Answer the same question for the function

g(x, y) =

(
x+ y3, x+

x

x2 + y2

)
Proof. We show that lim(x,y)→(0,0) f(x, y) = 0. Let 0 < ε < 1. We need to find δ > 0
such that 0 < |(x, y)| < δ implies that |f(x, y)| < ε. We claim that δ := ε/10 suffices.
First, suppose (x, y) satisfies 0 < |(x, y)| < δ. Since |x| = (|x|2)1/2 ≤ |(x, y)| < δ, and
|y| = (|y|2)1/2 ≤ |(x, y)| < δ, we know that |x| < δ and |y| < δ.

We will consider two separate sets. Define

A := {(x, y) ∈ R× R : |y| ≥ |x| /2, 0 < |(x, y)| < δ}
B := {(x, y) ∈ R× R : |y| < |x| /2, 0 < |(x, y)| < δ}

Then A ∪ B = {(x, y) ∈ R × R : 0 < |(x, y)| < δ}. Let (x, y) ∈ A. Then, by the definition
of A, |y|3 ≥ |x|3 /8, so |x3 − y3| ≤ |x|3 + |y|3 ≤ 9 |y|3. Also, ||x− y|+ y2| ≥ y2. Moreover,
since (x, y) ∈ A, |(x, y)| < δ, so |y| < δ < ε/10. Combining these observations,

|f(x, y)| = |x3 − y3|
|x− y|+ y2

≤ 9 |y|3

y2
= 9 |y| ≤ 9

10
ε < ε.

So, (x, y) ∈ A implies that |f(x, y)| < ε.
Now, let (x, y) ∈ B. Then, by the reverse triangle inequality and the definition of B,
|x− y| ≥ |x| − |y| > |x| /2. Therefore, ||x− y|+ y2| ≥ |x− y| > |x| /2. Also, by the
definition of B, |x3 − y3| ≤ |x|3 + |y|3 < (9/8) |x|3. Moreover, since (x, y) ∈ B, |(x, y)| < δ,
so |x| < δ < ε/10. Combining these observations,

|g(x, y)| = |x3 − y3|
|x− y|+ y2

≤ 9

4

|x|3

|x|
≤ 3 |x|2 ≤ 3

100
ε2 < ε

In the last line, we used that ε < 1, so ε2 < ε. So, (x, y) ∈ B implies that |f(x, y)| < ε.
By combining the results for A and B, we conclude that, if (x, y) ∈ A∪B, i.e. if |(x, y)| < δ,

then |f(x, y)| < ε, as desired. In conclusion, f is continuous at 0.
We now show that lim(x,y)→(0,0) g(x, y) does not exist. We argue by contradiction. Suppose

lim(x,y)→(0,0) g(x, y) = (a, b), (a, b) ∈ R × R. For n ∈ N, let (xn, yn) such that xn = 2−n and
yn = xn. Then (xn, yn) → (0, 0) as n → ∞. So, since lim(x,y)→(0,0) g(x, y) exists, we must
have

lim
n→∞

g(xn, yn) = (a, b). (∗)

9



However,

g(xn, yn) = g(xn, xn) =

(
2−n + 2−3n, 2−n +

2−n

2−2n + 2−2n

)
=
(
2−n + 2−3n, 2−n + 2n−1

)
Now, let N such that n ≥ N implies 2n−1 > b + 1. Then 2−n + 2n−1 > 2n−1 > b + 1 > b.
So, it is impossible that limn→∞ g(xn, yn) = (a, b), since n ≥ N implies |g(xn, yn)− (a, b)| ≥
|2−n + 2n−1 − b| > 1. Since we have achieved a contradiction, we conclude that the limit
lim(x,y)→(0,0) g(x, y) does not exist. �

Exercise 2.3. Find a continuous function f and an open set U such that f(U) is not open.

Proof. Let f(x) := sin(x), and let U := (−π, π). We claim that f(U) = [−1, 1]. Indeed,
f(π/2) = 1, f(−π/2) = −1, f is continuous on [−π/2, π/2], so by the intermediate value
theorem, f [−π/2, π/2] ⊇ [−1, 1]. Also, |f(x)| ≤ 1 for x ∈ R, so f(U) ⊆ [−1, 1]. Therefore,

[−1, 1] ⊆ f [−π/2, π/2] ⊆ f(U) ⊆ [−1, 1].

We conclude that f(U) = [−1, 1], as desired. �

Exercise 2.4. A function f : D → Rm for D ⊆ Rn is called Lipschitz continuous if there
exists a constant L such that

|f(x)− f(y)| ≤ L |x− y| , ∀x, y ∈ D.

The constant L is called the Lipschitz constant of f .

(i) Prove that a Lipschitz continuous function is uniformly continuous.
(ii) Find an example of a uniformly continuous function that is not Lipschitz continuous.

(iii) Prove that the function x 7→ |x| is a Lipschitz continuous function from Rn → R.
(iv) Prove that the function (x, y) 7→ x+y is Lipschitz continuous function from Rn×Rn →

Rn.
(v) Prove that the inner product (x, y) 7→ 〈x, y〉 is a Lipschitz continuous function from

D ×D to R, for any bounded domain D.

Proof of (i). Suppose f is Lipschitz continuous with constant L. We now show that f is uni-
formly continuous. Let ε > 0. Then, define δ = δ(ε) := ε/L. And let x, y ∈ D. If |x− y| ≤ δ,
then the definition of Lipschitz continuity implies that |f(x)− f(y)| ≤ L |x− y| ≤ Lδ < ε,
where in the last line we used our definition of δ. In conclusion, f is uniformly continuous. �

Proof of (ii). Let D := [0, 1], and for x ∈ D let f(x) :=
√
x. We first show that f is

uniformly continuous. Let ε > 0. Then let δ := ε2/2. If |x− y| < δ with x, y ∈ [0, 1], then
by concavity of f , and the definition of δ,

|f(x)− f(y)| =
∣∣√x−√y∣∣ = 2

∣∣∣∣√x−√y2

∣∣∣∣ ≤ 2
√
|x− y| /2 <

√
2δ = ε.

So, f is uniformly continuous on D. However, f is not Lipschitz, since for x > 0,

|f(0)− f(x)| / |0− x| =
√
x/ |x| = x−1/2 →∞ as x→ 0.

�
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Proof of (iii). We show that f(x) := |x| is Lipschitz with constant L = 1, i.e. | |x| − |y| | ≤
|x− y|, x, y ∈ Rn. However, this is just the reverse triangle inequality. For completeness, we
prove this inequality from the usual triangle inequality. From the usual triangle inequality,
|y| = |x+ (y − x)| ≤ |x| + |y − x|, so |y| − |x| ≤ |y − x|. Similarly, |x| = |y + (x− y)| ≤
|y|+ |x− y|, so |x| − |y| ≤ |x− y|. Therefore,

| |y| − |x| | = max(|y| − |x| , |x| − |y|) ≤ |y − x| .
�

Proof of (iv). Let x, y, x1, y1, x2, y2 ∈ Rn. Let f(x, y) := x+ y. We show that f is Lipschitz
with constant

√
2, i.e.

|x1 + y1 − (x2 + y2)| ≤
√

2 |(x1, y1)− (x2, y2)| .
We first prove an inequality for real numbers a, b.

|a|+ |b| ≤
√

2(a2 + b2)1/2. (∗)
Observe

|a|+ |b| = 2

(
|a|+ |b|

2

)2· 1
2

≤ 2

(
|a|2 + |b|2

2

) 1
2

, by convexity of t 7→ t2, t ∈ R

=
√

2(a2 + b2)1/2.

Now, we prove that f is Lipschitz continuous.

|x1 + y1 − (x2 + y2)| = |(x1 − x2) + (y1 − y2)|
≤ |x1 − x2|+ |y1 − y2| , by the triangle inequality on Rn

≤
√

2
(
|x1 − x2|2 + |y1 − y2|2

) 1
2 , from (∗)

=
√

2 |(x1, y1)− (x2, y2)|
�

Proof of (v). Let D ⊆ Rn be a bounded set. So, there exists R > 0 such that D ⊆ BR(0).
We prove that f(x, y) := 〈x, y〉 is Lipschitz with constant

√
2R. Observe

|f(x1, y1)− f(x2, y2)| = |〈x1, y1〉 − 〈x2, y2〉|
= |〈x1, y1〉 − 〈x1, y2〉+ 〈x1, y2〉 − 〈x2, y2〉|
= |〈x1, y1 − y2〉 − 〈x2 − x1, y2〉|
≤ |〈x1, y1 − y2〉|+ |〈x2 − x1, y2〉| , by the triangle inequality on R
≤ |x1| |y1 − y2|+ |y2| |x1 − x2| , by Cauchy-Schwarz

≤ R(|y1 − y2|+ |x1 − x2|) , by the definition of R

≤
√

2R(|y1 − y2|2 + |x1 − x2|2)1/2 , from (∗)

=
√

2R |(x1, y1)− (x2, y2)| .
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Exercise 2.5. We say that f : D → Rm is α-Hölder continuous if there is a constant L such
that

|f(x)− f(y)| ≤ L |x− y|α , ∀x, y ∈ D.
(i) What does this condition mean for α = 1? What about α = 0?
(ii) If α > 0, prove that an α-Hölder continuous function is uniformly continuous.

(iii) Prove that if D is bounded, α ≤ β, and if f is β-Hölder continuous, then f is α-Hölder
continuous.

(iv) Prove that if f is α-Hölder continuous for α > 1, then f is constant.

Proof of (i). If α = 1, then f is Lipschitz continuous with constant L. If α = 0, then f is a
bounded function, since for any x ∈ D, |f(x)| ≤ L+ |f(d)|, d ∈ D fixed. �

Proof of (ii). Suppose f is α-Hölder continuous of order α. We now show that f is uniformly
continuous. Let ε > 0. Then, define δ = δ(ε) := (ε/L)1/α. And let x, y ∈ D. If |x− y| ≤ δ,
then the definition of Hölder continuity implies that |f(x)− f(y)| ≤ L |x− y|α ≤ Lδα < ε,
where in the last line we used our definition of δ. In conclusion, f is uniformly continuous. �

Proof of (iii). Suppose f is β-Hölder continuous of order β, and D is bounded. So, there
exists R > 0 such that D ⊆ BR(0). We show that f is α-Hölder continuous. Let x, y ∈ D.
By assumption, β − α ≥ 0, so by the definition of R,

|x− y|β−α ≤ (|x|+ |y|)β−α ≤ (2R)β−α. (∗)
Now, the definition of β-Hölder continuity implies that

|f(x)− f(y)| ≤ L |x− y|β = L |x− y|β−α+α = (L |x− y|β−α) |x− y|α

≤ L(2R)β−α |x− y|α , from (∗)
In conclusion, f is α-Hölder continuous. �

Proof of (iv). Let α > 1. Let x, y ∈ D. For i = 0, . . . , n, define xi := y+ (i/n)(x− y). Then
x0 = y, and xn = x, so by the triangle inequality,

|f(x)− f(y)| =

∣∣∣∣∣
n∑
i=1

(f(xi)− f(xi−1))

∣∣∣∣∣ ≤
n∑
i=1

|f(xi)− f(xi−1)| .

We now apply the Hölder continuity of f . Note that xi − xi−1 = (1/n)(x− y), so

|f(x)− f(y)| ≤ L

n∑
i=1

|xi − xi−1|α ≤ L

n∑
i=1

n−α |x− y| = Ln1−α |x− y|

Since α > 1, 1 − α < 0, and letting n → ∞ shows that |f(x)− f(y)| = 0, i.e. f is
constant. �

Exercise 2.6. A subset A ⊆ Rn is dense if ∀ x ∈ Rn and ∀ ε > 0, A ∩Bε(x) 6= ∅.
(i) Prove that Q is dense in R.

(ii) Using (i), prove that Qn is dense in Rn

(iii) Let f, g be continuous functions and let A be a dense set in Rn. Prove that if
f(x) = g(x) ∀x ∈ A, then f(x) = g(x) ∀x ∈ Rn.
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Proof of (i). Let x ∈ R and let ε > 0. Then Bε(x) = {y ∈ R : |y − x| < ε}. From the
Archimedean property of the real numbers, there exists n ∈ N such that 10−n < ε. Write x
uniquely as an infinite decimal number without an infinite sequence of repeating 9’s. That
is, write x = amam−1 · · · a0.b1b2b3 · · · , where ai, bi ∈ [0, 9] ∩ Z for all i. Then the number
y := amam−1 · · · a0.b1b2 · · · bn is rational, and |x− y| < 10−n < ε. So, y ∈ Bε(x). Therefore,
Q is dense in R. �

Proof of (ii). Let x = (x1, . . . , xn) ∈ Rn and let ε > 0. From equation (∗) in Exercise 1.6,

C := {y ∈ Rn : max
i=1,...,n

|xi − yi| < ε/
√
n} ⊆ Bε(x) (‡)

From part (i), for each i = 1, . . . , n, let yi ∈ Q such that |xi − yi| < ε/
√
n. Then, define

y := (y1, . . . , yn). Since yi ∈ Q for i = 1, . . . , n, y ∈ Qn. Also, maxi=1,...,n |xi − yi| < ε/
√
n.

So, y ∈ C. And from (‡), y ∈ C ⊆ Bε(x). Therefore, Qn is dense in Rn. �

Proof of (iii). Let x ∈ Rn. Since A is dense, if m ∈ N, then there exists ym ∈ A such that
|ym − x| < 2−m. By construction, ym → x as m→∞. Then, using our assumption on f, g,
f(ym) = g(ym) for all m ∈ N, so

f(x) = lim
m→∞

f(xm) = lim
m→∞

g(xm) = g(x).

�

Exercise 2.7. Define f : R→ R by

f(x) =

{
1 , if x ∈ Q
0 , if x /∈ Q.

Show that f does not have a limit at any point in R.

Proof. We first show that the set R r Q is dense in R. Let q1, q2, . . . be a countable enu-
meration of the rationals. Let x ∈ R and ε > 0. We want to find a y ∈ R r Q such that
y ∈ Bε(x). Consider the union of open intervals

V :=
⋃
n∈N

(qn − ε2−n/4, qn + ε2−n/4).

The total length of the set V is bounded by
∑∞

n=1 ε2
−n/2 = ε/2. But the length of Bε(x)

is 2ε. So, there exists a y ∈ Bε(x) such that y ∈ V c. But Q ⊆ V by construction of V , so
V c ⊆ Qc = RrQ, so y ∈ V c ⊆ RrQ, as desired.

We now show that f does not have a limit in R. We argue by contradiction. Suppose
f has a limit at some point x ∈ R. Then for ε = 1/3, there exists δ > 0 such that, if
|x− y| < δ, then |f(x)− f(y)| < 1/3. From the density of the rationals in R (Exercise
2.6(i)), there exists y1 ∈ Q with |x− y1| < δ. Also, from the density of the irrationals in R
(proven above), there exists y2 ∈ RrQ with |x− y2| < δ. However, f(y1) = 1 and f(y2) = 0
by the definition of f . So, f(x) must satisfy |f(x)− 1| < 1/3, and |f(x)− 0| < 1/3. No real
number satisfies these two inequalities, i.e. we have achieved a contradiction. We conclude
that f does not have a limit in R. �

Exercise 2.8. Using the one-dimensional Bolzano-Weierstrass theorem, prove that any
bounded sequence in Rn has a convergent subsequence.
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Proof. Let (x(m))m∈N be a bounded sequence in Rn. That is, there exists R > 0 such that

|x(m)| < R for all m ∈ N. Since x(m) ∈ Rn, write x(m) = (x
(m)
1 , . . . , x

(m)
n ), x

(m)
i ∈ R for

i = 1, . . . , n. Now, for x = (x1, . . . , xn) ∈ Rn,

max
i=1,...,n

|xi| = ( max
i=1,...,n

|xi|2)1/2 ≤

(
n∑
i=1

|xi|2
)1/2

= |x|

So, for all i = 1, . . . , n, |x(m)
i | ≤

∣∣x(m)
∣∣ < R. So, by applying Bolzano-Weierstrass for i = 1,

there exists a subsequence (x
(mj)
1 )j∈N ⊆ R of the sequence (x

(m)
1 )m∈N ⊆ R, and there exists

x1 ∈ R such that x
(mj)
1 → x1 as m → ∞. We label this subsequence so that x(mj) =: x(j,1).

Since we have taken a subsequence of the original sequence, we still have |x(j,1)i | < R for all

i = 1, . . . , n. Now, apply Bolzano-Weierstrass to the sequence (x
(j,1)
2 )j∈N ⊆ R. As before,

we have a subsequence (x(j,2))j∈N of the sequence (x(j,1))j∈N and some x2 ∈ R such that

x
(j,2)
2 → x2 as j → ∞. Since we have taken a subsequence, we still have the property

x
(j,2)
1 → x1 as j →∞. We continue this process n times. We get n nested subsequences

(x(j))j∈N ⊇ (x(j,1))j∈N ⊇ · · · ⊇ (x(j,n))j∈N.

Let x := (x1, . . . , xn), where xi is produced in the ith step of this process of taking subse-

quences. The final subsequence (x(j,n))j∈N satisfies x
(j,n)
i → xi as j →∞, for all i = 1, . . . , n.

The proof is therefore complete. �

Exercise 2.9. Recall that a compact set A satisfies: for any open cover of A, there exists a
finite subcover of A.

(i) Find an example of a bounded set together with an open cover which has no finite
subcover.

(ii) Find an example of a closed set together with an open cover which has no finite
subcover

Proof of (i). Let A := (−1, 1), and for n ≥ 2, n ∈ N let An := (−1 + 1/n, 1− 1/n). We first
show that ∪∞n=2An = A. Since each An satisfies An ⊆ A, it follows that ∪∞n=2An ⊆ A. For
the reverse inclusion, let x ∈ A. Then there exists ε > 0 so that |x| < 1 − ε. Let n ∈ N
such that 1/n < ε. Then |x| < 1 − 1/n, and An = {y ∈ R : |y| < 1 − 1/n}, so x ∈ An. In
particular, x ∈ ∪∞n=2An. Therefore, A ⊆ ∪∞n=2An. We conclude that A = ∪∞n=2An.

We now that that this cover has no finite subcover. We argue by contradiction. Suppose a
finite subcover exists. That is, there exist natural numbers n1, . . . , nj with n1 < n2 < · · · < nj
such that A ⊆ An1 ∪ · · · ∪Anj

. Since N < M implies AN ⊆ AM , we conclude that A ⊆ Anj
.

But the point x := 1− 1/(2nj) satisfies x /∈ Anj
, but x ∈ A. This statement contradicts the

inclusion A ⊆ Anj
. We conclude that this cover has no finite subcover. �

Proof of (ii). Let A := R, and for n ∈ N, let An := (n−1, n+1). Recall that A is closed. We
first show that ∪n∈ZAn = A. Since each An satisfies An ⊆ A, it follows that ∪n∈ZAn ⊆ A.
For the reverse inclusion, let x ∈ A. Then there exists n ∈ Z such that |n− x| < 1. So,
x ∈ (n− 1, n + 1) = An. In particular, x ∈ ∪n∈ZAn. Therefore, A ⊆ ∪n∈ZAn. We conclude
that A = ∪n∈ZAn.

We now that that this cover has no finite subcover. We argue by contradiction. Suppose
a finite subcover exists. That is, there exist natural numbers n1, . . . , nj such that A ⊆
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An1 ∪ · · · ∪ Anj
. Let N := maxi=1,...,j |nj|. By the definition of An, we therefore have

A ⊆ An1∪· · ·∪Anj
⊆ (−N−2, N+2). But the point x := N+3 satisfies x /∈ (−N−2, N+2),

but x ∈ A. This statement contradicts the inclusion A ⊆ (−N − 2, N + 2). We conclude
that this cover has no finite subcover. �

Exercise 2.10. Let f be defined by

f(x, y) =

{
|y/x2| e−|y/x2| , if x 6= 0

0 , if x = 0

Prove that f is discontinuous at (0, 0). Prove that f is continuous along any line passing
through the origin.

Proof. We first show that f is discontinuous at (0, 0). For n ∈ N, let xn := 2−n, and let
yn := x2n. Then (xn, yn)→ (0, 0) as n→∞. Then

lim
n→∞

f(xn, yn) = e−1 6= 0 = f(0, 0).

Therefore, f(x, y) is discontinuous at (0, 0).
We now show that f is continuous along any line passing through the origin. Since

f(x, y) = 0 along the line x = 0, f is continuous on this line. Now, consider any other line,
i.e. let λ ∈ R and consider the set Aλ := {(x, y) ∈ R× R : y = λx}. Let (xn, yn) ∈ Aλ such
that (xn, yn) → (0, 0) as n → ∞ with (xn, yn) 6= (0, 0). Then yn = λxn for all n ∈ N, so
yn/x

2
n = λx−1n . Since (xn, yn)→ (0, 0) as n→∞, xn → 0 as n→∞, by Exercise 1.6. So,

lim
n→∞

f(xn, yn) = lim
n→∞

λx−1n e−λx
−1
n = lim

t→0
λt−1e−λt

−1

= lim
r→∞

re−r = 0 = f(0, 0).

We conclude that f is continuous along any line through the origin. �

Exercise 2.11. Define f : R→ R such that

f(x) =

{
0 , if x is irrational

1/q , if x = p/q with p ∈ Z and q ∈ Z≥1 having no common divisor.

Prove that f is continuous at every irrational point and discontinuous at every rational point.

Proof. We first show that f is discontinuous at every rational point. In Exercise 2.7, we
showed that R rQ is dense in R. So, given any rational number x, there exists a sequence
(xn)n∈N ⊆ RrQ such that xn → x. However, by the definition of f , f(xn) = 0, but f(x) 6= 0.
Therefore, limn→∞ f(xn) = 0 6= f(x), so f is not continuous at x.

We now show that f is continuous at every irrational point. Let x ∈ R r Q. Let ε > 0.
We need to find δ > 0 such that, if |y − x| < δ, then |f(x)− f(y)| < ε. Since x ∈ R r Q,
f(x) = 0. So, if y ∈ R rQ, f(y) = 0, and |f(x)− f(y)| = 0 < ε. So, to prove continuity at
x, it suffices to only consider y ∈ Q. Let q ∈ Z≥1. Consider the set

Aq := {x ∈ Q : ∃ p ∈ Z such that x = p/q}.
Then Aq = {. . . ,−3/q,−2/q,−1/q, 0, 1/q, 2/q, 3/q, . . .}. Define f : R → R so that f(x) =
x/q. Then Aq = f(Z). Let R > 2 so that |x| < R, and let T ∈ N such that 1/T < ε. Then
the following set is finite

D :=

(
T⋃
q=1

Aq

)
∩B2R(0).
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Since D is a finite set and D ⊆ Q, we know that x /∈ D, so there exists a δ > 0 such
that D ∩ Bδ(x) = ∅ and such that Bδ(x) ⊆ B2R(0). For example, we could take δ :=
mind∈D |x− d| /2. In summary, Bδ(x) ⊆ (B2R(0) rD).

Now, combining the definitions of T , D and f , we have f(y) ≤ ε for all y ∈ B2R(0) rD.
Since Bδ(x) ⊆ (B2R(0) r D), we have f(y) ≤ ε for y ∈ Bδ(x). Since f(x) = 0, we have
shown that, if |y − x| < δ, then |f(x)− f(y)| = |f(y)| = f(y) < ε. That is, we have shown
that f is continuous at every irrational point, as desired. �

3. Problem Set 3

Exercise 3.1. Show that the following functions are differentiable, and compute their dif-
ferentials.

(i) f(x, y, z) =

 xy3

z sin y
x2 − y2z

 , (ii) f(x, y) =

{
x3/
√
x2 + y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Proof of (i). To prove that f is differentiable, it suffices to show that each component of f
is continuously differentiable. That is, it suffices to show that each partial derivative of each
component exists and is continuous. The first the third component of f are polynomials,
so these components have continuous partial derivatives. And the second component of f
is a product of a polynomial and the infinitely differentiable sin function. So the second
component also has continuous partial derivatives. Since each component has continuous
partial derivatives, we conclude that f is differentiable. �

Proof of (ii). To prove that f is differentiable on R2 r {(0, 0)}, it suffices to show that
each partial derivative exists and is continuous on R2 r {(0, 0)}. For (x, y) 6= (0, 0), f is a
composition of continuously differentiable functions, so the partial derivatives of f exist and
are continuously differentiable. It therefore remains to show that f is differentiable at (0, 0).
Let h = (h1, h2) ∈ R2, h 6= (0, 0), let L(h) := 0 and observe

|f(0 + h)− f(0)− L(h)|
|h|

=

∣∣∣∣ h31√
h21+h

2
2

− L(h)

∣∣∣∣
|h|

=
|h1|3

h21 + h22
≤ (h21 + h22)

3/2

h21 + h22
= |h|

So, limh→0 |f(0 + h)− f(0)− L(h)| / |h| = 0, and f is differentiable at (0, 0). We have
therefore shown that f is differentiable everywhere. �

Exercise 3.2. Suppose f : Rn → R is differentiable and homogeneous of degree α ∈ R, i.e.
f(tx) = tαf(x) for all x ∈ Rn and t > 0. Prove that f ′(x)x = αf(x).

Proof. Let x ∈ Rn and let g : R→ Rn be defined by g(t) := tx. Write g = (g1, . . . , gn), so that
gi(x) : R → R, i ∈ {1, . . . , n}. Specifically, for x = (x1, . . . , xn) ∈ Rn, we have gi(t) = txi.
For i ∈ {1, . . . , n}, we have ∂gi/∂t = xi, i.e. g′(t) = x. So, each partial derivative of each
component of g is continuously differentiable. Therefore, g is differentiable. We now apply
the chain rule to the composition f(g(t)). Observe, (d/dt)(f(g(t))) = f ′(g(t))g′(t) = f ′(tx)x.
Then, by differentiating the identity f(tx) = tαf(x) with respect to t, we get

f ′(tx)x = αtα−1f(x).

Substituting t = 1 completes the exercise. �
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Exercise 3.3. Prove that a continuously differentiable function on Rn is Lipschitz continuous
on any compact subset of Rn.

Proof. Let A be a compact subset of Rn. Since A is compact, there exists R > 0 such
that A ⊆ BR(0). Since f is continuously differentiable, the function x 7→ |∇f(x)| is a

composition of continuous functions. So, since BR(0) is compact, there exists T > 0 such

that |∇f(x)| ≤ T for all x ∈ BR(0). Let x, y ∈ A with x 6= y, and let v := y − x. Write
f : Rn → R, and define g : [0, 1] → R by g(t) := f((1 − t)x + ty) = f(x + tv). Then g is
continuously differentiable, since for λ ∈ [0, 1],

Dvf(x+ λv) = lim
t→0

f(x+ tv + λv)− f(x+ λv)

t
= lim

t→0

g(t+ λ)− g(λ)

t
= g′(λ). (∗)

By the Mean Value Theorem, there exists λ ∈ (0, 1) such that g(1)− g(0) = g′(λ). So, from
(∗), there exists λ ∈ (0, 1) such that

f(y)− f(x) = Dvf(x+ λv).

By convexity of BR(0), x, y ∈ A ⊆ BR(0) implies that x+ λv = λy + (1− λ)x ∈ BR(0). So,

from Cauchy-Schwarz, the bound ∀ z ∈ BR(0), |∇f(z)| ≤ T , and the definition of v,

|f(y)− f(x)| = |Dvf(x+ λv)| = |〈∇f(x+ λv), v〉| ≤ |∇f(x+ λv)| |v| ≤ T |v| = T |y − x| .

�

Remark 3.4. It is possible to have a differentiable function on a compact set that is not
Lipschitz continuous. Consider f(x) = x3/2 cos(1/x) on (0, 1] with f(0) = 0. Then f is
defined on [0, 1], and f is differentiable, but the derivative of f becomes arbitrarily large as
x → 0, so one can show that the quantity |f(x)− f(y)| / |x− y| also becomes arbitrarily
large, by choosing suitable x, y that converge to 0. Therefore, f is not Lipschitz.

Exercise 3.5.

(i) Let f : Rn → R be differentiable, and let γ be a differentiable path such that f(γ(t))
is constant. Prove that ∇f(γ(t)) is orthogonal to γ′(t) for all t.

(ii) Suppose f : Rn → R is differentiable at a ∈ Rn. The rate of growth of f in the
direction v ∈ Rn is given by the directional derivative Dvf(a). Show that the di-
rection of maximal growth, i.e. the unit vector v for which Dvf(a) is maximal, is
∇f(a)/ |∇f(a)|.

(iii) Interpret (i) and (ii) in terms of the following scenario: you are hiking in mountainous
terrain, and f(x, y) represents the height of the terrain. If you are in possession of a
map that includes contour lines, how should you walk if you want to reach a nearby
summit as quickly as possible? Illustrate your argument using a sketch.

Proof of (i). Let c ∈ R such that f(γ(t)) = c. Since f, γ are differentiable, we differentiate
the identity f(γ(t)) = c with respect to t, and use the chain rule to get

〈∇f(γ(t)), γ′(t)〉 = 0.

�
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Proof of (ii). Recall that Dvf(a) = 〈∇f(a), v〉. Let v ∈ Rn with |v| = 1. From Cauchy-
Schwarz,

|Dvf(a)| = |〈∇f(a), v〉| ≤ |∇f(a)| |v| = |∇f(a)| .

It now suffices to find v with |v| = 1 such that Dvf(a) = |∇f(a)|. If ∇f(a) = 0, let v be
any unit vector. If ∇f(a) 6= 0, let v := ∇f(a)/ |∇f(a)|. Then

〈∇f(a), v〉 = 〈∇f(a),∇f(a)〉1/2 = |∇f(a)| .

�

Proof of (iii). If we want to walk to a nearby summit as quickly as possible we should walk
uphill, perpendicular to the level sets of f , and hopefully we will not get stuck at a saddle
point. �

Exercise 3.6. Recall that a path is a continuous, piecewise continuously differentiable map
γ : [a, b] → Rn. That is, there is a partition a = a0 < a1 < · · · < ak = b such that γ is
continuous differentiable on (ai, ai+1) for each i = 0, . . . , k− 1. Recall also that a 1-form λ is
a continuous map from Rn to the space of 1× n matrices (i.e. the dual vectors). The path
integral of λ along γ was defined as∫

γ

λ :=

∫ b

a

λ(γ(t))γ′(t)dt.

Finally, recall that the reversal of γ : [0, 1] → Rn was defined by (−γ)(t) := γ(1 − t), and
the join of two paths γ1, γ2 : [0, 1] → Rn satisfying γ1(1) = γ2(0) was defined as the path
(γ1 ⊕ γ2) : [0, 2]→ Rn given by

(γ1 ⊕ γ2)(t) :=

{
γ1(t) if t ∈ [0, 1]

γ2(t− 1) if t ∈ (1, 2]
.

Prove that ∫
−γ
λ = −

∫
γ

λ, and

∫
γ1⊕γ2

λ =

∫
γ1

λ+

∫
γ2

λ.

Proof. We first prove that
∫
−γ λ = −

∫
γ
λ. Let 0 = a0 < a1 < · · · < ak = 1 be a partition

of [0, 1] such that γ is continuously differentiable on (ai, ai+1) for i = 0, . . . , k − 1. Since
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(−γ)(t) = γ(1− t), we know that (−γ) is continuously differentiable on (1− ai+1, 1− ai) for
i = 0, . . . , k − 1. Now,∫ 1−ai

1−ai+1

λ(γ(1− t))(γ(1− t))′dt =

∫ 1−ai

1−ai+1

λ(γ(1− t))(−γ′(1− t))dt , by the chain rule

=

∫ ai

ai+1

λ(γ(t))γ′(t)dt , changing variables

= −
∫ ai+1

ai

λ(γ(t))γ′(t)dt.

So, ∫
−γ
λ =

k−1∑
i=0

∫ 1−ai

1−ai+1

λ(γ(1− t))(γ(1− t))′dt = −
k−1∑
i=0

∫ ai+1

ai

λ(γ(t))γ′(t)dt = −
∫
γ

λ.

We now prove that
∫
γ1⊕γ2 λ =

∫
γ1
λ+

∫
γ2
λ. Let 0 = a0 < a1 < · · · < ak = 1 be a partition

of [0, 1] such that γ1 is continuously differentiable on (ai, ai+1) for i = 0, . . . , k − 1. Let
0 = b0 < b1 < · · · < bj = 1 be a partition of [0, 1] such that γ2 is continuously differentiable
on (bj, bj+1) for j = 0, . . . , `−1. By the definition of γ1⊕γ2, the curve γ1⊕γ2 is continuously
differentiable on (ai, ai+1) for i = 0, . . . , k − 1, and on (1 + bj, 1 + bj+1) for j = 0, . . . , `− 1.
Also, by the definition of γ1 ⊕ γ2∫ ai+1

ai

λ(γ1 ⊕ γ2(t))(γ1 ⊕ γ2(t))′dt =

∫ ai+1

ai

λ(γ1(t))(γ1(t))
′dt,

∫ 1+bj+1

1+bj

λ(γ1 ⊕ γ2(t))(γ1 ⊕ γ2(t))′dt =

∫ bj+1

bj

λ(γ2(t))(γ2(t))
′dt.

Therefore,∫
γ1⊕γ2

λ =
k−1∑
i=0

∫ ai+1

ai

λ(γ1 ⊕ γ2(t))(γ1 ⊕ γ2(t))′dt+
`−1∑
j=0

∫ 1+bj+1

1+bj

λ(γ1 ⊕ γ2(t))(γ1 ⊕ γ2(t))′dt

=
k−1∑
i=0

∫ ai+1

ai

λ(γ1(t))(γ1(t))
′dt+

`−1∑
j=0

∫ bj+1

bj

λ(γ2(t))(γ2(t))
′dt

=

∫
γ1

λ+

∫
γ2

λ.

�

Exercise 3.7. Let f : Rn → R be differentiable with f(0) = 0. Prove that there exist
continuous gi : Rn → R, i = 1, . . . , n such that

f(x) =
n∑
i=1

xigi(x).

Proof. Let x ∈ Rn. For t ∈ [0, 1], define g(t) := f(tx). In Exercise 3.2, we showed that g
is differentiable, and the chain rule applies, i.e. g′(t) = f ′(tx)x. Since f ′ is continuous, we

19



conclude that g′ is continuous. So, g is continuously differentiable, and the Fundamental
Theorem of Calculus may be applied to g. Applying this theorem together with f(0) = 0,

f(x) = f(x)− f(0) = g(1)− g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

〈f ′(tx), x〉dt =
n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx)dt.

It remains to show that for each i = 1, . . . , n, the function h(x) :=
∫ 1

0
∂f
∂xi

(tx)dt is continuous.

For t fixed, each function ∂f(tx)/∂xi is continuous as a function of x, so the Riemann sum

hk(x) :=
k∑
j=1

1

k

∂f

∂xi
(xj/k) =

k∑
j=1

∫ j/k

(j−1)/k

∂f

∂xi
(xj/k)dt

is a continuous function of x.
Let A ⊆ Rn be any compact set. To prove that h is continuous, it suffices to show that hk

converges uniformly to h on A. We therefore now show the required uniform convergence.
Let ε > 0. The function H(x, t) := ∂f

∂xi
(tx) is uniformly continuous on A × [0, 1], since it

is continuous on the compact set A × [0, 1]. In particular, there exists δ > 0 such that, if
|t1 − t2| < δ, then supx∈A |H(x, t1)−H(x, t2)| < ε. Now, if k > 1/δ and x ∈ A, we get

|hk(x)− h(x)| =

∣∣∣∣∣
k∑
j=1

∫ j/k

(j−1)/k

(
∂f

∂xi
(xj/k)− ∂f

∂xi
(tx)

)
dt

∣∣∣∣∣
≤

k∑
j=1

∫ j/k

(j−1)/k

∣∣∣∣ ∂f∂xi (xj/k)− ∂f

∂xi
(tx)

∣∣∣∣ dt
=

k∑
j=1

∫ j/k

(j−1)/k
|H(x, j/k)−H(x, t)| dt

≤
k∑
j=1

ε/k , using 1/k < δ

= ε.

We conclude that hk converges uniformly to h on A, as desired. �

Exercise 3.8. In this problem we work in R2. Define the 1-forms

µ(x, y) := (0, x), ν(x, y) := (−y, 0), λ(x, y) := (1/2)(−y, x).

(i) Let γ be the path that traces the boundary of a disk of radius r once in the coun-
terclockwise direction. Compute

∫
γ
µ,
∫
γ
ν and

∫
γ
λ. Do the same when γ traces the

boundary of a rectangle with side lengths a and b. What do you observe?
(ii) Let γ be an arbitrary closed path. Prove that

∫
γ
µ =

∫
γ
ν =

∫
γ
λ.

(iii) In general, if γ is a closed path that traces the boundary of an arbitrary region A in
the counterclockwise direction, then any of the above integrals gives the area of A.

Proof of (i). Let γ(t) := r(cos(2πt), sin(2πt)). Then γ′(t) = 2πr(− sin(2πt), cos(2πt)). Ob-
serve∫

γ

µ =

∫ 1

0

〈(0, r cos(2πt)), 2πr(− sin(2πt), cos(2πt))〉dt = 2πr2
∫ 1

0

cos2(2πt)dt = πr2.
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∫
γ

ν =

∫ 1

0

〈(−r sin(2πt), 0), 2πr(− sin(2πt), cos(2πt))〉dt = 2πr2
∫ 1

0

sin2(2πt)dt = πr2.

∫
γ

λ =

∫ 1

0

〈(1/2)r(− sin(2πt), cos(2πt)), 2πr(− sin(2πt), cos(2πt))〉dt

= πr2
∫ 1

0

(sin2(2πt) + sin2(2πt))dt = πr2.

Now, define

σ(t) :=


(a/2, (b/2)(8t− 1)) , if t ∈ [0, 1/4]

((a/2)(3− 8t), b/2) , if t ∈ [1/4, 1/2]

(−a/2, (b/2)(5− 8t)) , if t ∈ [1/2, 3/4]

((a/2)(8t− 7),−b/2) , if t ∈ [3/4, 1]

.

Then ∫
σ

µ =

∫ 1/4

0

〈(0, a/2), (0, 4b)〉dt+

∫ 1/2

1/4

〈(0, (a/2)(3− 8t)), (−4a, 0)〉dt

+

∫ 3/4

1/2

〈(0,−a/2), (0,−4b)〉dt+

∫ 1

3/4

〈(0, (a/2)(8t− 7)), (4a, 0)〉dt

= (1/4)(2ab) + 0 + (1/4)(2ab) + 0 = ab.

∫
σ

ν =

∫ 1/4

0

〈(−(b/2)(8t− 1), 0), (0, 4b)〉dt+

∫ 1/2

1/4

〈(−b/2, 0), (−4a, 0)〉dt

+

∫ 3/4

1/2

〈(−(b/2)(5− 8t), 0), (0,−4b)〉dt+

∫ 1

3/4

〈(b/2, 0), (4a, 0)〉dt

= 0 + (1/4)2ab+ 0 + (1/4)2ab = ab.

∫
σ

λ =
1

2

∫ 1/4

0

〈(−(b/2)(8t− 1), a/2), (0, 4b)〉dt+
1

2

∫ 1/2

1/4

〈(−b/2, (a/2)(3− 8t)), (−4a, 0)〉dt

+
1

2

∫ 3/4

1/2

〈(−b/2(5− 8t),−a/2), (0,−4b)〉dt+
1

2

∫ 1

3/4

〈(b/2, (a/2)(8t− 7)), (4a, 0)〉dt

= (1/8)(2ab) + (1/8)(2ab) + (1/8)(2ab) + (1/8)(2ab) = ab.

So, it seems that the integral over the boundary of µ, ν, or λ always gives the area of the
enclosed figure. �

Proof of (ii). Define f(x, y) := xy. Then f is continuously differentiable, and df = (y, x), so
µ = ν+df . Let γ be an arbitrary closed path. From the Fundamental Theorem of Calculus,∫
γ
df = 0. So, using the equality µ = ν + df , we have∫

γ

µ =

∫
γ

(ν + df) =

∫
γ

ν +

∫
γ

df =

∫
γ

ν. (∗)
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For the second equality, note that λ = (1/2)(µ+ ν), so using this equality and (∗)∫
γ

λ = (1/2)

∫
γ

µ+ (1/2)

∫
γ

ν =

∫
γ

ν.

�

Proof of (iii). Suppose we have a triangle T in R2 with vertices (0, 0), (x, y) and (x+∆x, y+
∆y). Also, assume that the vectors (x, y) and (x + ∆x, y + ∆y) have a cross product with
positive z-component. That is, assume that (x, y, 0) × (x + ∆x, y + ∆y, 0) has a positive z
component. Then from the cross product formula for the area of a triangle, we have

Area(T ) =
1

2
|(x, y, 0)× (x+ ∆x, y + ∆y, 0)| = 1

2
[x(y + ∆y)− y(x+ ∆x)]

=
1

2
(x∆y − y∆x). (∗)

Let γ : [0, 1] → R2 be a parametrization of the boundary ∂A of A. Since γ is piecewise
continuously differentiable, the function t 7→ |γ′(t)| is a piecewise composition of continuous
functions, so it is piecewise continuously differentiable. Since [0, 1] is compact, we conclude
that there exists C < ∞ such that |γ′(t)| ≤ C for t ∈ [0, 1]. Also, since γ is continuous,
there exists D <∞ such that |γ(t)| ≤ D for t ∈ [0, 1].

Let a0 = 0 < a1 < · · · < ak = 1 so that γ is continuously differentiable on (ai, ai+1) for
i = 0, . . . , k− 1. Fix i ∈ {0, . . . , k− 1}, and fix t ∈ [ai, ai+1). Let j ∈ {0, . . . , N}, and define
tj := ai + (ai+1 − ai)(j/N). Then∫

γ(ai,ai+1)

λ =

∫ ai+1

ai

λ(γ(t))γ′(t)dt =
N∑
j=0

∫ tj+1

tj

1

2
(−γ2(t)γ′1(t) + γ1(t)γ

′
2(t))dt. (∗∗)

Let Tj be the triangle formed by 0, γ(tj) and γ(tj+1). Since γ travels in the counterclockwise
direction, the z component of the cross product (γ(tj), 0)× (γ(tj+1), 0) is positive. Then

∫ tj+1

tj

1

2
(−γ2(t)γ′1(t) + γ1(t)γ

′
2(t))dt

=

∫ tj+1

tj

1

2
(−γ2(tj)γ′1(t) + γ1(tj)γ

′
2(t))dt+O(C(tj+1 − tj) |γ(tj+1)− γ(tj)|)

=
1

2
[−γ2(tj)(γ1(tj+1)− γ1(tj)) + γ1(tj)(γ2(tj+1)− γ2(tj))]

+O(C(tj+1 − tj) |γ(tj+1)− γ(tj)|) , by the Fundamental Theorem of Calculus

= Area(Tj) +O(C(tj+1 − tj) |γ(tj+1)− γ(tj)|) , from (∗)
= Area(Tj) +O(C2(tj+1 − tj)2) , by the Mean Value Theorem

= Area(Tj) +O(C2(ai+1 − ai)2/N2) , by the definition of tj

Then, from (∗∗),∫
γ(ai,ai+1)

λ =

(
N∑
j=0

Area(Tj)

)
+O(C2(ai+1 − ai)2/N) (∗ ∗ ∗).
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Using (∗ ∗ ∗), we will be done if we can show that
∑N

j=0 Area(Tj) converges as N → ∞ to

the area of A between γ(ai) and γ(ai+1). Let Ai denote the sectorial region of A between
γ(ai) and γ(ai+1), and let Aij denote the sectorial region of A between γ(tj) and γ(tj+1).
Since |γ′| ≤ C, if s, t ∈ (tj, tj+1), then |γ(s)− γ(t)| ≤ |s− t|C. So, since γ travels in the
counter-clockwise direction, Aij is contained in the triangle with vertices

0, (1 + C(tj+1 − tj)/ |γ(tj)|)γ(tj), and (1 + C(tj+1 − tj)/ |γ(tj+1)|)γ(tj+1).

Also, Aij contains the triangle with vertices

0, min(1− C(tj+1 − tj)/ |γ(tj)| , 0)γ(tj), and min(1− C(tj+1 − tj)/ |γ(tj+1)| , 0)γ(tj+1).

Therefore, the error between the area of Aij and the area of Tj is given by the area of a
sector of arc length |γ(tj+1)− γ(tj)| and radius varying between |γ(tj)| + C(tj+1 − tj) and
|γ(tj)| − C(tj+1 − tj). That is,

Area(Tj)−O(DC(tj+1 − tj) |γ(tj+1)− γ(tj)|) ≤ Area(Aij)

≤ Area(Tj) +O(DC(tj+1 − tj) |γ(tj+1)− γ(tj)|).
Applying the Mean Value Theorem and the definition of the tj,

Area(Tj)−O(C2D/N2) ≤ Area(Aij) ≤ Area(Tj) +O(C2D/N2).

Summing over j = 1, . . . , N , we have

N∑
j=0

Area(Tj) = Area(Ai) +O(CD/N).

Combining this equality with (∗ ∗ ∗) and letting N →∞ finishes the proof. �

Proof of (iii) that we may learn later. From Stokes’ Theorem and the arithmetic of differen-
tial forms,∫

γ

λ =

∫
∂A

λ =

∫
A

dλ =

∫
A

1

2
d(−ydx+ xdy) =

1

2

∫
A

−dy ∧ dx+ dx ∧ dy

=
1

2

∫
A

dx ∧ dy + dx ∧ dy =

∫
A

dxdy = Area(A)

�

Exercise 3.9. In R3 it is convenient to use spherical coordinates (r, θ, φ) ∈ [0,∞)× [0, π]×
[0, 2π). The coordinate map is (x, y, z)T = T (r, θ, φ) where

T (r, θ, φ) :=

r sin θ cosφ
r sin θ sinφ
r cos θ

 .

(i) Give a geometric interpretation of the parameters r, θ and φ.
(ii) Compute T ′. Show that the columns of T ′ are orthogonal. Interpret this result

geometrically using a sketch.
(iii) Let f be differentiable on R3 and define g := f ◦ T . The function g represents the

function f expressed in spherical coordinates. Compute all partial derivatives of g
in terms of the partial derivatives of f . Find ∂g/∂r and ∂g/∂θ for the functions
f(x, y, z) = x2 + y2 + z2 and f(x, y, z) = x− y.
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Proof of (i). The parameter r is the distance of (x, y, z) from the origin, since x2+y2+z2 = r2.
The parameter θ is the angle between (x, y, z) and (0, 0, 1), since x2 + y2 = r2 sin2 θ and
z2 = r2 cos2 θ. The parameter φ is the angle between (x, y, 0) and (1, 0, 0), since z does not
depend on φ and (x, y, 0)/ |(x, y, 0)| = (cosφ, sinφ, 0), for r 6= 0. �

Proof of (ii). Write T (r, θ, φ) = (T1, T2, T3) with Ti : R3 → R for i = 1, 2, 3. Then

T ′ =


∂T1
∂r

∂T1
∂θ

∂T1
∂φ

∂T2
∂r

∂T2
∂θ

∂T2
∂φ

∂T3
∂r

∂T3
∂θ

∂T3
∂φ

 =

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 .

Write T ′ = (v1, v2, v3), so that vi is the ith column of T ′ for i = 1, 2, 3. Then

〈v1, v2〉 = r cos θ sin θ(cos2 φ+ sin2 φ)− r cos θ sin θ = 0.

〈v1, v3〉 = −r sin2 θ sinφ cosφ+ r sin2 θ sinφ cosφ = 0.

〈v2, v3〉 = −r2 sin θ cos θ sinφ cosφ+ r2 sin θ cos θ sinφ cosφ = 0.

So, the columns of T ′ are orthogonal.

v1

−v2

−v3

x
y

z

�

Proof of (iii). Write f : R3 → R, T : [0,∞) × [0, π] × [0, 2π) → R3, so that f ◦ T : [0,∞) ×
[0, π]× [0, 2π)→ R. From the chain rule,

g′(r, θ, φ) = f ′(T (r, θ, φ))T ′(r, θ, φ) =

(
∂f

∂x1
(T (r, θ, φ)),

∂f

∂x2
(T (r, θ, φ)),

∂f

∂x3
(T (r, θ, φ))

)
T ′.

So,

∂g

∂r
= 〈f ′, v1〉 =

∂f

∂x1
(T (r, θ, φ)) sin θ cosφ+

∂f

∂x2
(T (r, θ, φ)) sin θ sinφ+

∂f

∂x3
(T (r, θ, φ)) cos θ.
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∂g

∂θ
= 〈f ′, v2〉 =

∂f

∂x1
(T (r, θ, φ))r cos θ cosφ+

∂f

∂x2
(T (r, θ, φ))r cos θ sinφ

+
∂f

∂x3
(T (r, θ, φ))(−r sin θ).

∂g

∂φ
= 〈f ′, v3〉 =

∂f

∂x1
(T (r, θ, φ))(−r sin θ sinφ) +

∂f

∂x2
(T (r, θ, φ))r sin θ cosφ.

Let f(x, y, z) = x2 + y2 + z2. From our above formulas,

∂g

∂r
= 2(r sin θ cosφ) sin θ cosφ+ 2(r sin θ sinφ) sin θ sinφ+ 2(r cos θ) cos θ

= 2r sin2 θ + 2r cos2 θ = 2r.

∂g

∂θ
= 2(r sin θ cosφ)r cos θ cosφ+ 2(r sin θ sinφ)r cos θ sinφ+ 2(r cos θ)(−r sin θ)

= 2r2 sin θ cos θ − 2r2 sin θ cos θ = 0.

Now, let f(x, y, z) = x− y. From our above formulas,

∂g

∂r
= sin θ cosφ+ (−1) sin θ sinφ+ 0 = sin θ(cosφ− sinφ).

∂g

∂θ
= r cos θ cosφ+ (−1)r cos θ sinφ+ 0 = r cos θ(cosφ− sinφ).

�

Exercise 3.10. Let f : Rn → R be a polynomial in n variables, i.e. there exist ak1,...,kn ∈ R
such that

f(x1, . . . , xn) =
m∑

k1,...,kn=0

ak1,...,knx
k1
1 · · ·xknn .

Prove that f is differentiable.

Proof. It suffices to prove that each partial derivative of f exists and is continuous. Since
f is a finite sum of monomials, it then suffices to show that a monomial has continuous
partial derivatives. However, the partial derivative of a monomial is another monomial.
Since a monomial is continuous, we have therefore shown that any monomial is continuously
differentiable, as desired. �

Exercise 3.11. Let U := {A ∈ Rn×n : A is an invertible matrix}.
(i) Show that U is an open subset of Rn×n.

(ii) Prove that the map f : U → U defined by f(A) := A−1 is differentiable with

DfA(B) = −A−1BA−1.

Proof of (i). Write the matrix A as A = (aij)1≤i,j≤n. Let Sn be the set of permutations on
n elements, and let sign(σ) denote the sign of a permutation σ ∈ Sn. That is, if we write
σ as a composition of m transpositions, then sign(σ) = (−1)m. By the definition of the
determinant,

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).
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That is, det is a polynomial in the entries of A. So, det is a continuous function on Rn×n to
R. And if V is open, then det−1(V ) is open. Let V := (−∞, 0) ∪ (0,∞). Then V is open,
and det−1(V ) = U is open, as desired. �

Proof of (ii). Let A ∈ U . Let Gij denote the (n − 1) × (n − 1) matrix formed by re-
moving the ith row and jth column from A. Let C = (cij)1≤i,j≤n be defined by cij :=
(det(A))−1(−1)i+j det(Gij). Cramer’s rule says that C = f(A) = A−1. That is, each com-
ponent of C is a polynomial in A, divided by a polynomial in A, i.e. C is a rational function
of A. Since f is defined where det(A) 6= 0, we conclude that f is differentiable on A.

Let A ∈ U . From (i), there exists ε > 0 such that Bε(A) ⊆ U . Let B′ ∈ Bε(A) = {B ∈
Rn×n :

∑
1≤i,j≤n |aij − bij|

2 < ε2}. Let B be any n× n matrix. Then |A− (A+ tB)| = t |B|,
so there exists δ > 0 such that if t ∈ [0, δ], then A+tB ∈ Bε(A) ⊆ U , i.e. A+tB is invertible
and in the domain of f . Now, (A + tB)f(A + tB) = 1 for all t ∈ [0, δ]. So, applying the
product rule to this identity,

0 =
d

dt
|t=0[(A+ tB)f(A+ tB)] = A

d

dt
|t=0f(A+ tB) +Bf(A).

That is, A(d/dt)|t=0f(A+ tB) = −Bf(A) = −BA−1, so (d/dt)|t=0f(A+ tB) = −A−1BA−1.
�

Exercise 3.12.

(i) Prove that det : Rn×n is differentiable. If A is invertible, prove that the differential
of det at A is given by

DdetA(B) = Tr(A−1B) det(A).

(ii) For any n× n matrix A we define the exponential by the formula

exp(A) :=
∞∑
k=0

1

k!
Ak.

Prove that this series converges absolutely, componentwise.
(iii) Show that exp(tA) exp(sA) = exp((t+ s)A).
(iv) Prove that exp(At) is differentiable in t with derivative

d

dt
exp(At) = A exp(At).

(v) By (iii), exp(tA) is invertible for all t, since exp(−tA) is then the inverse of exp(tA).
Use (i) to show that

d

dt
det(exp(tA)) = Tr(A) det(exp(tA)).

Solve the differential equation to conclude that

det(exp(A)) = exp(TrA).

This problem is an example of how analysis can be used to derive identities in linear
algebra.

(vi) It is not hard to see that exp: Rn×n → Rn×n is differentiable. Find its differential.
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Proof of (i). As shown in Exercise 3.11(i), det(A) is a polynomial in the entries of A. So,
from Exercise 3.10, det is differentiable. We now compute the derivative of det(A) at A = 1.
We begin with a claim. Let σ ∈ Sn be a permutation such that σ 6= id. Then there exist
k, ` ∈ {1, . . . , n} with k 6= ` such that σ(k) 6= k and σ(`) 6= `.

We prove this claim by contradiction. Assume that the claim does not hold. Then there
is a σ ∈ Sn, σ 6= id and at most one k ∈ {1, . . . , n} such that σ(k) 6= k. But then σ(i) = i
for i ∈ {1, . . . , n} r {k}, and since σ is a bijection, σ(k) /∈ {1, . . . , n} r {k}, i.e. σ(k) = k.
Since we have achieved a contradiction, we conclude that our claim holds.

We now begin to prove the exercise. Let B = (bij)1≤i,j≤n be an n × n matrix. Then the
matrix 1 + tb has diagonal entries 1 + tbii, i = 1, . . . , n, and all other entries are first degree
monomials in t. So, when we take the determinant of 1 + tb, the term given by the diagonal
is
∏n

i=1(1 + tbii), whereas all other terms in the sum definition of the determinant have a t
term of degree at least 2. Specifically, we have

det(1 + tB) =
∑
σ∈Sn

sign(σ)
n∏
i=1

(1 + tB)iσ(i)

=
n∏
i=1

(1 + tbii) +
∑

σ∈Sn,σ 6=id

sign(σ)
n∏
i=1

(1 + tB)iσ(i)

Now, if σ 6= id, we use the Claim to write
n∏
i=1

(1 + tB)iσ(i) = (1 + tB)kσ(k)(1 + tB)`σ(`)
∏
i 6=k,`

(1 + tB)iσ(i)

= tBkσ(k)tB`σ(`)

∏
i 6=k,`

(1 + tB)iσ(i) = O(t2).

Therefore,

d

dt
|t=0 det(1 + tB) =

d

dt
|t=0

(
n∏
i=1

(1 + tbii)

)
=

n∑
i=1

bii

(∏
j 6=i

(1 + tbjj)|t=0

)

=
n∑
i=1

bii = Tr(B). (∗)

Now, let A be any matrix. Using (∗), we get

d

dt
det(A+ tB) =

d

dt
det((AA−1)(A+ tB)) = det(A)

d

dt
det(1 + tA−1B) = det(A)Tr(A−1B).

�

Proof of (ii). Write A = (aij)1≤i,j≤n, and write Ak = ((ak)ij)1≤i,j≤n for k ∈ N. Let M :=
max1≤i,j≤n |aij|. Fix k ∈ N, 1 ≤ i, j ≤ n. We prove by induction on k that

∣∣(ak)ij∣∣ ≤Mknk−1.
The case k = 1 follows by the definition of M , so we now prove the inductive step. Assume
that

∣∣(ak)ij∣∣ ≤Mknk−1. Then Ak+1 = AkA, and by the definition of the matrix product,

(ak+1)ij =
n∑
r=1

(ak)irarj.
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So, from the triangle inequality, the inductive hypothesis, and the definition of M ,∣∣(ak+1)ij
∣∣ ≤ n∑

r=1

∣∣(ak)ir∣∣ |arj| ≤ nMknk−1M = Mk+1nk.

Since the inductive hypothesis is complete, we conclude that, for all k ∈ N , and for all
1 ≤ i, j ≤ n, ∣∣(ak)ij∣∣ ≤Mknk−1.

Let exp(A)ij denote the i, j component of exp(A). Using the definition of exp(A), we then
have by the triangle inequality and our inductive bound

|exp(A)ij| =

∣∣∣∣∣
∞∑
k=0

1

k!
(ak)ij

∣∣∣∣∣ ≤
∞∑
k=0

1

k!

∣∣(ak)ij∣∣ ≤ ∞∑
k=0

1

k!
Mknk−1 = eMn/n <∞.

We conclude that exp(A) converges absolutely. �

Proof of (iii). Since the series defining exp(tA) converges absolutely, we can rearrange terms
in its infinite summation.

exp(tA) exp(sA) =
∞∑
r=0

1

r!
trAr

∞∑
j=0

1

j!
sjAj =

∞∑
`=0

∑
r+j=`

1

r!

1

j!
trsjA`

=
∞∑
`=0

∑̀
k=0

1

k!

1

(`− k)!
tks`−kA` =

∞∑
`=0

1

`!

∑̀
k=0

tks`−k
`!

k!(`− k)!
A`

=
∞∑
`=0

1

`!

∑̀
k=0

tks`−k
(
`

k

)
A` =

∞∑
`=0

1

`!
(t+ s)`A`

= exp((t+ s)A)

�

Proof of (iv). From part (ii), we showed that the componentwise radius of convergence of
exp(At) is infinite. Therefore, the differential of the map t 7→ exp(tA) can be found by
differentiating the infinite series definition of exp(tA) term by term. That is,

d

dt
exp(tA) =

∞∑
k=0

1

k!

d

dt
(tkAk) =

∞∑
k=0

1

k!
ktk−1Ak = A

∞∑
k=1

1

(k − 1)!
(tA)k−1 = A exp(tA).

�

Proof of (v). Since det and exp are differentiable, the composition t 7→ det(exp(tA)) is dif-
ferentiable. Then, applying the chain rule, (iii), and then (i),

d

dt
det(exp(tA)) = det′(exp(tA))

(
d

dt
exp(tA)

)
= det′(exp(tA))(A exp(tA))

= Dexp(tA) det(A exp(tA)) = Tr(exp(−tA)A exp(tA)) det(exp(tA)) = Tr(A) det(exp(tA)).

Re-writing this expression,

d

dt
log(det(exp(tA))) = Tr(A).
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Integrating t from 0 to 1 and applying the Fundamental Theorem of Calculus, we get
log(det(exp(A))) = Tr(A). That is,

det(exp(A)) = exp(Tr(A)).

�

Proof of (vi). Let k ∈ N and let A,B ∈ Rn×n. Consider (A+ tB)k as a polynomial in t. The

first degree term is of the form
∑k−1

j=0 A
jBA(k−1)−j. Therefore,

d

dt
|t=0(A+ tB)k =

d

dt
|t=0

(
t

k−1∑
j=0

AjBA(k−1)−j

)
=

k−1∑
j=0

AjBA(k−1)−j.

So, justifying the term by term differentiation as in (iv),

d

dt
|t=0 exp(A+ tB) =

d

dt
|t=0

∞∑
k=0

1

k!
(A+ tB)k =

∞∑
k=0

1

k!

d

dt
|t=0(A+ tB)k

=
∞∑
k=1

1

k!

k−1∑
j=0

AjBA(k−1)−j =
∞∑
k=0

1

(k + 1)!

k∑
j=0

AjBAk−j. (∗)

We now wish to present the differential in a more simplified form. We begin with the
following claim. For j, ` ∈ N we have∫ 1

0

tj(1− t)`dt =
j!`!

(j + `+ 1)!
. (∗∗)

To prove (∗∗), integrate by parts ` times to get∫ 1

0

tj(1− t)`dt =
`

j + 1

∫ 1

0

tj+1(1− t)`−1dt = · · · = `!j!

(j + `)!

∫ 1

0

tj+`+1dt =
`!j!

(j + `+ 1)!
.

From (∗), and (∗∗), and using absolute convergence to justify the rearrangement of terms,

d

dt
|t=0 exp(A+ tB) =

∞∑
k=0

∑
j+`=k

1

(j + `+ 1)!
AjBA`

=
∞∑
k=0

∑
j+`=k

∫ 1

0

1

j!`!
tjAjB(1− t)`A`dt

=

∫ 1

0

(
∞∑
j=0

1

j!
tjAj

)
B

(
∞∑
`=0

1

`!
(1− t)`A`

)
dt

=

∫ 1

0

eAtBeA(1−t)dt.

�
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4. Problem Set 4

Exercise 4.1. Let f be Ck+1 in a neighborhood of a ∈ Rn. In class, we saw that f can be
expressed using its Taylor series as

f(a+ h) = Pk(h) +Rk(h),

where

Pk(h) :=
k∑
r=0

1

r!
Dr
hf(a), Rk(h) :=

1

(k + 1)!
Dk+1
h f(ξ).

Here ξ is in the segment between a and a+ h.

(i) Find the Taylor polynomial of degree 2 (i.e. P2(h)) for the function f(x, y) =

sin(xy)ex
2

at a = (0, 0).
(ii) Find the Taylor polynomial of degree 3 (i.e. P3(h)) for the function f(x, y) = xy at

a = (1, 1).

(iii) Find the Taylor series (i.e. limk→∞ Pk(h)) for the function f(x, y) =
√

1 + x2 + y2

at a = (0, 0).

Proof of (i). Let x, y ∈ R. Then

∂f

∂x
= sin(xy)(2x)ex

2

+ y cos(xy)ex
2

,
∂f

∂y
= x cos(xy)ex

2

,

∂2f

∂x2
= y cos(xy)(2x)ex

2

+ sin(xy)2ex
2

+ sin(xy)4x2ex
2 − y2 sin(xy)ex

2

+ y cos(xy)(2x)ex
2

,

∂2f

∂y2
= −x2 sin(xy)ex

2

,
∂2f

∂x∂y
= cos(xy)ex

2 − xy sin(xy)ex
2

+ 2x2 cos(xy)ex
2

.

Note that f ∈ C2. Let h = (h1, h2) ∈ R2. Then, at (x, y) = (0, 0),

P2(h) = f(0, 0) + h1
∂f

∂x
(0, 0) + h2

∂f

∂y
(0, 0)

+
1

2
h21
∂2f

∂x2
(0, 0) +

1

2
h22
∂2f

∂y2
(0, 0) + h1h2

∂2f

∂x∂y
(0, 0)

= h1h2.

�

Proof of (ii). Let x, y > 0. Then

∂f

∂x
= yxy−1,

∂f

∂y
= xy log(x),

∂2f

∂x2
= y(y − 1)xy−2,

∂2f

∂y2
= xy(log(x))2,

∂2f

∂x∂y
= yxy−1 log(x) + xy−1,

∂3f

∂x3
= y(y − 1)(y − 2)xy−3,

∂3f

∂y∂x2
= (y − 1)xy−2 + yxy−2 + y(y − 1)xy−2 log(x),

∂3f

∂x∂y2
= yxy−1(log(x))2 + 2xy−1 log(x),

∂3f

∂y3
= xy(log(x))3.
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Note that f ∈ C3. Now,

P3(h) = f(1, 1) + h1
∂f

∂x
(1, 1) + h2

∂f

∂y
(1, 1)

+
1

2
h21
∂2f

∂x2
(1, 1) +

1

2
h22
∂2f

∂y2
(1, 1) + h1h2

∂2f

∂x∂y
(1, 1)

+
1

6
h31
∂3f

∂x3
(1, 1) +

1

2
h21h2

∂3f

∂x2∂y
(1, 1) +

1

2
h1h

2
2

∂3f

∂x∂y2
(1, 1) +

1

6
h32
∂3f

∂y3
(1, 1)

= 1 + h1 + h1h2 + (1/2)h21h2.

�

Proof of (iii). Let g(r) :=
√

1 + r = (1 + r)1/2. Note that g(0) = 1, g′(0) = 1/2, and g′′(0) =
(1/2)(−1/2). We claim that g(k)(r) = (1/2)(−1/2)(−3/2) · · · (−(2k − 3)/2)(1 + r)−(2k−1)/2

for k ≥ 1. This claim follows by induction. So, the Taylor polynomial of g is given by

∞∑
k=0

rk

k!

k∏
i=1

(
3− 2i

2

)
=: f(r).

Since the Taylor coefficients are uniformly bounded, the radius of convergence of this series
is at least 1. We now show that g(r) = f(r) for |r| < 1. Since f converges absolutely for
|r| < 1, we can differentiate the series term by term to get

f ′(r) =
∞∑
k=1

rk−1

(k − 1)!

k∏
i=1

(
3− 2i

2

)
=
∞∑
k=0

rk

k!

k+1∏
i=1

(
3− 2i

2

)
.

Therefore,

(1 + r)f ′(r) = f ′(r) + rf ′(r) =
∞∑
k=0

rk

k!

k+1∏
i=1

(
3− 2i

2

)
+ r

∞∑
k=1

rk−1

(k − 1)!

k∏
i=1

(
3− 2i

2

)

=
1

2
+
∞∑
k=1

rk

k!
[k + ((1/2)− k)]

k∏
i=1

(
3− 2i

2

)

=
1

2

∞∑
k=0

rk

k!

k∏
i=1

(
3− 2i

2

)
=

1

2
f(r).

Now,

d

dx
[f(r)/

√
1 + r] = −1

2
(1 + r)−3/2f(r) + (1 + r)−1/2f ′(r)

= (1 + r)−3/2[−(1/2)f(r) + (1 + r)f ′(r)] = 0.

So, f(r)/
√

1 + r is constant. Since f(0) = 1, we conclude that f(r) =
√

1 + r.
Since f(r) =

√
1 + r for |r| < 1, we can substitute r = x2 + y2 into the definition of f to

get the Taylor series for the function
√

1 + x2 + y2 near (x, y) = (0, 0).

∞∑
k=0

(x2 + y2)k

k!

k∏
i=1

(
3− 2i

2

)
.

31



�

Exercise 4.2. Locate the critical points and extrema of the functions

(i) f(x, y) = x3 + y3 + 3xy, (ii) f(x, y, z) = x2 + y2 + z2 − 2xyz.

Proof of (i). f is a polynomial, so f ∈ C∞, and our theorems for locating extrema apply.
Note that

∇f(x, y) =

(
3x2 + 3y
3y2 + 3x

)
.

Assume that ∇f(x, y) = (0, 0). Then x2 = −y and y2 = −x. Squaring the first term,
x4 = y2 = −x. If x 6= 0, then x3 = −1, i.e. x = −1, and then since y2 = −x = 1, we have
y = ±1. If y = 1, then x2 6= −y, so we conclude that (x, y) = (−1,−1), for x 6= 0. If x = 0,
then y = 0. So, we have exactly two critical points: (x, y) = (−1,−1) and (x, y) = (0, 0).
Now, observe that, for (x, y) = (0, 0), we have(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
6x 3
3 6y

)
=

(
0 3
3 0

)
.

The eigenvalues λ of this matrix satisfy λ2 − 9 = 0, so that λ = ±3. That is, the critical
point is indeterminate. And indeed, along the line y = 0, we have f(x, y) = x3, so that f is
neither a local max or min.

Now, observe that, for (x, y) = (−1,−1), we have(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
6x 3
3 6y

)
=

(
−6 3
3 −6

)
.

The eigenvalues λ of this matrix satisfy λ2 + 12λ+ 27 = 0, so that λ = −3,−9. That is, the
critical point is a local maximum. �

Proof of (ii). f is a polynomial, so f ∈ C∞, and our theorems for locating extrema apply.
Then

∇f(x, y, z) =

2x− 2yz
2y − 2xz
2z − 2xy

 .

Assume that ∇f(x, y) = (0, 0). Then x = yz, y = xz and z = xy. Note that if any of x, y or
z is zero, then x = y = z = 0. So, note that (x, y, z) = (0, 0, 0) is a critical point, and now
assume that x 6= 0, y 6= 0, z 6= 0. Substituting the first equation into the second, we have
y = yz2, so z2 = 1. Similarly, x2 = 1 and y2 = 1. Also, multiplying the first equation by
x, the second by y and the third by z, we have 1 = x2 = y2 = z2 = xyz. That is, if one of
x, y, z is −1, then exactly two of x, y, z are −1. We therefore have the critical points (1, 1, 1),
(1,−1,−1), (−1, 1,−1) and (−1,−1, 1). We now check the matrix of second derivatives.

∂2f
∂x2

∂2f
∂y∂x

∂2f
∂z∂x

∂2f
∂x∂y

∂2f
∂y2

∂2f
∂z∂y

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂z2

 . =

 2 −2z −2y
−2z 2 −2x
−2y −2x 2

 . (∗)
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For the critical point (0, 0, 0), this matrix is 2 times the identity matrix, so f has a local
minimum at (0, 0, 0). For the critical point (1, 1, 1), the matrix (∗) is 2 −2 −2

−2 2 −2
−2 −2 2

 .

This matrix has eigenvalues 4, 4 and −2. So, this critical point is indeterminate.
For the critical point (1,−1,−1), the matrix (∗) is2 2 2

2 2 −2
2 −2 2

 .

This matrix has eigenvalues 4, 4 and −2. So, this critical point is indeterminate. Similarly, by
permutation symmetry of the variables x, y, z, the critical points (−1, 1,−1) and (−1,−1, 1)
are also indeterminate. �

Exercise 4.3. (i) In class we proved that Rk(h) = O(|h|k+1), so that for f ∈ Ck+1 we
have

f(a+ h) = Pk(h) +O(|h|k+1).

In some applications, we want to make the weaker assumption f ∈ Ck. Prove using
Taylor’s theorem, that if f ∈ Ck, then

f(a+ h) = Pk(h) + o(|h|k).
(ii) Use (i) to prove the following stronger version of the criterion for locating extrema

that we proved in class. Suppose f is C2 in a neighborhood of a ∈ Rn, and that a is
a critical point of f . Then

f ′′(a) positive definite a is a local minimum of f

f ′′(a) negative definite a is a local maximum of f

f ′′(a) indefinite a is neither a local maximum or a local minimum.

Proof of (i). Let h = (h1, . . . , hn) ∈ Rn. We first claim that

h1 · · ·hn = O(|h|n). (‡)

To see this, let i ∈ {1, . . . , n}, and note that |hi| =
√
h2i ≤

√∑n
j=1 h

2
j = |h|. So, |h1 · · ·hn| ≤

|h|n, proving (‡).
Since f ∈ Ck, we know from class, or from Question 4.1 that

f(a+ h) = Pk−1(h) +Rk−1(h), (∗)
where

Pk−1(h) =
k−1∑
r=0

1

r!
Dr
hf(a), Rk−1(h) =

1

k!
Dk
hf(ξ)

for some ξ in the segment between a and a+ h. Note that

Dk
hf(ξ) = (h1D1 + · · ·+ hnDn)kf(ξ) =

∑
j1+···+jn=k

k!

j1! · · · jn!
hj11 · · ·hjnn Dj1 · · ·Djnf(ξ). (∗∗)

33



Let j1, . . . , jn ∈ Z≥0 such that j1 + · · ·+ jn = k. Since f ∈ Ck, Dj1 · · ·Djnf(ξ) is continuous
in ξ. Since ξ is in the segment between a and a+ h, we therefore have

Dj1 · · ·Djnf(ξ) = Dj1 · · ·Djnf(a) + o(1).

Substituting this equation into (∗∗) and using (‡) gives

Dk
hf(ξ) =

∑
j1+···+jn=k

k!

j1! · · · jn!
hj11 · · ·hjnn [Dj1 · · ·Djnf(a) + o(1)] = Dk

hf(a) + o(|h|k).

So, combining this equation with (∗) gives

f(a+ h) = Pk−1(h) +
1

k!
Dk
hf(a) + o(|h|k) = Pk(h) + o(|h|k).

�

Proof of (ii). Let h = (h1, . . . , hn) ∈ Rn, and define

q(h) :=
1

2

n∑
i,j=1

hihjDiDjf(a).

Since a is a critical point of f , the first degree part of the Taylor polynomial is zero. That
is, f(a+ h) = f(a) + q(h) +R2(h). Since f ∈ C2, part (i) shows that

f(a+ h)− f(a) = q(h) + o(|h|2). (∗)
We now consider the three cases for the behavior of q. Let v1, . . . , vn ∈ Rn be an orthonormal
set of eigenvectors of the symmetric matrix f ′′(a) = (DiDjf(a))1≤i,j≤n, and let λ1, . . . , λn ∈ R
be the corresponding eigenvalues. Since v1, . . . , vn is an orthonormal basis of Rn, there exists
c1, . . . , cn ∈ R such that

h = c1v1 + · · ·+ cnvn.

By the orthonormality of the basis v1, . . . , vn,

q(h) = c21λ1 + · · ·+ c2nλn. (∗∗)
Now, suppose f ′′(a) is positive definite. Then λi > 0 for each i ∈ {1, . . . , n}, so

q(h) ≥ (c21 + · · ·+ c2n) min
i=1,...,n

λi = |h|2 min
i=1,...,n

λi.

Combining this inequality with (∗),

f(a+ h)− f(a) ≥ |h|2 min
i=1,...,n

λi + o(|h|2).

Let ε > 0. Then, there exists δ > 0 such that, for all 0 < |h| < δ, the term o(|h|2) satisfies
o(|h|2) < |h|2 mini=1,...,n λi/2. So, for 0 < |h| < δ,

f(a+ h)− f(a) ≥ 1

2
|h|2 min

i=1,...,n
λi > 0.

That is, f(a) is a local minimum.
Now, suppose f ′′(a) is negative definite. Then λi < 0 for each i ∈ {1, . . . , n}, so

q(h) ≤ (c21 + · · ·+ c2n) max
i=1,...,n

λi = |h|2 max
i=1,...,n

λi.
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Combining this inequality with (∗),

f(a+ h)− f(a) ≤ |h|2 max
i=1,...,n

λi + o(|h|2).

Let ε > 0. Then, there exists δ > 0 such that, for all 0 < |h| < δ, the term o(|h|2) satisfies
o(|h|2) < |h|2 |maxi=1,...,n λi| /2. So, for 0 < |h| < δ,

f(a+ h)− f(a) ≤ 1

2
|h|2 max

i=1,...,n
λi < 0.

That is, f(a) is a local maximum.
Now, suppose f ′′(a) is indefinite. Then there exist i, j ∈ {1, . . . , n} such that λi > 0 and

λj < 0. So,

q(civi) = c2iλi, q(cjhj) = c2jλj.

Combining this with (∗),

f(a+ civi)− f(a) = c2iλi + o(|ci|2), f(a+ cjvj)− f(a) = c2jλj + o(|cj|2).

Let ε > 0. Then, there exists δ > 0 such that, for all 0 < |h| < δ, the terms o(|ci|2) and
o(|cj|2) in both equalities are bounded by |h|2 min(|λi| , |λj|)/2. So, for 0 < |h| < δ,

f(a+ civi)− f(a) ≥ 1

2
c2iλi > 0, f(a+ cjvj)− f(a) ≤ 1

2
c2jλj < 0.

That is, f(a) is neither a local maximum or minimum at a. �

Exercise 4.4. Let A,B ⊆ Rn be open, and suppose that f : A → B exists such that both
f and f−1 are C1. Prove that f ′(a) is an invertible matrix for all a ∈ A, and that for all
a ∈ A with b := f(a) we have

(f−1)′(b) = (f ′(a))−1.

Proof. Applying the chain rule to the equality (f ◦ f−1)(b) = b, we have

f ′(f−1(b))(f−1)′(b) = id.

That is, f ′(a)(f−1)′(b) = id. Since the matrix (f−1)′(b) inverts f ′(a), we have shown that
f ′(a) is invertible. (Recall that, for square matrices A,B if AB = id, then BAB = B, so
BA = id also. That is, to find the inverse of a square matrix, it suffices to find a one-sided
inverse of that matrix.) Since f ′(a)(f−1)′(b) = id, we have shown (f−1)′(b) = (f ′(a))−1. �

Exercise 4.5. Prove that the function f(x) := |x| is differentiable on Rn r {0} and find
∇f(x).

Proof. Let x ∈ Rnr {0} and let r ∈ (0,∞). Let g : (0,∞)→ (0,∞) so that g(r) :=
√
r, and

let h : Rnr{0} → (0,∞) so that h(x) = h(x1, . . . , xn) := x21+ · · ·+x2n. Then f(x) = g(h(x)).
Note that g, h are differentiable, so f : Rnr {0} → (0,∞) is differentiable by the chain rule.
Also by the chain rule, we have

∇f(x) = g′(h(x))h′(x) =
1

2
√
h(x)

h′(x) =
2x

2
√
h(x)

=
x

|x|
.

�
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Exercise 4.6. The Laplacian ∆ is defined by

∆f(a) := Trf ′′(a) =
n∑
i=1

D2
i f(a).

This object appears in essentially every equation describing a law of nature, such as heat
conduction, motion of waves, motion of quantum-mechanical particles, electric and magnetic
fields, and Brownian motion.

(i) Prove that ∆ is invariant under rotations in the following sense. Let v1, . . . , vn be an
orthonormal basis of Rn. Then, for all f ∈ C2(Rn),

∆f =
n∑
i=1

D2
vi
f.

(ii) Let f, g ∈ C2. Prove that

∆(fg) = g∆f + 2〈∇f,∇g〉+ f∆g.

(iii) Let n = 2 and consider the polar coordinates defined in class:

T : [0,∞)× [0, 2π)→ R2, T (r, θ) :=

(
r cos θ
r sin θ

)
.

Express ∆ in polar coordinates. More precisely, let f ∈ C2(R2) and define g := f ◦T .
Show that for r > 0 we have

(∆f)(T (r, θ)) =

(
D2
rg +

1

r2
D2
θg +

1

r
Drg

)
(r, θ).

(iv) Suppose that f : Rn → R is invariant under rotations in the sense that f(x) = g(|x|)
for some g ∈ C2(0,∞). Prove that

∆f(x) = g′′(|x|) +
n− 1

|x|
g′(|x|).

(v) Let

ψ : [0,∞)× Rn → R, ψ(t, x) :=
1

tn/2
exp

(
−|x

2|
4t

)
.

Using (iii) show that

Dtψ(t, x) = ∆ψ(t, x) (t > 0, x ∈ Rn).

Here ∆ is the Laplacian in the variables x1, . . . , xn. This equation is called the heat
equation and its solutions, such as ψ, model the diffusion of heat through a conducting
medium. The solution ψ given above corresponds to a single heat source at x = 0
when t = 0, which diffuses through space as time t increases.

(vi) Let c > 0 and fix a unit vector v ∈ Rn and f ∈ C2(R). Show that

ψ : R× Rn → R, ψ(t, x) := f(〈x, v〉 − ct)

satisfies the wave equation

D2
tψ(t, x) = c2∆ψ(t, x).

36



As above, the Laplacian ∆ only acts on x1, . . . , xn. As its name implies, solutions ψ
of the wave equation describe the motion of waves (e.g. sound, light) through space;
the speed of the waves (speed of sound or light) is c.

Proof of (i). Let e1, . . . , en denote the standard basis of Rn. Let Q be an orthogonal matrix
such that Qei = vi. For each i ∈ {1, . . . , n}, write vi = ci1e1 + · · ·+ cinen. Then

D2
vi
f(a) = (ci1D1 + · · ·+ cinDn)2f(a) =

∑
1≤j,k≤n

cijcikDjDkf(a) = vTi f
′′(a)vi.

So, using the identity Tr(AB) = Tr(BA),
n∑
i=1

eTi f
′′(a)ei = Tr(f ′′(a)) = Tr(QQTf ′′(a)) = Tr(QTf ′′(a)Q) =

n∑
i=1

eTi Q
Tf ′′(a)Qei

=
n∑
i=1

(Qei)
Tf ′′(a)Qei =

n∑
i=1

vTi f
′′(a)vi =

n∑
i=1

D2
vi
f(a).

�

Proof of (ii). From the product rule,

Di(fg) = fDig + gDif.

Using the product rule again,

D2
i (fg) = fD2

i g +DifDig + gD2
i f +DifDig.

So, summing from i = 1, . . . , n gives

∆(fg) =
n∑
i=1

D2
i (fg) = f

n∑
i=1

D2
i g + 2

n∑
i=1

DifDig + g
n∑
i=1

D2
i f = f∆g + g∆f + 2〈∇f,∇g〉.

�

Proof of (iii). Since f ∈ C2 and T ∈ C∞, we can use the chain rule to compute the second
derivatives of g. Observe

∂g

∂r
=
∂f

∂x
(T (r, θ))

∂x

∂r
+
∂f

∂y
(T (r, θ))

∂y

∂r
=
∂f

∂x
(T (r, θ)) cos θ +

∂f

∂y
(T (r, θ)) sin θ.

∂g

∂θ
=
∂f

∂x
(T (r, θ))

∂x

∂θ
+
∂f

∂y
(T (r, θ))

∂y

∂θ
=
∂f

∂x
(T (r, θ))(−r sin θ) +

∂f

∂y
(T (r, θ))r cos θ.

∂2g

∂r2
=

(
∂

∂r

∂f

∂x
(T (r, θ))

)
cos θ +

(
∂

∂r

∂f

∂y
(T (r, θ))

)
sin θ

=
∂2f

∂x2
(T (r, θ))

∂x

∂r
cos θ +

∂2f

∂x∂y
(T (r, θ))

∂y

∂r
cos θ

+
∂2f

∂y2
(T (r, θ))

∂y

∂r
sin θ +

∂2f

∂x∂y
(T (r, θ))

∂x

∂r
cos θ

=
∂2f

∂x2
(T (r, θ)) cos2 θ + 2

∂2f

∂x∂y
(T (r, θ)) sin θ cos θ +

∂2f

∂y2
(T (r, θ)) sin2 θ.
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∂2g

∂θ2
=

(
∂

∂θ

∂f

∂x
(T (r, θ))

)
(−r sin θ) +

(
∂

∂θ

∂f

∂y
(T (r, θ))

)
r cos θ

+
∂f

∂x
(T (r, θ))(−r cos θ) +

∂f

∂y
(T (r, θ))r sin θ

=
∂2f

∂x2
(T (r, θ))

∂x

∂θ
(−r sin θ) +

∂2f

∂x∂y
(T (r, θ))

∂y

∂θ
(−r sin θ) +

∂2f

∂y2
(T (r, θ))

∂y

∂θ
r cos θ

+
∂2f

∂x∂y
(T (r, θ))

∂x

∂θ
r cos θ +

∂f

∂x
(T (r, θ))(−r cos θ) +

∂f

∂y
(T (r, θ))r sin θ

=
∂2f

∂x2
(T (r, θ))r2 sin2 θ − 2

∂2f

∂x∂y
(T (r, θ))r2 sin θ cos θ +

∂2f

∂y2
(T (r, θ))r2 cos2 θ

+
∂f

∂x
(T (r, θ))(−r cos θ) +

∂f

∂y
(T (r, θ))r sin θ.

So,

D2
rg +

1

r2
D2
θg +

1

r
Drg

=
∂2f

∂x2
(T (r, θ)) cos2 θ + 2

∂2f

∂x∂y
(T (r, θ)) sin θ cos θ +

∂2f

∂y2
(T (r, θ)) sin2 θ

+
∂2f

∂x2
(T (r, θ)) sin2 θ − 2

∂2f

∂x∂y
(T (r, θ)) sin θ cos θ +

∂2f

∂y2
(T (r, θ)) cos2 θ

+
1

r

∂f

∂x
(T (r, θ)) cos θ +

1

r

∂f

∂y
(T (r, θ)) sin θ − 1

r

∂f

∂x
(T (r, θ)) cos θ − 1

r

∂f

∂y
(T (r, θ)) sin θ

=
∂2f

∂x2
(T (r, θ))(sin2 θ + cos2 θ) +

∂2f

∂y2
(T (r, θ))(sin2 θ + cos2 θ)

= (∆f)(T (r, θ))

�

Proof of (iv). We use Question 4.5.

Dif(x) = Di(g(|x|)) = g′(|x|) xi
|x|
.

D2
i f(x) = g′(|x|)

 |x| − xi
(
xi
|x|

)
|x|2

+
xi
|x|
g′′(|x|) xi

|x|
= g′(|x|) |x|

2 − x2i
|x|3

+ g′′(|(|x))
x2i
|x|2

.

∆f(x) =
n∑
i=1

D2
i f(x) = g′(|x|)n |x|

2 − |x|2

|x|3
+ g′′(|x|) |x|

2

|x|2
= g′(|x|)n− 1

|x|
+ g′′(|x|).

�

Proof of (v). Let g(r) := t−n/2 exp(−r2/(4t)). For t > 0, note that g ∈ C∞. Also, for t > 0,
ψ ∈ C∞. Then

g′(r) = −(r/2)t−(n+2)/2 exp(−r2/(4t))
g′′(r) = (r2/4)t−(n+4)/2 exp(−r2/(4t))− (1/2)t−(n+2)/2 exp(−r2/(4t))

Dtψ(t, x) = t−n/2t−2(|x|2 /4) exp(− |x|2 /(4t)) + (−n/2)t−(n+2)/2 exp(− |x|2 /(4t))
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So, using (iv),

∆ψ(t, x) = g′′(|x|) +
n− 1

|x|
g′(|x|)

=
|x|2

4t(n+4)/2
exp

(
−|x|

2

4t

)
− 1

2t(n+2)/2
exp

(
−|x|

2

4t

)
− (n− 1)

2t(n+2)/2
exp

(
−|x|

2

4t

)

=
|x|2

4t(n+4)/2
exp

(
−|x|

2

4t

)
− n

2t(n+2)/2
exp

(
−|x|

2

4t

)
= Dtψ(t, x)

�

Proof of (vi). Since f ∈ C2, we have ψ ∈ C2. Let v = (v1, . . . , vn) ∈ Rn with |v| = 1. Then

Dtψ(t, x) =
n∑
j=1

(−c) ∂f
∂xj

(〈x, v〉 − ct), D2
tψ(t, x) =

n∑
j,k=1

c2
∂2f

∂xj∂xk
(〈x, v〉 − ct).

Diψ(t, x) = vi

n∑
j=1

∂f

∂xj
(〈x, v〉 − ct), D2

iψ(t, x) = v2i

n∑
j,k=1

∂2f

∂xj∂xk
(〈x, v〉 − ct).

Using that |v| = 1,

c2∆ψ(t, x) = c2
n∑
i=1

D2
iψ(t, x) = c2

n∑
j,k=1

∂2f

∂xj∂xk
(〈x, v〉 − ct) = D2

tψ(t, x).

�

Exercise 4.7. It is of fundamental importance for many arguments in analysis that there
exists a C∞ function which is positive inside the unit ball and zero outside. An example is

f(x) :=

{
exp(1/(|x|2 − 1)) if |x| < 1

0 if |x| ≥ 1
.

Prove that f ∈ C∞(Rn).

Proof. Let for r ∈ (−1, 1), let g(r) := exp(1/(r − 1)). Note that g′(r) = −(1/(r − 1)2)g(r).
We prove by induction on k ∈ Z≥0 that there exists a rational function hk(r) of the form

hk(r) = ak(r)/(r − 1)2
k
, where ak(r) is a polynomial in r, such that

g(k)(r) = hk(r)g(r).
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Let k ≥ 1 and assume that g(k)(r) = [ak(r)/(r − 1)2
k
]g(r). Then, from the product rule,

g(k+1)(r) =
(r − 1)2

k
a′k(r)− ak(r)2k(r − 1)2

k−1

(r − 1)2k+1 g(r) +
ak(r)

(r − 1)2k
g′(r)

=
(r − 1)2

k
a′k(r)− ak(r)2k(r − 1)2

k−1

(r − 1)2k+1 g(r)− ak(r)

(r − 1)2k+2
g(r)

=
(r − 1)2

k
a′k(r)− ak(r)2k(r − 1)2

k−1 − ak(r)(r − 1)2
k−2

(r − 1)2k+1 g(r)

=:
ak+1(r)

(r − 1)2k+1 g(r).

Note that ak+1(r) as defined here is a polynomial. So, with the inductive step completed,
our claim is proven. Directly from the claim, g ∈ C∞(−1/2, 1). Now, let F (r) := g(r) for
|r| < 1, and F (r) := 0 for |r| ≥ 1. We will show that F ∈ C∞(−1/2,∞). It remains to show
that F (k)(1) exists for all k ∈ N and F (k)(r) is continuous at r = 1 for all k ∈ N.

From our claim, observe

lim
r→1−

g(k)(r) = ak(1) lim
r→1−

g(r)

(r − 1)2k
= ak(1) lim

r→1−

e1/(r−1)

(r − 1)2k
= ak(1) lim

t→∞
e−tt2

k

= 0.

Also, given the existence of g(k)(1) = 0, we have

g(k+1)(1) = lim
r→1−

g(k)(r)− g(k)(1)

r − 1
= lim

r→1−

g(k)(r)

r − 1
= ak(1) lim

t→∞
e−tt2

k+1 = 0.

So, we conclude that g(k)(1) = 0 exists and F (k)(r) is continuous at r = 1 for all k ∈ N.
That is, F ∈ C∞(−1/2,∞). Finally, for x ∈ Rn, note that f(x) = F (|x|2), i.e. f is the
composition of two C∞ functions. So, by the chain rule, f ∈ C∞(Rn), as desired. �

Exercise 4.8. A linear transformation A : Rn → Rm is called conformal if there is a number
ρ > 0 such that ATA = ρ1.

(i) Prove that a conformal transformation preserves angles in the sense that, for any
nonzero v, w ∈ Rn, the vectors Av,Aw are also nonzero and the angle between v and
w is the same as the angle between Av and Aw.

(ii) Prove that a linear map that preserves angles in the sense given in (i) is conformal.
(Combining this result with (i), we deduce that a linear map is conformal if and only
if it preserves angles.)

(iii) A mapping f ∈ C1(A;Rm), where A ⊆ Rn is called conformal at a ∈ A if f ′(a) is
conformal. Let γ1 and γ2 be two C1 curves in Rn that intersect, i.e. γ1(0) = γ2(0).
Suppose that f is conformal at this point of intersection. Prove that the angle
between the tangents of γ1 and γ2 at time 0 is the same as the angle between the
tangents of f ◦ γ1 and f ◦ γ2 at time 0.

(iv) The stereographic projection is a projection used to map the unit sphere in Rn+1 to
Rn. It is defined as follows. Let

Sn := {u ∈ Rn+1 : |u| = 1}
be the unit sphere, and let p := (0, . . . , 0, 1)T be the “north pole” of the sphere. For
x ∈ Rn, let `(x) be the line in Rn+1 that passes through the two points (x, 0) and
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p. Draw a sketch of Rn+1 along with Sn and `(x). Show that `(x) intersects Sn at a
unique point, which we denote by S(x). Show also that S is a bijection between Rn

and Sn r {p}. S is called the stereographic projection. Prove that

S(x) =
1

1 + |x|2

(
2x

|x|2 − 1

)
.

Finally, prove that S is conformal. This fact is of great interest to cartographers:
using S we may represent the surface of the earth on a flat piece of paper in such a
way that all angles are preserved. The downside is that areas are not preserved; in
fact, that is no projection that preserves both angles and areas (this is a mathematical
theorem). We understand this theorem intuitively, since we cannot flatten a paper
sphere without tearing the paper. The stereographic projection is accurate near the
“south pole” (0, . . . , 0,−1)T , and becomes increasingly distorted as one approaches
the north pole p.

Proof of (i). Let v, w ∈ Rn, v, w 6= 0. Then

〈Av,Aw〉 = (Av)T (Aw) = vTATAw = vTρw = ρ〈v, w〉. (∗)

Setting v = w, (∗) says that |Av|2 = ρ |v|2. So, if v 6= 0, then ρ > 0 implies that ρ |v|2 > 0,
so |Av|2 > 0, i.e. Av 6= 0. Now, using (∗) and the identity |Av|2 = ρ |v|2,

〈v, w〉
|v| |w|

=
ρ〈v, w〉

√
ρ |v|√ρ |w|

=
〈Av,Aw〉
|Av| |Aw|

.

That is, the angle between v, w is the same as the angle between Av,Aw. �

Proof of (ii). Suppose A preserves angles. That is, given v, w ∈ Rn v, w 6= 0, we have
Av,Aw 6= 0, and

〈Av,Aw〉
|Av| |Aw|

=
〈v, w〉
|v| |w|

. (∗)

Let e1, . . . , en be the standard basis of Rn. Let v = ei, w = ej, i, j ∈ {1, . . . , n}, i 6= j.
Then (∗) says that 〈Aei, Aej〉 = 0. Since Aei 6= 0 for i ∈ {1, . . . , n}, we know that the set
Ae1, . . . , Aen is an orthogonal set of nonzero vectors. Also, note that

〈ei, ej〉 =
〈Aei, Aej〉
|Aei| |Aej|

=
eTi A

TAej
|Aei| |Aej|

.

So, the matrix ATA has zero entries away from the diagonal, and nonzero entries along
the diagonal. More specifically, the ith diagonal entry of ATA is |Aei|2. So, it remains to
show that |Aei| = |Aej| for i, j ∈ {1, . . . , n}, i 6= j. Let t ∈ [0, 1], let v := ei and let

w := ei
√
t+ ej

√
1− t. Then, |v| = |w| = 1, and using (∗), we have

〈v, w〉 =
√
t =
〈Av,Aw〉
|Av| |Aw|

=
〈Aei,

√
tAei〉

|Av| |Aw|
=
√
t
|Aei|2

|Aei| |Aw|
.

So,

|Aei|2 = |Aw|2 = |Aei
√
t+ Aej

√
1− t|2 = t |Aei|2 + (1− t) |Aej|2 .

Plugging in t = 0 shows that |Aei|2 = |Aej|2, as desired. �
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Proof of (iii). Let i, j ∈ {1, 2}. From the chain rule, (f ◦ γi)′ = f ′(γi)γ
′
i. So,

〈(f ◦ γi)′(0), (f ◦ γj)′(0)〉
= (f ′(γi)(0)γ′i(0))T (f ′(γj)(0)γ′j(0)) = γ′i(0)T (f ′(γi(0)))T (f ′(γj)(0)γ′j(0))

= γ′i(0)T (f ′(γi(0)))T (f ′(γi)(0)γ′j(0)) = ργ′i(0)Tγ′j(0))

So, using the cases i = j and i 6= j separately,

〈γ′1(0), γ′2(0)〉
|γ′1(0)| |γ′2(0)|

=
ρ〈γ′1(0), γ′2(0)〉

√
ρ |γ′1(0)|√ρ |γ′2(0)|

=
〈(f ◦ γ1)′(0), (f ◦ γ2)′(0)〉
|(f ◦ γ1)′(0)| |(f ◦ γ2)′(0)|

.

�

S(x)

p

x

`(x) Rn

Sn

Proof of (iv). Let x = (x1, . . . , xn) ∈ Rn. Let w(x) denote the orthogonal projection of S(x)
onto Rn. That is, if S(x) = (y1, . . . , yn+1) ∈ Rn+1, then w(x) := (y1, . . . , yn, 0). Note that
we consider Rn as a subset of Rn+1 via the inclusion Rn = Rn × {0} ⊆ Rn+1. We first show
that `(x) intersects Sn at a unique point. The line `(x) is either parallel to the hyperplane
Rn, or `(x) intersects Rn at precisely one point. Since `(x) intersects Rn by the definition
of `(x), we know that `(x) is not parallel to Rn. Also, the line `(x) is either tangent to the
sphere Sn, or `(x) intersects Sn at exactly two points. Since `(x) is not parallel to Rn, and
p ∈ `(x), we conclude that `(x) is not tangent to the sphere Sn. So, `(x) intersects Sn in
exactly two points. Since `(x) intersects p ∈ Sn, there exists a unique point S(x) 6= p such
that `(x) intersects Sn at S(x).

We now show that S : Rn → Snr {p} is a bijection. We first show that S is injective. Let
x 6= y, x, y ∈ Rn. We want to show that S(x) 6= S(y). The lines `(x) and `(y) intersect at p.
Also, two distinct Euclidean lines can intersect in at most one point. So, since `(x) intersects
S(x) and `(y) intersects S(y), we must have S(x) 6= S(y), as desired. We now show that S
is surjective. Let s ∈ Sn r {p}. Let ` be the unique line that contains p and s. Since s 6= p,
the line ` is not tangent to Sn at p. Therefore, the line ` is not parallel to the hyperplane
Rn. Therefore, there exists a unique x ∈ Rn such that ` intersects x. Since ` also intersects
s and p, we conclude that `(x) ∩ (Sn r {p}) = s, so that S(x) = s. That is, S is surjective.
In conclusion, S is bijective.

Let h(x) denote the orthogonal projection of S(x) onto p. So, if S(x) = (y1, . . . , yn+1) ∈
Rn+1, then h(x) := (0, . . . , 0, yn+1). Since p is orthogonal to Rn, the Pythagorean Theorem
says that |w(x)|2 + |h(x)|2 = |S(x)|2 = 1. Note that |S(x)| = 1 by assumption. Note that

42



the right triangle with edges x and p is similar to the right triangle with edges w(x) and
p− h(x). Therefore, |x| /1 = |w(x)| / |p− h(x)|. In summary, using that |h(x)| = |〈p, h(x)〉|

|w(x)| = |x| |p− h(x)| , |w(x)|2 + |〈p, h(x)〉|2 = 1.

By substitution, |x|2 |p− h(x)|2 + |〈p, h(x)〉|2 = 1. Expanding the inner product,

1 = |x|2 (1− 2〈p, h(x)〉+ |h(x)|2) + ((1− |〈p, h(x)〉|)− 1)2

= |x|2 (1− 〈p, h(x)〉)2 + ((1− |〈p, h(x)〉|)− 1)2

So, (|x|2 + 1)(1 − 〈p, h(x)〉)2 − 2(1 − 〈p, h(x)〉) = 0. Since 〈p, h(x)〉 < 1, we can divide by
1− 〈p, h(x)〉 to get (|x|2 + 1)(1− 〈p, h(x)〉) = 2, so that

〈p, h(x)〉 =
−1 + |x|2

1 + |x|2
. (∗)

By the definition of w(x), we know that w(x) is a constant multiple of x. Since |w(x)|2 =
|x|2 |p− h(x)|2 = |x|2 (1− 〈p, h(x)〉)2, and 1− 〈p, h(x)〉 = 2/(|x|2 + 1) by (∗), so

w(x) =
2

|x|2 + 1
x. (∗∗)

Combining (∗) and (∗∗),

S(x) =

(
w(x)
h(x)

)
=

1

|x|2 + 1


2x1
2x2

...
2xn

−1 + |x|2

 .

We now compute the (n+ 1)× n matrix S ′(x).

S ′(x) =



2(|x|2+1)−4x21
(|x|2+1)2

−4x1x2
(|x|2+1)2

−4x1x3
(|x|2+1)2

· · · −4x1xn
(|x|2+1)2

−4x1x2
(|x|2+1)2

2(|x|2+1)−4x22
(|x|2+1)2

−4x2x3
(|x|2+1)2

· · · −4x2xn
(|x|2+1)2

...
...

. . .
...

−4x1xn
(|x|2+1)2

−4x2xn
(|x|2+1)2

· · · · · · 2(|x|2+1)−4x2n
(|x|2+1)2

4x1
(|x|2+1)2

4x2
(|x|2+1)2

· · · · · · 4xn
(|x|2+1)2


.

Let v1, . . . , vn denote the columns of S ′(x). Observe

(|x|2 + 1)4〈vi, vi〉 = 16x2i
∑
j 6=i

x2j + 16x2i + 16x4i + 4(|x|2 + 1)2 − 16x2i (|x|
2 + 1)

= 16x2i (|x|
2 + 1) + 4(|x|2 + 1)2 − 16x2i (|x|

2 + 1)

= (|x|2 + 1)
(
16x2i + 4(|x|2 + 1)− 16x2i

)
= 4(|x|2 + 1)2.
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Also, for i, j ∈ {1, . . . , n} with i 6= j,

(|x|2 + 1)4〈vi, vj〉

= −8(|x|2 + 1)xixj + 16x3ixj − 8(|x|2 + 1)xixj + 16xix
3
j + xixj

∑
k 6=i,j

x2k + 16xixj

= −8(|x|2 + 1)xixj − 8(|x|2 + 1)xixj + 16xixj

n∑
k=1

x2k + 16xixj

= −8(|x|2 + 1)xixj − 8(|x|2 + 1)xixj + 16xixj(|x|2 + 1)

= 0.

So, combining these observations,

(S ′(x))TS ′(x) =
4

(|x|2 + 1)2
id.

�

5. Problem Set 5

Exercise 5.1.

(i) Show that the mappings

f(x, y) := (ex + ey, ex − ey), g(x, y) := (ex cos y, ex sin y)

are locally invertible around each point of R2.
(ii) Show that the equations

sin(y + x) + log(zx2) = 0, ey+x + xz = 0

implicitly define (y, z) near (1, 1), as an explicit function of x near −1.

Proof of (i). Let (x, y) ∈ R2. Since f and g are the composition of C1 functions, f and g
are C1. Now,

det f ′(x, y) = det

(
ex ey

ex −ey
)

= −2exey < 0.

det g′(x, y) = det

(
ex cos y −ex sin y
ex sin y ex cos y

)
= e2x > 0.

So, f ′ and g′ are invertible for all (x, y) ∈ R2. Since f, g are also C1, we conclude that f, g
are locally invertible around each point of R2, by the Inverse Function Theorem. �

Proof of (ii). Define the open set

D := {(x, y, z) ∈ R3 : 9/10 < y, z < 11/10,−11/10 < x < −9/10}.
Define the mapping f : D → R2 by

f(x, y, z) := (sin(y + x) + log(zx2), ey+x + xz) =: (f1(x, y, z), f2(x, y, z)).

Note that f is the composition of C1 functions, so f ∈ C1(D). Also,

det

(
∂f1/∂y ∂f1/∂z
∂f2/∂y ∂f2/∂z

)
= det

(
cos(y + x) 1/z
ey+x x

)
= x cos(y + x)− ey+x/z. (∗)
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Since |y − 1| < 1/10 and |x+ 1| < 1/10, we have |y + x| = |x− 1 + z + 1| < 1/5, so
cos(y + x) > 0. Since 9/10 < z < 11/10, we get 10/9 > 1/z > 10/11. So, combining these
facts, the quantity in (∗) is negative. So, the Implicit Function Theorem says that z = z(x)
and y = y(x) such that f(x, y(x), z(x)) = (0, 0) for x in a neighborhood of −1 and (y, z) in
a neighborhood of (1, 1). �

Exercise 5.2. Consider the system of equations

x2 + uy + ev = 0

2x+ u2 − uv = 5.

Show that (u, v) may be solved in terms of (x, y) in a neighborhood of the point (x, y) = (2, 5).
Show that the mapping (x, y) 7→ (u, v) is C1 and compute its derivative at (x, y) = (2, 5).

Proof. Let (x, y) = (2, 5). Then the system of equations becomes 5u + ev + 4 = 0 and
4+u2−uv = 5. So, u = (1/5)(−ev−4), and substituting this into the second equation gives

100 + e2v + 16 + 8ev + 5vev + 20v = 125.

Simplifying this equation, we have

e2v + 8ev + 5vev + 20v = 9.

The function on the left is strictly increasing in v, so there exists a unique v satisfying this
equation. Observe that v = 0 satisfies this equation, so v = 0 is the unique solution of
this equation. Then, since u = (1/4)(−ev − 4), we must have u = −1. Define a function
F : R4 → R2 by

F (x, y, u, v) = (F1(x, y, u, v), F2(x, y, u, v)) := (x2 + uy + ev, 2x+ u2 − uv).

det

(
∂F1/∂u ∂F1/∂v
∂F2/∂u ∂F2/∂v

)
= det

(
y ev

2u− v −u

)
= −uy − (2u− v)ev = 5 + 2 = 7 > 0.

That is, this determinant term is positive. Also, F is the composition of C1 functions, so F
is C1. Therefore, the Implicit Function Theorem says that there exists an open set W ⊆ R2

with (2, 5) ∈ W such that u = u(x, y) and v = v(x, y) for (x, y) ∈ W , and there exists
an open set V ⊆ R4 such that (2, 5,−1, 0) ∈ V , and F (x, y, u(x, y), v(x, y)) = (0, 5) for
(x, y, u, v) ∈ V . Moreover, u = u(x, y) and v = v(x, y) are in C1(W ).

We now compute the derivatives of u, v. Let s := (u, v) and let z := (x, y). In the set V ,

F (z, s(z)) = (0, 5).

So, applying the chain rule, we have

DzF (z, s) +DsF (z, s)s′(z) = 0.

Since DsF (z, s) is invertible, we conclude that, when (x, y, u, v) = (2, 5,−1, 0), we have

z′(s) = −[DsF (z, s)]−1DzF (z, s) =

(
y ev

2u− v −u

)−1(
2x u
2 0

)
=

(
5 1
−2 1

)−1(
4 −1
2 0

)
.

�

Exercise 5.3. Let A be an m× n matrix. We define the matrix norm of A by

||A|| := sup {|Ax| : |x| ≤ 1} .
(i) Prove that for all x ∈ Rn, we have |Ax| ≤ ||A|| |x|.
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(ii) Prove that ||·|| is a norm, i.e. that it satisfies the following axioms:
(1) ||aA|| = |a| ||A|| for all a ∈ R;
(2) ||A+B|| ≤ ||A||+ ||B||;
(3) if ||A|| = 0 then A = 0.

(iii) Prove that ||AB|| ≤ ||A|| ||B||, where A is a k ×m matrix and B an m× n matrix.
(iv) Since the space of m×n matrices may be identified with Rm×n, the norm or distance

defined in class reads

|A| =

√√√√ m∑
i=1

n∑
j=1

A2
ij .

(This is sometimes called the Hilbert-Schmidt norm.) Prove that

||A|| ≤ |A| .
Conclude that if A(x) is a continuous matrix-valued function, and if x → y, then
||A(x)− A(y)|| → 0.

Proof of (i). Let x ∈ Rn. If x = 0, then |Ax| = 0 ≤ 0 = ||A|| |x|. So, the desired inequality
holds for x = 0. Now, let x 6= 0. Then, by the definition of ||A||, and using that |x/ |x|| = 1,

|Ax| =
∣∣∣∣A x

|x|
|x|
∣∣∣∣ = |x|

∣∣∣∣A x

|x|

∣∣∣∣ ≤ |x| ||A|| .
�

Proof of (ii). Let A be a matrix. Let x ∈ Rn with |x| ≤ 1, and let a ∈ R. Then |aAx| =
|a| |Ax|. So, taking the supremum of both sides of this equality over {x ∈ Rn : |x| ≤ 1}, we
get property (1). We now prove property (2). Let x ∈ Rn with |x| ≤ 1. From the triangle
inequality,

|(A+B)x| ≤ |Ax|+ |Bx| ≤ |Ax|+ sup
|y|≤1
|By| = |Ax|+ ||B|| .

Now, taking the supremum of both sides over the set {x ∈ Rn : |x| ≤ 1} gives (2).
We now prove property (3). We first show that

||A|| = sup
x∈Rn,y∈Rm :
|x|≤1,|y|≤1

|〈Ax, y〉| . (∗)

If A = 0, then both sides are equal to zero. So, to prove (∗), we may assume that A 6= 0.
Let x ∈ Rn, y ∈ Rm with |x| ≤ 1, |y| ≤ 1. From Cauchy-Schwarz and (i),

|〈Ax, y〉| ≤ |Ax| |y| ≤ ||A|| |x| |y| ≤ ||A|| .
Therefore, we get one part of (∗).

sup
x∈Rn,y∈Rm :
|x|≤1,|y|≤1

|〈Ax, y〉| ≤ ||A|| .

We now prove the reverse inequality. Since A 6= 0, there exists x 6= 0 with Ax 6= 0. Let
y := Ax/ |Ax|. Then

|〈Ax, y〉| =
∣∣∣∣〈Ax, Ax|Ax|〉

∣∣∣∣ =
|Ax|2

|Ax|
= |Ax| .
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So, taking the supremum over x with |x| ≤ 1 shows the other part of (∗).
||A|| = sup

x∈Rn : |x|≤1
|〈Ax, y〉| ≤ sup

x∈Rn,y∈Rm :
|x|≤1,|y|≤1

|〈Ax, y〉| .

We can now conclude the proof. Suppose ||A|| = 0. By (∗), |〈Aej, ei〉| = 0 for all
j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}. That is, each entry of A is zero. So A = 0, as desired. �

Proof of (iii). If B = 0, then ||B|| = 0 from (ii), and AB = 0, so ||AB|| = ||A|| ||B|| = 0.
So, we may assume that B 6= 0. Then there exists x ∈ Rn with x 6= 0 and Bx 6= 0. Then

|ABx| =
∣∣∣∣A Bx

|Bx|

∣∣∣∣ |Bx| ≤ ||A|| |Bx| ≤ ||A|| ||B|| |x| . (∗)

If Bx = 0, then the left side of (∗) is zero, and (∗) still holds. That is, (∗) holds for all
x ∈ Rn. Finally, taking the supremum of both sides of (∗) over the set {x ∈ Rn : |x| ≤ 1}
shows that ||AB|| ≤ ||A|| ||B||. �

Proof of (iv). Let v1, . . . , vm ∈ Rn be the rows of A, and let x ∈ Rn with |x| ≤ 1. Then,
using Cauchy-Schwarz,

|Ax| =

√√√√ m∑
i=1

|〈x, vi〉|2 ≤

√√√√ m∑
i=1

|x|2 |vi|2 = |x|

√√√√ m∑
i=1

|vi|2 = |x|

√√√√ m∑
i=1

n∑
j=1

A2
ij.

So, taking the supremum of both sides of this inequality over the set {x ∈ Rn : |x| ≤ 1}
shows that ||A|| ≤ |A|.

Suppose x → y, that is |x− y| → 0, and suppose that A is a continuous matrix valued
function. That is, as x → y, we have |A(x)− A(y)| → 0. Then, using our inequality of
norms, we have

||A(x)− A(y)|| ≤ |A(x)− A(y)| → 0 as x→ y

�

Exercise 5.4.

(i) Show that the rectangular box of maximal area that can be inscribed in the unit
circle is a square.

(ii) Let a, b, c > 0. Find the dimensions of the box of maximal volume, whose edges are
parallel to the coordinate axes, which can be inscribed in the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

Proof of (i). Let R be a rectangular box inside the unit circle, S1 := {x ∈ R2 : |x| = 1}. Let
ρ : R2 → R2 be a rotation. Since ρ(S1) = S1, and since the area of R is equal to the area of
ρR, we may choose a rotation ρ such that the edges of ρR are aligned with the coordinate
axes, and such that ρR is still contained in S1. Let λ > 1 and let δ : R2 → R2 be the
dilation defined by δλ(x) := λx. We now show that the rectangle must intersect S1. The
area of δλR exceeds that of R, and also δλR is a rectangle. If R does not intersect S1, then
there exists λ > 1 such that δλR has larger area than R, and δλR also does not intersect
S1. To see this, note that R and S1 are compact, so if R ∩ S1 = ∅, then the infinimum
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ε := inf{|x− y| : x ∈ R, y ∈ S1} > 0 is attained at some x ∈ R and y ∈ S1. That is, there
exists ε > 0 such that |x− y| ≥ ε > 0 for all x ∈ R and for all y ∈ S1.

So, for the purpose of finding the largest area rectangle inside of S1, we may assume that
R intersects S1. Similarly, by applying translations and dilations separately in the x and y
axes, we may assume that all four vertices of R intersect S1.

Suppose the rectangle R has vertices at the coordinates (x, y), (−x, y), (−x,−y), (x,−y) ∈
R2, where x ≥ 0, y ≥ 0. Then the area of the rectangle is (2x)(2y) = 4xy. Also, since the
vertices intersect S1, we have x2 + y2 = 1, i.e. y =

√
1− x2. To find the maximum area

rectangle, we therefore maximize the function f(x) := 4x
√

1− x2 for 0 ≤ x ≤ 1. Since
f(0) = f(1) = 0, it suffices to maximize f for x ∈ (0, 1). Since f ∈ C1(0, 1), in order to
maximize f on (0, 1) it suffices to check value of f at the critical points of f . Note that

f ′(x) =
4x(−x)√

1− x2
+ 4
√

1− x2 =
−4x2 + 4(1− x2)√

1− x2
.

If f ′(x) = 0, then −2x2 + 1 = 0, i.e. x =
√

2/2. Since f(0) = f(1) = 0, f(
√

2/2) > 0, and√
2/2 is the only critical point of f , we conclude that f has a unique maximum at x =

√
2/2.

If x =
√

2/2, then y =
√

2/2. So, the maximum area rectangle R exists, and it is a square
of side length

√
2. �

Proof of (ii). Let B ⊆ R3 be a box with edges parallel to the coordinate axes. As in part
(i), by applying appropriate translations and dilations to B, we may assume that all corners
of B intersect the ellipsoid.

Suppose the box B has vertices at the coordinates (±x,±y,±z) ∈ R3, where x, y, z ≥ 0.
Then the area of the box is 8xyz. Also, since the vertices intersect the ellipsoid, we have
x2/a2 + y2/b2 + z2/c2 = 1. To find the maximum area box, we therefore maximize the
function f(x, y, z) := xyz with the constraint g(x, y, z) := x2/a2 + y2/b2 + z2/c2 − 1 = 0,
with x, y, z,≥ 0. Let

D := {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}.

Note that f ∈ C1(D), g ∈ C1(D), and

∇f =

yzxz
xy

 , ∇g =

2x/a2

2y/b2

2z/c2

 .

Since ∇g 6= 0 on D, the Lagrange Multiplier Theorem applies (Theorem II.5.5 in Edwards).
So, suppose (x, y, z) ∈ D is a critical point of f with respect to the constraint g(p) = 0.

Let λ ∈ R such that ∇f = λ∇g. This system of equations says

yz = λ2x/a2, xz = λ2y/b2, xy = λ2z/c2.

Since ∇f 6= 0 on D, we may assume that λ 6= 0. Substituting the first equation into the
second gives (yza2/(2λ))z = 2λy/b2, so z2 = 4λ2/(a2b2). So, z = 2 |λ| /(ab). Substituting
the second equation into the third gives (xzb2/(2λ))x = 2λz/c2, so x = 2 |λ| /(bc). Similarly,
y = 2 |λ| /(ac). Plugging these equalities for x, y, z into the condition g(x, y, z) = 0 shows
that 12λ2 = a2b2c2, so 2

√
3 |λ| = abc. So, the only critical point we have found in D is

(x, y, z) = (a/
√

3, b/
√

3, c/
√

3).
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On the boundary of D, f = 0. Also, f(a/
√

3, b/
√

3, c/
√

3) = abc3−3/2 > 0. So, we have
found the unique maximum of f , since f ∈ C1(D), and by applying the Lagrange Multiplier
Theorem. The box of maximal volume with edges parallel to the coordinate axes therefore
has dimensions 2a/

√
3, 2b/

√
3, 2c/

√
3. �

Exercise 5.5. Suppose that we have a probability distribution on the set {1, . . . , n}, i.e. a
sequence p = (p1, . . . , pn) of probabilities in the set Pn, where

Pn :=

{
p ∈ (0, 1)n :

n∑
i=1

pi = 1

}
.

A fundamental quantity for a probability distribution p is its entropy

S(p) := −
n∑
i=1

pi log pi .

(We extend the function x log x to 0 by continuity, so that 0 log 0 := 0.) The entropy of p
measures the disorder or lack of information in p.

(i) Using Lagrange multipliers, find the critical point p of S on the set Pn. Compute the
value of S at p.

(ii) Prove that S reaches its maximum on Pn at p.
(iii) In applications to statistical physics, each point of {1, . . . , n} represents a state of a

physical system with a given energy Ei. The energy of the probability distribution p
is defined as

H(p) :=
n∑
i=1

piEi.

We now want to maximize the entropy S(p) over the set Pn, subject to the additional
constraintH(p) = E for some fixed E. (The energy of the system is fixed.) We require
E to satisfy mini=1,...,nEi < E < maxi=1,...,nEi, since otherwise there may not exist
a p ∈ Pn satisfying H(p) = E. By the method of Lagrange multipliers, prove that
the unique critical point p of S in Pn ∩H−1({E}) satisfies

pi =
1

Z
e−βEi , Z :=

n∑
j=1

e−βEj ,

for some parameter β chosen so that H(p) = E. This distribution is called the
canonical or Gibbs distribution. The parameter β has the physical meaning of inverse
temperature: T = 1/β.

(iv) Prove that S reaches its maximum on Pn ∩H−1({E}) at p from (iii).

Proof of (i). We optimize S subject to the constraint g(p) := (
∑n

i=1 pi) − 1 = 0. Note that
S ∈ C1((0, 1)n), g ∈ C1((0, 1)n), and

∇S(p) =

−1− log p1
...

−1− log pn

 , ∇g(p) =

1
...
1

 .
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Since ∇g 6= 0 on Pn, the Lagrange Multiplier Theorem applies (Theorem II.5.5 in Edwards)1.
Suppose p ∈ Pn is a critical point of S with respect to the constraint g(p) = 0. Let λ ∈ R

such that ∇f(p) = λ∇g(p). This system of equations says

−1− log p1 = λ, . . . ,−1− log pn = λ.

So, for i, j ∈ {1, . . . , n}, pi = pj. Since g(p) = 0 = (
∑n

i=1 pi) − 1 = npi − 1 for all
i ∈ {1, . . . , n}, we conclude that pi = 1/n for all i ∈ {1, . . . , n}. That is, we have found only
one critical point p of S on Pn. Now,

S(p) = S(1/n, . . . , 1/n) =
n∑
i=1

−(1/n) log(1/n) = − log(1/n) = log(n).

So, for n ≥ 2, S(1/n, . . . , 1/n) > 0. In the case n = 1, the set Pn is empty, so the problem
is vacuous in this case. �

Proof of (ii). We now show that p is a local maximum. Note that S ∈ C2(Pn), ∂2S/∂pi∂pj =
0 for i 6= j, and ∂2S/∂p2i = −1/pi, i ∈ {1, . . . , n}. So, for p ∈ Pn, the matrix of second
derivatives is negative definite. Now, let h ∈ Rn such that g(p + h) = 0. Note that g is
linear, so g(p+ h) = g(p) + g(h) = g(h) = 0. From Taylor’s Theorem,

S(h) = S(p) + (h− p)DhS(p) +
1

2
(h− p)D2

hS(p)(h− p) + o(|h− p|2). (∗)

Since p is a critical point of S subject to the constraint g(p) = 0, and g(p + th) =
g(p) + tg(h) = 0 for all t ∈ [0, 1], we conclude that DhS(p) = 0. Also, since D2

hS(p) is

negative definite, there exists c > 0 such that (h − p)D2
hS(p)(h − p) ≤ −c |h− p|2, where c

does not depend on h. So, from (∗),
S(h)− S(p) ≤ −c |h− p|2 + o(|h− p|2).

That is, there exists a sufficiently small neighborhood V of p such that h ∈ V implies
S(h)−S(p) ≤ −(c/2) |h− p|2. Since c does not depend on h, this inequality shows that p is
a local maximum of S with respect to the constraint g(p) = 0.

Now, the set {p ∈ [0, 1]n : g(p) = 0} = Pn is compact, so there exists a global maximum of
S on this set. Note that S is the sum of strictly concave functions, so S is strictly concave.
However, we have found a local maximum of S on Pn, so the global maximum of S must
occur on Pn ⊆ Pn. To see this, we argue by contradiction. Let p′ ∈ Pn r Pn such that
S(p′) ≥ S(p). Let λ ∈ (0, 1). Then strict concavity shows that

S(λp+ (1− λ)p′) > λS(p) + (1− λ)S(p′) ≥ S(p).

Letting λ → 1, the point λp + (1 − λ)p′ converges to p. Also, since g(p) = −1 +
∑n

i=1 pi,
g(λp + (1− λ)p′) = λg(p) + (1− λ)g(p′) = 0. Moreover, since p ∈ Pn, λp + (1− λ)p′ ∈ Pn.
However, S(λp+ (1− λ)p′) > S(p), so p is not a local maximum of S on Pn.

Since we have achieved a contradiction, we conclude that the global maximum of S on Pn,
must occur on Pn. Finally, since we have only found one critical point p of S on Pn, and it
is a local maximum, and since no other point in Pn is a local maximum, we conclude that p
is also a global maximum of S on Pn. �

1Strictly speaking, the theorems in Edwards begin with the assumption that there exists a local maximum
or local minimum of S subject to the constraint g = 0. However, the theorems hold, and their proofs are
identical, if we only assume that there exists a critical point of S subject to the constraint g = 0.
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Proof of (iii). Suppose n ≥ 3. Define g : Rn → R2, by

g(p) :=

((
n∑
i=1

pi

)
− 1,

(
n∑
i=1

piEi

)
− E

)
=: (g1(p), g2(p)).

We optimize S subject to the constraint g(p) = (0, 0). Note that S ∈ C1((0, 1)n,R), g ∈
C1((0, 1)n,R2), and

∇S(p) =

−1− log p1
...

−1− log pn

 , ∇g1(p) =

1
...
1

 , ∇g2(p) =

E1
...
En

 .

Suppose p ∈ Pn is a critical point of S with respect to the constraint g(p) = 0.
We first discuss the constraint condition g(p) = (0, 0). Note that p satisfies g(p) = (0, 0) if

and only if p lies in the intersection of the two hyperplanes {p : g1(p) = 0} and {p : g2(p) = 0}.
In order for our optimization problem to be nontrivial, we need the intersection of these two
hyperplanes to be nontrivial, and we need the set {p ∈ (0, 1)n : g(p) = (0, 0)} to be nonempty.
Since mini=1,...,nEi < E < maxi=1,...,nEi, there exists p ∈ Pn such that H(p) = E, i.e. there
exists p ∈ (0, 1)n such that g(p) = (0, 0). To see this, reorder the numbers E1, . . . , En so that

E1 ≤ E2 ≤ · · · ≤ Ej ≤ E ≤ Ej+1 ≤ · · · ≤ En.

In particular, (1/j)
∑j

i=1Ei ≤ E ≤ (1/(n− j))
∑n

i=j+1Ei. So, ∃ t ∈ (0, 1) such that

E =
t

j

(
j∑
i=1

Ei

)
+

1− t
n− j

(
n∑

i=j+1

Ei

)
.

Now, define

r :=
t

j

(
j∑
i=1

ei

)
+

1− t
n− j

(
n∑

i=j+1

ei

)
∈ (0, 1)n.

Note that
∑n

i=1 ri = 1 and H(r) = E, so g(r) = 0. In conclusion, the set {p ∈ (0, 1)n : g(p) =
(0, 0)} is nonempty.

Also, since mini=1,...,nEi < maxi=1,...,nEi, it cannot occur that Ei = Ej for all i, j ∈
{1, . . . , n}. Therefore, ∇g1(p) and ∇g2(p) are linearly independent. So, the Lagrange Mul-
tiplier Theorem applies (Theorem II.5.8 in Edwards). Let λ1, λ2 ∈ R such that ∇S(p) =
λ1∇g1(p) + λ2∇g2(p). This system of equations says that, for all i ∈ {1, . . . , n},

−1− log pi = λ1 + λ2Ei. (∗)
Multiplying both sides by pi shows that −pi−pi log pi = λ1pi+λ2piEi. Then, by summation,
and by applying the constraint g(p) = (0, 0),

−1 + S(p) =
n∑
i=1

(−pi − pi log pi) =
n∑
i=1

(λ1pi + λ2piEi) = λ1 + λ2E.

Substituting this equality into (∗), we get that for all i ∈ {1, . . . , n},
−1− log pi = −1 + S(p)− λ2E + λ2Ei.

That is, − log pi = S(p) + λ2(Ei − E), so

pi = e−λ2Eieλ2Ee−S(p). (∗∗)
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Summing (∗∗) over i,

1 =
n∑
i=1

pi =
n∑
i=1

e−λ2Eieλ2Ee−S(p) = eλ2Ee−S(p)
n∑
i=1

e−λ2Ei .

Substituting this equality into (∗∗), we get that, for all i ∈ {1, . . . , n},

pi =
e−λ2Ei∑n
j=1 e

−λ2Ej
. (‡)

So, a critical point of S must satisfy (‡), for all i ∈ {1, . . . , n}.
Note that, from our application of Lagrange Multipliers, we do not yet know that the

critical point p satisfies p ∈ Pn. So, we now show that p ∈ Pn. From (‡), note that pi 6= 0.
If pi ≥ 1 for some i ∈ {1, . . . , n}, then e−λ2Ei ≥

∑n
i=1 e

−λ2Ei , which cannot occur. So,
0 < pi < 1 for all i ∈ {1, . . . , n}. Also from (‡),

∑n
i=1 pi = 1. That is, p ∈ Pn.

We now show that the constant λ2 is unique. It suffices to show that there is a unique
λ2 ∈ R such that H(p) = E. That is, it suffices to show there is a unique β ∈ R such that∑n

i=1Eie
−βEi = E

∑n
i=1 e

−βEi . Define f : R→ R by

f(β) :=

∑n
i=1Eie

−βEi∑n
i=1 e

−βEi
.

Note that
lim
β→∞

f(β) = min
i=1,...,n

Ei < E < max
i=1,...,n

Ei = lim
β→−∞

f(β).

So, to find our unique β such that f(β) = E, it suffices to show that f ′(β) < 0. Observe

f ′(β) =
−
(∑n

i=1 e
−βEi

) (∑n
i=1E

2
i e
−βEi

)
+
(∑n

i=1Eie
−βEi

)2
(
∑n

i=1 e
−βEi)

2 .

To show that f ′(β) < 0, it therefore suffices to show that(∑n
i=1Eie

−βEi∑n
i=1 e

−βEi

)2

<

∑n
i=1E

2
i e
−βEi∑n

i=1 e
−βEi

.

Using (‡), we therefore need to show that(
n∑
i=1

Eipi

)2

<
n∑
i=1

E2
i pi.

This inequality follows from the strict convexity of the map t 7→ t2, t ∈ R, 0 < pi < 1,
and

∑n
i=1 pi = 1. Also, in order to get the strict inequality, we need to use mini=1,...,nEi <

maxi=1,...,nEi. This inequality is also known as Jensen’s inequality.
In conclusion, the constant λ2 = β is unique in (‡). That is, there exist exactly one critical

point of S on Pn ∩H−1({E}).
So, the case n ≥ 3 of the problem is concluded. It remains to check the cases n = 1

and n = 2. If n = 1, Pn is empty, so the problem is vacuous in this case. If n = 2, then
p1 + p2 = 1, 0 < pp1, pp2 < 1, and p1E1 + p2E2 = E. The constraints g(p) = (0, 0) give
the equations of two lines in R2. Since ∇g1 and ∇g2 are linearly independent, these lines
intersect in a single point. So, there is only one point p such that g(p) = 0. So p is trivially
a critical point of S subject to g(p) = 0. Since n = 2, there exists λ1, λ2 ∈ R such that (∗)
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holds, by linear algebra. The rest of the argument proceeds as above, so the conclusion of
the problem holds in the case n = 2. �

Proof of (iv). We now note that the critical point p is a local maximum of S on {p ∈
Pn : g(p) = 0} = Pn ∩H−1(E). The argument is identical to that given in part (ii). We now
note that a global maximum of S on Pn ∩H−1(E) exists in Pn. The argument is identical
to that given in part (ii). Since we have only found one critical point p of S on Pn∩H−1(E)
from part (iii), we conclude that p is the unique global maximum of S on Pn ∩H−1(E). �

Exercise 5.6.

(i) Let p1, . . . , pn be positive real numbers satisfying p1 + · · · + pn = 1, and define the
functions

ϕ(x) := p1x1 + · · ·+ pnxn − 1 , f(x) := xp11 · · ·xpnn .
Define the subset

M := {x ∈ Rn : ϕ(x) = 0 and xi > 0 for all i}.
Show that f(x) > 0 in M and f(x) = 0 in M rM . Conclude that f has a global
maximum in M .

(ii) Find the global maximum of f in M using Lagrange multipliers. Conclude that
f(x) ≤ 1 in M .

(iii) Use (ii) to prove the inequality

ap11 · · · apnn ≤ p1a1 + · · ·+ pnan ,

where a1, . . . , an are positive real numbers. In the special case pi = 1/n for all i, this
inequality reduces to the famous fact that the geometric mean is less then or equal
to the arithmetic mean.

Proof of (i). Let x ∈M . Since xi > 0 and pi > 0 for all i ∈ {1, . . . , n}, we get f(x) > 0. We
first show that the set M is compact. Let x ∈ M , and define p := (p1, . . . , pn) ∈ Rn. Since
x ∈M , 〈x, p〉 = 1. Since xi > 0 and pi > 0 for all i ∈ {1, . . . , n}, we have

1 = |〈x, p〉| =
n∑
j=1

xjpj > xipi.

So, xi < 1/pi < 1/(minj=1,...,n pj) <∞ for all i ∈ {1, . . . , n}, and therefore

max
i=1,...,n

xi <
1

minj=1,...,n pj
<∞.

So, M is contained in the compact set {x ∈ Rn : ∀ i ∈ {1, . . . , n}, 0 ≤ xi ≤ 1/minj=1,...,n pj}.
Since M is a closed set contained in another compact set, we conclude that M is compact.

We now show that

M rM ={x ∈ Rn : ϕ(x) = 0, xj ≥ 0 ∀ j ∈ {1, . . . , n},
and ∃ i ∈ {1, . . . , n} such that xi = 0}. (∗)

Let x ∈MrM . Then there exists x(k) → x as k →∞ with x(k) ∈M . Then x = (x1, . . . , xn)
is in the compact set M . Since ϕ is continuous, ϕ(x) = limk→∞ ϕ(x(k)) = 0. Also, since the
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coordinate projections are continuous, xi ≥ limk→∞ x
(k)
i ≥ 0. If xi > 0 for all i ∈ {1, . . . , n},

then x ∈ M . Since x /∈ M , We conclude that xi = 0 for some i ∈ {1, . . . , n}, so that x is
in the right side of (∗). We now show the other containment. Let x in the right side of (∗).
For k ∈ Z>0, define

y(k) := (1− 1/k)x+
1

k

1

n
(1/p1, . . . , 1/pn) ∈ Rn.

Since xi ≥ 0 for i ∈ {1, . . . , n}, we have y
(k)
i > 0 for i ∈ {1, . . . , n}. Also, since ϕ(x) = 0 and

ϕ(1/(np1), . . . , 1/(npn)) = 0, and since ϕ(x) = 〈x, p〉 − 1, we conclude that

ϕ(y(k)) = (1− 1/k)ϕ(x) + (1/k)ϕ(1/(np1), . . . , 1/(npn)) = 0.

Finally, y(k) → x as k →∞, so x ∈M rM . In conclusion, (∗) holds.
We can now conclude this part of the Exercise. From (∗), we must have f = 0 on M rM .

Also, since M is compact, f is continuous, and f > 0 on M , we conclude that there exists a
global maximum of f on M . �

Proof of (ii). From part (i), it suffices to maximize f on M and ignore M rM . Define

g(x) := ϕ(x)− 1.

We maximize f with respect to the constraint g(x) = 0. Note that, with this constraint, an
application of Lagrange Multipliers could find a maximum of f outside of M . Note also that
f ∈ C1(M) and g ∈ C1(M). Now,

∇f(x) =

p1x
p1−1
1 xp22 · · · xpnn

...
pnx

p1
1 x

p2
2 · · ·xpn−1n

 , ∇g(x) =

p1...
pn

 .

Since ∇g 6= 0, the Lagrange Multiplier Theorem applies (Theorem II.5.5 in Edwards). Let
x be a critical point of f subject to the constraint g(x) = 0.

Then there exists λ ∈ R such that ∇f(x) = λ∇g(x). Therefore, for i ∈ {1, . . . , n},

xpi−1i

∏
j 6=i

x
pj
j = λ.

That is, xi = f(x). So,
∑n

i=1 xipi =
∑n

i=1 pif(x) = f(x). Since ϕ(x) = 0 = 〈x, p〉 − 1, we
have

∑n
i=1 xipi = 〈x, p〉 = 1, so f(x) = 1. Since xi = f(x) = 1, and ϕ(1, . . . , 1) = 0, we

conclude that (1, . . . , 1) ∈ M . Since the application of Lagrange Multipliers has only found
one critical point of f , part (i) implies that (1, . . . , 1) is the global maximum of f on M , so
f(x) ≤ 1 for x ∈M . �

Proof of (iii). Let a1, . . . , an > 0. Define

x :=
(a1, . . . , an)

a1p1 + · · ·+ anpn
∈ Rn.

By the definition of x, 〈x, p〉 = 1, so ϕ(x) = 0. Also, xi > 0 for all i ∈ (1, . . . , n), so x ∈ M .
From part (ii), f(x) ≤ 1. Using the definitions of x and f(x), and the equality

∑n
i=1 pi = 1,

we see that the inequality f(x) ≤ 1 says that

ap11 · · · apnn
a1p1 + · · ·+ anpn

≤ 1.
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To conclude, multiply both sides of this inequality by 〈a, p〉. �

Exercise 5.7. This problem is a digression on linear algebra and block matrices. Let A be
an n× n matrix, B an n×m matrix, C an m× n matrix, and D an m×m matrix. We can
put all of these matrices into a block matrix(

A B
C D

)
.

(i) Prove that

det

(
A 0
0 Im

)
= det(A) .

(ii) Using (i) and the fact that det(XY ) = det(X) det(Y ), prove that

det

(
A 0
0 D

)
= det(A) det(D) .

(iii) Prove that

det

(
In B
0 Im

)
= 1 .

(iv) Suppose that D is invertible. Prove that(
In −BD−1
0 Im

)(
A B
C D

)(
In 0

−D−1C Im

)
=

(
A−BD−1C 0

0 D

)
.

(v) Suppose that D is invertible. By combining, (i) – (iv), prove that

det

(
A B
C D

)
= det(A−BD−1C) det(D) .

(A special case of this formula was used in class in the proof of the implicit function
theorem.)

(vi) Now that you’re all warmed up with block matrices, use the identity

det

[(
In B
−C Im

)(
In 0
C Im

)]
= det

[(
In 0
C Im

)(
In B
−C Im

)]
to prove

det(In +BC) = det(Im + CB) .

This is one of the most useful identities in linear algebra, and its proof without block
matrices is much harder.

Proof of (i). Let σ ∈ Sn+m, and let M :=

(
A 0
0 Im

)
. Let i with n+ 1 ≤ i ≤ n+m. Suppose

σ(i) 6= i. By the definition of M , we then have Miσ(i) = 0. Now, let S ′n be the set of σ ∈ Sn+m
with σ(i) = i for n+ 1 ≤ i ≤ n+m. Then there exists a bijection φ : S ′n → Sn defined by

φ(σ)(1, . . . , n) := σ(1, . . . , n, n+ 1, . . . , n+m).
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Moreover, sign(φ(σ)) = sign(σ). Therefore,

detM =
∑

σ∈Sn+m

sign(σ)
n+m∏
j=1

Mjσ(j) =
∑

σ∈Sn+m : σ(i)=i,
∀n+1≤i≤n+m

sign(σ)
n+m∏
j=1

Mjσ(j)

=
∑
σ∈S′n

sign(σ)
n∏
j=1

Mjσ(j) =
∑
σ∈Sn

sign(σ)
n∏
j=1

Mjσ(j)

=
∑
σ∈Sn

sign(σ)
n∏
j=1

Ajσ(j) = det(A).

�

Proof of (ii). We first suppose that det(A) 6= 0. Define

M :=

(
A 0
0 D

)
, H :=

(
A−1 0

0 Im

)
.

Using part (i),

det(D) = det(MH) = det(M) det(H) = det(M) det(A−1) = det(M)(det(A))−1.

So, det(M) = det(A) det(D), as desired.
Now, assume that det(A) = 0. Let R be an n × n matrix that is a composition of row

operations on A such that RA has a zero row. Specifically, we choose row operation matrices
R1, . . . , Rj to be upper triangular with ones along their diagonal. Note that det(Ri) 6= 0 for
i ∈ {1, . . . , j}. We then compose these matrices together to get R := RjRj−1 · · ·R2R1. Then

det(R) =
∏j

i=1 det(Ri) 6= 0. So, define

K :=

(
R 0
0 Im

)
.

Since RA has a zero row, KM has a zero row, and so det(KM) = 0. Then, using part (i),

0 = det

(
RA 0
0 D

)
= det(KM) = det(K) det(M) = det(R) det(M).

Since det(R) 6= 0, we conclude that det(M) = 0. Since det(D) = 0, we conclude that
det(M) = det(A) det(D), as desired. �

Proof of (iii). Let σ ∈ Sn+m. Assume that there exist 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + m
such that σ(i) = j. We claim that there exists 1 ≤ i′ ≤ n and n+ 1 ≤ j′ ≤ n+m such that
σ(j′) = i′. We argue by contradiction. Assume that, for all n + 1 ≤ k ≤ n + m we have
σ(k) ∈ {n+ 1, n+ 2, . . . , n+m}. Since σ is injective, there must be some n+ 1 ≤ k ≤ n+m
such that σ(k) = j, by the pigeonhole principle. But σ(i) = j and i 6= k, so we have violated
injectivity of σ. Since we have achieved a contradiction, the claim is proven.

We now prove the required result. Define

M :=

(
In B
0 Im

)
.
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Let σ ∈ Sn+m. Assume that there exist 1 ≤ i ≤ n and n+ 1 ≤ j ≤ n+m such that σ(i) = j.
From the claim, there exist 1 ≤ i′ ≤ n and n+ 1 ≤ j′ ≤ n+m such that σ(j′) = i′. That is,
Mj′σ(j′) = 0. Therefore,

det(M) =
∑

σ∈Sn+m

sign(σ)
n+m∏
i=1

Miσ(i) =
∑

σ∈Sn+m

σ(j)≤n, ∀ 1≤j≤n

sign(σ)
n+m∏
i=1

Miσ(i).

Let σ ∈ Sn+m such that σ(j) ≤ n for all 1 ≤ j ≤ n. Then
∏n

i=1Miσ(i) = 0, unless
σ(j) = j for all 1 ≤ j ≤ n. Also, since σ(j) ∈ {1, . . . , n} for all 1 ≤ j ≤ n, we have
σ : {1, . . . , n} → {1, . . . , n}, and σ : {n + 1, . . . , n + m} → {n + 1, . . . , n + m}. And then∏n+m

i=n+1Miσ(i) = 0, unless σ(j) = j for all n + 1 ≤ j ≤ n + m. So, the only nonzero term in
the determinant comes from σ = id. That is,

det(M) =
∑

σ∈Sn+m

σ(j)≤n,∀ 1≤j≤n

sign(σ)
n+m∏
i=1

Miσ(i) =
∑

σ∈Sn+m

σ(j)≤n, ∀ 1≤j≤n

sign(σ)
n∏
i=1

Miσ(i)

n+m∏
i′=n+1

Mi′σ(i′)

=
n+m∏
i=1

Mii = 1.

�

Proof of (iv).(
In −BD−1
0 Im

)(
A B
C D

)(
In 0

−D−1C Im

)
=

(
A−BD−1C 0

C D

)(
In 0

−D−1C Im

)
=

(
A−BD−1C 0

0 D

)
.

�

Proof of (v).

det(A−BD−1C) det(D) = det

(
A−BD−1C 0

0 D

)
, by (ii)

= det

[(
In −BD−1
0 Im

)(
A B
C D

)(
In 0

−D−1C Im

)]
, by (iv)

= det

(
In −BD−1
0 Im

)
det

(
A B
C D

)
det

(
In 0

−D−1C Im

)
= det

(
A B
C D

)
det

(
In 0

−D−1C Im

)
, by (iii)

= det

(
A B
C D

)
det

(
In (−D−1C)T

0 Im

)
= det

(
A B
C D

)
, by (iii).

�
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Proof of (vi). Define

M :=

(
A B
C D

)
, M ′ :=

(
BT DT

AT CT

)
, M ′′ :=

(
D C
B A

)
.

We begin with a claim. We claim that

detM = detM ′′. (‡)
To get this equality, we first perform m cyclic permutations on the columns of the block

matrix, and we then perform n cyclic permutations on the rows of the block matrix. For
σ, τ ∈ Sn+m with τ a cyclic permutation, i.e. τ(i) := i + 1 for i ∈ {1, . . . , n + m − 1}, and
τ(n+m) = 1, we use the identity

sign(σ(τ)) = sign(σ)sign(τ) = sign(σ)(−1)n+m−1.

This identity follows since τ can be written as a product of n+m− 1 transpositions. Now,

det

(
A B
C D

)
=

∑
σ∈Sn+m

sign(σ)
n+m∏
i=1

Miσ(i) = (−1)m(n+m−1)
∑

σ∈Sn+m

sign(σ(τm))
n+m∏
i=1

Miσ(i)

= (−1)m(n+m−1)
∑

σ∈Sn+m

sign(σ)
n+m∏
i=1

Miσ(τ−m(i))

= (−1)m(n+m−1) det

(
B A
D C

)
= (−1)m(n+m−1) det

(
BT DT

AT CT

)
. (∗)

Also,

det

(
BT DT

AT CT

)
=

∑
σ∈Sn+m

sign(σ)
n+m∏
i=1

M ′
iσ(i) = (−1)(n+m−1)n

∑
σ∈Sn+m

sign(σ(τn))
n+m∏
i=1

M ′
iσ(i)

= (−1)(n+m−1)n
∑

σ∈Sn+m

sign(σ)
n+m∏
i=1

M ′
iσ(τ−n(i))

= (−1)(n+m−1)n det

(
DT BT

CT AT

)
= (−1)(n+m−1)n det

(
D C
B A

)
. (∗∗)

Note that n(n + m − 1) + m(n + m − 1) = (n + m)(n + m − 1), which is an even number,
since it is the product of two consecutive integers. So, (−1)n(n+m−1)(−1)m(n+m−1) = 1. And
(∗) combined with (∗∗) therefore proves our Claim (‡).

With this claim completed, we can now finish the exercise.

det(In +BC) = det

(
In +BC B

0 Im

)
, by (v)

= det

[(
In B
−C Im

)(
In 0
C Im

)]
= det

[(
In 0
C Im

)(
In B
−C Im

)]
= det

(
In B
0 CB + Im

)
= det

(
CB + Im 0

B In

)
, by (‡)

= det(Im + CB) , by (v).

�
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Exercise 5.8. Recall that Newton’s method is an algorithm for finding zeros of a function
f . It consists in iterating the map

ϕ(x) := x− (f ′(x))−1f(x) .

Thus, we start with some given x0 and define x1 := ϕ(x0), x2 := ϕ(x1), etc.

(i) Suppose you are trying to find
√
a for some a > 0. This amounts to finding the

positive zero of the function f(x) = x2−a. Derive an algorithm for finding
√
a using

Newton’s method. You should recover the Babylonian method given in class.

The rest of this problem is devoted to an analysis of the convergence of Newton’s method.
For simplicity, we work in one dimension, i.e. we set n = 1. Without loss of generality, we
assume that the zero of f we are interested in is at the origin: f(0) = 0. We shall show
that, assuming f ′(0) is invertible and f is C2 in a neighborhood of 0, the sequence (xk)k∈N
converges to 0 provided x0 is close enough to 0.

Let R > 0 and K > 1 and suppose that

∀x ∈ [−R,R] : K−1 ≤ |f ′(x)| ≤ K , |f ′′(x)| ≤ K . (2)

(ii) We begin by estimating |xk+1 − xk| in terms of |xk − xk−1|. Suppose that xk, xk−1 ∈
[−R,R]. Prove that

|xk+1 − xk| ≤
K2

2
|xk − xk−1|2 .

(iii) Prove that |x1 − x0| ≤ K2 |x0|.
(iv) Prove that if

|x0| ≤
ε

K4

for some ε ∈ (0, 1), then |xk+1 − xk| ≤ K−22−kε2
k ≤ ε(ε/2)kK−2. Conclude that if

x0 ∈ [−r, r] and

r ≤ ε

K4
, R ≥ ε

(
1

K4
+

2

K2

)
, (3)

then the sequence (xk)k∈N converges in [−R,R]. Show that this limit is a fixed point
of ϕ, and hence 0.

(v) Show that there exist 0 < r < R such that (2) and (3) are satisfied. This shows that
Newton’s method will find the zero of f at 0 provided one starts sufficiently close to
it (in this case in the interval [−r, r]).

Proof of (i). Let f(x) := x2 − a, a > 0. Note that f(
√
a) = a − a = 0. So, to find

√
a, we

want to find a zero of f , via Newton’s method. Let x0 = x ∈ R. For i ∈ Z>0, Newton’s
Method says that we should define

xi+1 := xi −
f(xi)

f ′(xi)
= xi −

x2i − a
2xi

=
1

2

(
xi −

a

xi

)
.

�

Proof of (ii). Since f ∈ C2[−R,R], Taylor’s Theorem applies at x = xk−1. Let x ∈ [−R,R].
Then there exists ξ ∈ [−R,R] such that

f(xk−1 + y) = f(xk−1) + yf ′(xk−1) + (1/2)y2f ′′(ξ). (∗)
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So, using the definition of ϕ and xk, and using (∗),

xk+1 − xk = ϕ(xk)− xk = − f(xk)

f ′(xk)
= −

f
(
xk−1 − f(xk−1)

f ′(xk−1)

)
f ′(xk)

= −
f(xk−1)− f(xk−1)

f ′(xk−1)
f ′(xk−1) + (1/2)

(
− f(xk−1)

f ′(xk−1)

)2
f ′′(ξ)

f ′(xk)

= − f ′′(ξ)

2f ′(xk)

(
f(xk−1)

f ′(xk−1)

)2

= − f ′′(ξ)

2f ′(xk)
(xk − xk−1)2 .

Note also that f ′ 6= 0 on [−R,R] by our assumptions, so we can freely divide by f ′, since
xk, xk−1 ∈ [−R,R]. Now, using the above equality and our derivative bounds,

|xk+1 − xk| ≤
1

2
sup

ξ∈[−R,R],y∈[−R,R]

|f ′′(ξ)| |f ′(y)|−1 |xk − xk−1|2 ≤
K2

2
|xk − xk−1|2 .

�

Proof of (iii). As in part (i), f ∈ C2[−R,R] and f ′ 6= 0 on [−R,R], so we apply Taylor’s
Theorem at x = 0. Let x ∈ [−R,R]. Then ∃ ξ ∈ [−R,R] such that f(x) = xf ′(ξ). Therefore,

|x1 − x0| =
∣∣∣∣ f(x0)

f ′(x0)

∣∣∣∣ =

∣∣∣∣x0 f ′(ξ)f ′(x0)

∣∣∣∣ ≤ K2 |x0| .

�

Proof of (iv). We prove by induction on k that |xk+1 − xk| ≤ K−22−kε2
k

for some 0 < ε < 1.
Since |x0| ≤ εK−4, part (iii) and K > 1 show that |x1 − x0| ≤ εK−2. So, we now prove the

inductive step. Let k ≥ 0 such that |xk+1 − xk| ≤ K−22−kε2
k
. Now, by part (ii),

|xk+2 − xk+1| ≤
K2

2
|xk+1 − xk|2 ≤

K2

2
K−42−2kε2

k+1

= K−22−2k−1ε2
k+1 ≤ K−22−(k+1)ε2

k+1

.

The inductive step is complete, so the claim is complete. Also, note that k + 1 ≤ 2k, so

|xk+1 − xk| ≤ K−22−kε2
k ≤ K−2ε(ε/2)k.

Now, let x0 ∈ [−r, r], r ≤ εK−4, R ≥ ε(K−4 + 2K−2). Then |x0| ≤ εK−4, so the
claim above implies that |xk+1 − xk| ≤ ε(ε/2)kK−2. We deduce from this condition that the
sequence {xk}k≥0 is Cauchy. Let m,n ≥ 0 with m > n. Then

|xm − xn| =

∣∣∣∣∣
m−1∑
k=n

(xk+1 − xk)

∣∣∣∣∣ ≤
m−1∑
k=n

|xk+1 − xk| ≤
∑
k≥n

ε(ε/2)kK−2 = K−2ε
(ε/2)n

1− ε/2
. (∗)

So, the sequence {xk}k≥0 is Cauchy, since the last quantity in (∗) becomes arbitrarily small
as n → ∞. Then, there exists x such that xk → x as k → ∞. Taking n = 0 in (∗), and
using that 0 < ε < 1, we have |xm − x0| < K−22ε. Therefore,

|x| ≤ |x− x0|+ |x0| ≤ |x0|+ lim
m→∞

|xm − x0| ≤ εK−4 + 2εK−2 ≤ R.
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That is, {xk}k≥0 converges to a point x ∈ [−R,R], and xk ∈ [−R,R] for all k ≥ 0. Since
K−1 ≤ |f ′(y)| ≤ K for all y ∈ [−R,R], f ′(y) 6= 0 for all y ∈ [−R,R]. So, ϕ(x) and ϕ(xk)
are defined for all k ≥ 0. Moreover, ϕ is a composition of continuous functions, so

ϕ(x) = lim
k→∞

ϕ(xk) = lim
k→∞

xk+1 = x.

So, x = x − f(x)/f ′(x), and f(x)/f ′(x) = 0, so f(x) = 0. Since f ∈ C1[−R,R] and
K−1 ≤ |f ′(y)| ≤ K for all y ∈ [−R,R], the Intermediate Value Theorem implies that
f |[−R,R] is equal to zero only at the point y = 0. We therefore conclude that x = 0. �

Proof of (v). Since f ′(0) 6= 0 and f ′ is continuous in a neighborhood of the origin, there
exists R′ > 0 and k > 1 such that, for all y ∈ [−R′, R′], k−1 ≤ |f ′(y)| ≤ k. Also, since f is
C2 in a neighborhood of the origin, there exists R > 0 and K > 1 such that R ≤ R′ and
K ≥ k such that |f ′′(y)| ≤ K for all y ∈ [−R,R]. Since R ≤ R′ and K ≥ k, we conclude that
K−1 ≤ |f ′(y)| ≤ K for all y ∈ [−R,R]. Now, let ε > 0 small such that R ≥ ε(K−4 + 2K−2),
choose any r with r ≤ εK−4, and choose any x0 with |x0| ≤ εK−4. �

Exercise 5.9. Prove that if f ∈ Ck satisfies the assumptions of the inverse function theorem,
then the local inverse f−1 is also Ck. Formulate and prove a similar statement for the implicit
function theorem.

Proof. Let U, V be open sets such that f−1 : V → U . Define the set

GL(n,R) := {A ∈ Rn×n : det(A) 6= 0}.
Define ι : GL(n,R)→ GL(n,R) by ι(A) := A−1. Recall that D(f−1)(x) = [D(f)(f−1(x))]−1.
That is, D(f−1)(x) is the composition of three functions: f−1(x), followed by D(f), followed
by ι. We know from the Inverse Function Theorem that F−1 ∈ C1(V ). We want to show that
f−1 ∈ Ck(V ). We argue by induction. Assume that f−1 ∈ Cj(V ) for some 1 ≤ j < k. Then
f−1 ∈ Cj(V ), D(f) ∈ Cj(U) since j < k and f ∈ Ck(U), and ι ∈ C∞(GL(n,R);GL(n,R)),
since ι is a rational function whose denominator is the determinant function. The latter
fact was found using Cramer’s rule in Exercise 3.11(ii). So, from our composition formula
D(f−1)(x) = ι[D(f)(f−1(x))], we conclude that D(f−1) ∈ Cj(U), since each of the three
compositions are Cj. Since D(f−1) ∈ Cj(U), we conclude that f−1 ∈ Cj+1(U). The induc-
tive step is therefore complete. We conclude that f−1 ∈ Ck(U), as desired. �

Theorem 5.10. Let x, a ∈ Rm, b, y ∈ Rn, x = (x1, . . . , xm), y = (y1, . . . , yn). Let
G : Rm+n → Rn be Ck in a neighborhood of (a, b). Assume that G(a, b) = 0. Assume also
that the n× n matrix (∂Gi/∂yj(a, b))1≤i≤n,1≤j≤n is not singular. Then there exists U ⊆ Rm

and W ⊆ Rm+n open such that a ∈ U , (a, b) ∈ W , and there exists h : U → Rn that is Ck

such that y = h(x) solves G(x, y) = 0 for (x, y) ∈ W .

Proof. Define f(x, y) := (x,G(x, y)), f : Rm+n → Rm+n. Then f(a, b) = (a, 0). Also,

f ′ =

 Im 0(
∂Gi

∂xj
(a, b)

)
1≤i≤n
1≤j≤m

(
∂Gi

∂yj
(a, b)

)
1≤i≤n
1≤j≤n

 .

Using Claim (‡) of Exercise 5.7(vi), and using the result of Exercise 5.7(vi),

det f ′ = det

(∂Gi

∂yj
(a, b)

)
1≤i≤n
1≤j≤n

(
∂Gi

∂xj
(a, b)

)
1≤i≤n
1≤j≤m

0 Im

 = det

(
∂Gi

∂yj
(a, b)

)
1≤i≤n
1≤j≤n

.
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So, using our assumption, det f ′ 6= 0. Also, by the definition of f , and using that G is
Ck, we know that f is also Ck in a neighborhood of (a, b). So, using our modified version of
the Inverse Function Theorem (modeled after Theorem III.3.3 in Edwards), ∃ W,V ⊆ Rm+n

open such that (a, b) ∈ W , (a, 0) ∈ V , and ∃ g : V → W , g ∈ Ck such that g(a, 0) = (a, b),
and g = f−1. Let U := V ∩ (Rm × {0}), U ⊆ Rm. Since (a, 0) ∈ V , we have (a, 0) ∈ U .
Write g(x, y) =: (A(x, y), B(x, y)), A(x, y) ∈ Rm, B(x, y) ∈ Rn. Then for (x, y) ∈ V ,

(x, y) = f(g(x, y)) = f(A(x, y), B(x, y)) = (A(x, y), G(A(x, y), B(x, y)))

Therefore, A(x, y) = x, and so

g(x, y) = (x,B(x, y)).

For x ∈ U , let h(x) := B(x, 0). Then

(x, 0) = f(g(x, 0)) = f(x,B(x, 0)) = (x,G(x,B(x, 0))).

Therefore,

0 = G(x,B(x, 0)) = G(x, h(x)).

So, we have shown that x ∈ U implies that G(x, h(x)) = 0. We now prove the converse.
Suppose G(x, y) = 0 for (x, y) ∈ W . Then f(x, y) = (x,G(x, y)) = (x, 0), so

(x, y) = g(f(x, y)) = g(x, 0) = (x,B(x, 0)) = (x, h(x)).

Therefore, y = h(x). And g(x, 0) = (x, h(x)). �

6. Problem Set 6

Recall that a subset M ⊆ Rn is called a k-dimensional C`-manifold if every p ∈M has an
open neighborhood U with p ∈ U , and there exists a diffeomorphism Ψ ∈ C`(U ;Rn) from U
onto V := Ψ(U) such that

Ψ(U ∩M) = V ∩ (Rk × {0}).
Recall that in class we saw two ways of generating a manifold.

(a) Using a graph (Example 15). Let W ⊆ Rk be open and let g ∈ C`(W ;Rn−k). Then
the graph of g, defined as

M = G(g) := {(x, g(x)) : x ∈ W},

is a k-dimensional C` manifold.
(b) As the preimage of a regular value (Example 16). Let ϕ ∈ C`(U ;Rn−k) for some

open set U ⊆ Rn. Then the set M := ϕ−1(0) is a k-dimensional C` manifold if 0 is a
regular value of ϕ, i.e. if rank(ϕ′(p)) = n− k for all p ∈M .

Exercise 6.1. In class we saw that the tangent space of a graph M = G(g) as in (a) is given
by TpM = Φ′(x)Rk, where Φ(x) := (x, g(x)) and p = Φ(x). Consider the special case k = 1
and n = 2, and verify that this expression for TpM coincides with the expression for the
tangent line, translated to pass through the origin, of the graph y = g(x) that you learned
in high school or in calculus.

Proof. Suppose n = 2, k = 1. Then g : R→ R and Φ: R→ R2, with Φ′(x) = (1, g′(x)). And

Φ′(x)Rk = {(t, tg′(x)) ∈ R2 : t ∈ R}.

62



Recall that the tangent line of g at the point x is given by the formula (y−g(x)) = g′(x)(t−x),
where y, t ∈ R are variables. If we translate this line to pass through the origin, it then has
the formula y = g′(x)t. So, this line consists of all points (t, g′(x)t) with t ∈ R, as desired. �

Exercise 6.2. Find the tangent space of the graph of the function g(x, y) := x2 + y2 cos(x).

Proof. Let (x, y) ∈ R2. Let Φ(x, y) := (x, y, g(x, y)). Then g : R2 → R, Φ: R2 → R3, so
Φ′(x, y) : R2 → R3, and

T(x,y)G(g) = Φ′(x, y)R2 =

 1 0
0 1

2x− y2 sin(x) 2y cos(x)

R2

= {(a, b, a(2x− y2 sin(x)) + b(2y cos(x))) ∈ R3 : (a, b) ∈ R2}
= {(a, b, c) ∈ R3 : (2x− y2 sin(x))a+ (2y cos(x))b− c = 0}.

�

Exercise 6.3. Let M := ϕ−1(0) be the preimage of a regular value of ϕ ∈ C1, as in (b)
above. Prove the following fact that was mentioned in class: the tangent space TpM is

TpM = Nullspace(ϕ′(p)).

Proof. It is assumed in the problem that 0 is a regular value of ϕ. That is, if ϕ : U → Rn−k

with U ⊆ Rn, then rank(ϕ′(p)) = n− k for all p ∈M . Let p ∈M , and write p = (a, b) with
a ∈ Rk, b ∈ Rn−k. Note that ϕ′(p) is an (n− k)× n matrix. Since ϕ′(p) has rank n− k, we
may assume, after permuting the coordinates if necessary, that the columns k+1, k+2, . . . , n
of ϕ′(p) have nonzero determinant. That is, we may assume that

det

(
ϕ′(p)1≤i≤n−k

k+1≤j≤n

)
6= 0.

So, since ϕ ∈ C1(U), the Implicit Function Theorem gives V ⊆ Rk and W ⊆ Rn open such
that a ∈ V , p = (a, b) ∈ W , g : V → Rk, g ∈ C1(V ;Rn−k), and such that y = g(x) solves
ϕ(x, y) = 0 for (x, y) ∈ W , x ∈ Rk, y ∈ Rn−k. That is, in a neighborhood of p, M is equal
to {(x, g(x)) : x ∈ V }.

Let x ∈ V and define Φ(x) := (x, g(x)), Φ: Rk → Rn. Then Φ′(a) : Rk → Rn, and

TpM = Φ′(a)Rk =

(
Ik
g′(a)

)
Rk. (∗)

Here p = Φ(a), since Φ(a) = (a, g(a)) = (a, b) = p.
Let (x, y) ∈ W . Then ϕ(Φ(x)) = 0. Applying the chain rule,

ϕ′(Φ(x))Φ′(x) = 0. (∗∗)
Let v ∈ TpM . Then there exists z ∈ Rk such that Φ′(a)z = v. But then, from (∗∗),

ϕ′(Φ(a))Φ′(a)z = 0 = ϕ′(Φ(a))v.

So, v ∈ Nullspace(ϕ′(Φ(a))) = Nullspace(ϕ′(p)), since p = Φ(a). That is, we have shown

TpM ⊆ Nullspace(ϕ′(p)). (‡)
Now, ϕ′(p) is an (n−k)×n matrix of rank n−k. So, its nullspace has dimension at most k.
On the other hand, from (∗), TpM has dimension at least k. Since TpM and Nullspace(ϕ′(p))
are then linear subspaces of the same dimension via (‡), we see that (‡) is an equality. �
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Exercise 6.4. A torus is a doughnut-shaped surface in R3 that can be constructed as follows.
Let a > b > 0 and consider the circle C of radius a in the xy-plane. By definition, the torus
Ta,b is the set of points (x, y, z) ∈ R3 that lie at a distance b from the circle C.

(i) Draw a sketch of Ta,b and prove that it is a 2-dimensional C∞ manifold.
(ii) Find the tangent space of Ta,b at a point p = (x, y, z) ∈ Ta,b.

Proof of (i). Let (x, y, z) ∈ R3 and define r :=
√
x2 + y2. Then r is the distance from the

point (x, y, 0) to the origin. Let (x, y, z) ∈ Ta,b. Consider the closed ball

Bb(x, y, z) = {(c, d, e) ∈ R3 : |(x, y, z)− (c, d, e)| ≤ b}.

Since (x, y, z) ∈ Ta,b, Bb(x, y, z) intersects C in at least one point. We now show that

Bb(x, y, z) intersects C in exactly one point. For (c, d) ∈ R2, define the function f(c, d) :=
(c− x)2 + (d− y)2 + z2. We minimize f subject to the constraint g(c, d) := c2 + d2− b2 = 0.
That is, with the point (x, y, z) ∈ Ta,b fixed, we minimize the distance of (x, y, z) from a
variable point (c, d) ∈ C. Note that r 6= 0, since r = 0 implies that x = y = 0, so the
distance from (x, y, z) to C exceeds a. But this distance must be less than a, so r 6= 0.

Since C is compact, a minimum of f exists on C. Let (c, d) denote this minimum. Using
Lagrange Multipliers, we have ∇f = (2(x − c), 2(y − d)), ∇g = (2c, 2d, 0), and there exists
λ > 0 such that ∇f(c, d) = λ∇g(c, d). That is, (x − c) = λc, (y − d) = λd. So, (x, y) =
(λ + 1)(c, d). That is, (x, y) and (c, d) are parallel. Since (x, y, z) ∈ R3 and C ⊆ R2 × {0},
there exist only two vectors in C such that (x, y, 0) and (c, d, 0) are parallel. Namely, we have
(c, d, 0) = (a/r)(x, y, 0), and (c, d, 0) = −(a/r)(x, y, 0). Note that

|(a/r)(x, y, 0)− (x, y, z)|2 = z2 + a2, |−(a/r)(x, y, 0)− (x, y, z)| = z2 + (a+ r)2.

Since r > 0, the point (x, y, z) achieves its minimum distance from C at the point
(a/r)(x, y, 0). At this point, we have

|(x, y, z)− (a/r)(x, y, 0)|2 = b2.

That is,

b2 = (x2 + y2)(1− a/r)2 + z2 = (r − a)2 + z2 = r2 + a2 − 2ra+ z2.

So, r2 + z2 + a2 − b2 = 2ra, and (r2 + z2 + a2 − b2)2 = 4r2a2, so that

(x2 + y2 + z2 + a2 − b2)2 = 4a2(x2 + y2).

Now, define ϕ : R3 → R by

ϕ(x, y, z) := (x2 + y2 + z2 + a2 − b2)2 − 4a2(x2 + y2).

To conclude, we want to show that ∇ϕ 6= 0 for (x, y, z) with ϕ(x, y, z) = 0. Observe

∇ϕ(x, y, z) =

2(x2 + y2 + z2 + a2 − b2)(2x)− 8a2x
2(x2 + y2 + z2 + a2 − b2)(2y)− 8a2y

2(x2 + y2 + z2 + a2 − b2)(2z)

 .

Since a > b, the third term of ∇ϕ(x, y, z) is zero if and only if z = 0. So, we now argue by
contradiction, and assume that z = 0 and ∇ϕ(x, y, z) = 0. Then the first and second terms
of ∇ϕ(x, y, z) are zero, so

x[4(x2 + y2 + a2 − b2)]/(8a2) = x, y[4(x2 + y2 + a2 − b2)]/(8a2) = y.
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Since r > 0, at least one of x, y is nonzero. So,

(x2 + y2 + a2 − b2) = 2a2.

Since ϕ(x, y, z) = 0 and z = 0, we conclude that 4a4 = 4a2r2, so r = a. But r = a implies
that (x, y, z) ∈ C, since z = 0. However, (x, y, z) has positive distance b > 0 from C. We
have finally arrived at a contradiction. We conclude that ϕ′(x, y, z) 6= 0 if ϕ(x, y, z) = 0.
Since ϕ ∈ C∞(R3), we conclude that ϕ−1(0) = Ta,b is a C∞ manifold. �

Proof of (ii). Let p = (x, y, z) and let M := ϕ−1(0) = Ta,b. Using Exercise 6.3,

TpM = Nullspace(ϕ′(p)) = {(x1, x2, x3) ∈ R3 : 〈(x1, x2, x3),∇ϕ(p)〉 = 0}

=

(x1, x2, x3) ∈ R3 :

〈x1x2
x3

 ,

2(x2 + y2 + z2 + a2 − b2)(2x)− 8a2x
2(x2 + y2 + z2 + a2 − b2)(2y)− 8a2y

2(x2 + y2 + z2 + a2 − b2)(2z)

〉 = 0

 .

�

Exercise 6.5. The special linear group is defined as

SL(n) := {X ∈ Rn×n : detX = 1}.
(i) Prove that SL(n) is an (n2 − 1)-dimensional C∞ manifold in the space of n × n

matrices.
(ii) Show that the tangent space TInSL(n) is the space of matrices whose trace is zero.

Proof of (i). LetX ∈ SL(n). Recall that, in Exercise 3.11(i), we found that det is polynomial
in the entries of X. Therefore, det ∈ C∞(SL(n)). It therefore remains to show that if
detX = 1, then det′(X) 6= 0. Recall that, in Exercise 3.12(i), we showed that

d

dt
|t=0 det(X + tB) = det(X)Tr(X−1B).

In particular, if we take B := X, then (d/dt)|t=0 det(X + tX) = det(X)Tr(In) = n det(X) =
n 6= 0. Finally, note that det : Rn×n → R1, so the manifold det−1(1) has dimension n2−1. �

Proof of (ii). Recall that SL(n) = det−1(1). Using Exercise 6.3,

TInSL(n) = Nullspace(∇ det(In)) = {Y ∈ Rn×n :
∑n

i,j=1YijTr(I−1n eij) = 0}
= {Y ∈ Rn×n :

∑n
i,j=1YijTr(eij) = 0} = {Y ∈ Rn×n :

∑n
i=1Yii = 0}

= {Y ∈ Rn×n : Tr(Y ) = 0〉}.
�
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Exercise 6.6. The orthogonal group is defined as

O(n) := {X ∈ Rn×n : XTX = In}.

(i) Show that O(n) is an n(n−1)
2

-dimensional C∞ manifold in the space of n×n matrices.
(ii) Show that the tangent space TInO(n) is the space of antisymmetric matrices.

Proof of (i). Let X ∈ Rn×n. Define ϕ(X) := XTX − In. Note that (ϕ(X))T = (XTX)T −
In = ϕ(X). So, ϕ : Rn×n → Rn×n

sym , i.e. the image of ϕ is contained in the space of symmetric
n × n matrices. Note that ϕ has polynomial components, so ϕ ∈ C∞(Rn×n;Rn×n

sym ). Also,

ϕ−1(0) = O(n). So, to show that O(n) is a C∞ manifold, it suffices to show that ϕ′(X) has
maximal rank if ϕ(X) = 0. Note that Rn×n

sym has dimension n + (n − 1) + · · · + 1, i.e. it
has dimension

∑n
i=1 i = n(n+ 1)/2. So, it remains to show that ϕ′(X) has rank n(n+ 1)/2

if ϕ(X) = 0. Given this fact, note the dimension of O(n) would be n2 − (n)(n + 1)/2 =
n(n− 1)/2, as desired. Let Y ∈ Rn×n, and observe

d

dt
|t=0ϕ(X + tY ) =

d

dt
|t=0

(
(X + tY )T (X + tY )− In

)
=

d

dt
|t=0

(
XTX + tY TX + tXTY + t2Y TY − In

)
= Y TX +XTY. (∗)

So, if we set Y := Xeij, and use that ϕ(X) = XTX − In = 0, we get

d

dt
|t=0ϕ(X + tY ) = eTijX

TX +XTXeij = eji + eij. (∗∗)

Now, define
E := {Xeij}i≥j : i,j∈{1,...,n}.

Then E contains n(n+ 1)/2 distinct elements, and the set

{(d/dt)|t=0ϕ(X + tY ) : Y ∈ E}
consists of n(n + 1)/2 linearly independent vectors in Rn×n, by (∗∗). That is, the rank of
ϕ′(X) is at least n(n+1)/2. Therefore, ϕ′(X) has maximal rank if ϕ(X) = 0, as desired. �

Proof of (ii). Note that O(n) = ϕ−1(0). From part (i), if X = In, we saw that the set E
gives a spanning set for the derivative of ϕ. That is, if we define E := {eij}i≥j : i,j∈{1,...,n} then
the set {(d/dt)|t=0ϕ(In + tY ) : Y ∈ E} is a spanning set for ϕ′(In). So, using our derivative
formula (∗) from part (i), and Exercise 6.3,

TInO(n) = Nullspace(ϕ′(In)) = {Y ∈ Rn×n : ∀ 1 ≤ i, j ≤ n, 〈Y, (eTijIn + ITn eij)〉 = 0}
= {Y ∈ Rn×n : ∀ 1 ≤ i, j ≤ n, 〈Y, eji + eij〉 = 0}
= {Y ∈ Rn×n : ∀ 1 ≤ i, j ≤ n, Yji + Yij = 0}
= {Y ∈ Rn×n : ∀ 1 ≤ i, j ≤ n, Yij = −Yji}.

�

Exercise 6.7. Fix h > 0 and define the function f : U → R3 where U := (0,∞)× R and

f(r, θ) := (r cos θ, r sin θ, hθ).

Sketch the set M := f(U) and prove that it is a 2-dimensional C∞ manifold.
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Proof. Let (x, y) ∈ R2. In polar coordinates in R2, we write x = r cos θ, y = r sin θ,
θ ∈ (−π/2, 3π/2]. So, for x 6= 0, we have y/x = tan θ, so that θ = tan−1(y/x) + π1{x<0}(x).
Let D,E ⊆ R2 be the following open sets

D := {(x, y) ∈ R2 : x 6= 0}, E := {(x, y) ∈ R2 : y 6= 0}.

We are then led to define g : D → R and h : E → R by

g(x, y) := (x, y, h[π1{x<0}(x) + tan−1(y/x)]).

h(x, y) := (x, y, h[π1{y<0}(y) + π/2 + tan−1(−x/y)]).

Note that g, h are the composition of C∞ functions, so g ∈ C∞(D;R3), h ∈ C∞(E;R3). We
will now create a sequence of maps from g, h that cover M = f(U). For k ∈ Z, define

gk(x, y) := g(x, y) + (0, 0, 2πkh), hk(x, y) := h(x, y) + (0, 0, 2πkh).

We claim that the set of coordinate patches {(gk, D)}k∈Z ∪ {(hk, E)}k∈Z cover M . This
claim will conclude the exercise. To prove the claim, let (x, y, z) ∈ f(U). Then there exists
r > 0 and θ ∈ R such that (x, y, z) = f(r, θ) = (r cos θ, r sin θ, hθ). If x 6= 0, then (x, y) ∈ D
and tan−1(y/x) + π1{x<0}(x) = tan−1(tan(θ)) + π1{x<0}(x) = θ + 2kπ for some k ∈ Z. So,
gk(x, y) = f(r, θ). Similarly, if y 6= 0, then (x, y) ∈ E and tan−1(−x/y) +π/2 +π1{y<0}(y) =
tan−1(− cot(θ)) + π/2 + π1{y<0}(y) = θ + 2kπ for some k ∈ Z, so hk(x, y) = f(r, θ).

We now prove the converse let (x, y) ∈ D. Then using polar coordinates, there exist
(r, θ′) ∈ (0,∞)×R such that r cos θ′ = x and r sin θ′ = y. Let k ∈ Z such that θ := θ′+ 2kπ
satisfies π1{x<0}(x) + tan−1(y/x) = θ. Then gk(x, y) = (x, y, hθ) = f(r, θ). Similarly, let
(x, y) ∈ E. Then there exist (r, θ′) ∈ (0,∞) × R such that r cos θ′ = x and r sin θ′ = y.
Let k ∈ Z such that θ := θ′ + 2kπ satisfies π1{y<0} + π/2 + tan−1(−x/y) = θ. Then
hk(x, y) = (x, y, hθ) = f(r, θ). In conclusion,

M = f(U) =
⋃
k∈Z

(gk(D) ∪ hk(E)).

�
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7. Appendix: Notation

Let n be a positive integer. Let x = (x1, . . . , xn) ∈ Rn, so that xi ∈ R for i ∈ {1, . . . , n}.
Let r > 0, and let A,B ⊆ Rn be sets. Let v ∈ Rn. Let f : Rn → Rm, fi : Rn → R, i =
1, . . . ,m, f = (f1, . . . , fm). Assume that f is differentiable and g : Rn → R is differentiable.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

Z≥0 := {0, 1, 2, 3, 4, 5, . . .}
Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set

ArB := {x ∈ A : x /∈ B}
Ac := Rn r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

max (or min) denotes the maximum (or minimum) of a set of numbers

sup (or inf) denotes the supremum (or infimum) of a set of numbers

|x| = ||x||2 := (
∑n

i=1 x
2
i )

1/2, the 2-norm, or `2-norm

||x||p := (
∑n

i=1 |xi|
p)1/p, the p-norm, or `p-norm for 1 ≤ p <∞

||x||∞ := supi∈{1,...,n} |xi|, the sup-norm, or ∞-norm, or `∞ norm

Br(x) = B2(x, r) := {y ∈ Rn : |y − x| < r}, the open ball of radius r

Bp(x, r) := {y ∈ Rn : ||y − x||p < r}, the open `p ball of radius r for 1 ≤ p ≤ ∞
Tr denotes the trace function

det denotes the determinant function

Sn denotes the set of permutations on n elements

sign(σ) = (−1)N , where σ ∈ Sn is the composition of N transpositions

id = idn = In denotes the identify map, or the n× n identity matrix

xT denotes the transpose of x

e1, . . . , en denotes the standard basis of Rn

Dvf(x) denotes the derivative of f at x in the direction v

∂g/∂xj = Dejg = Djg denotes the partial derivative of g with respect to xj

f ′(x) denotes the matrix of partial derivatives (∂fi/∂xj)1≤i≤m,1≤j≤n

∇g(x) = (D1g(x), . . . , Dng(x)) denotes the gradient of g
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