Analysis 2 Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due March 12, in the discussion section.

Assignment 8

Exercise 1. Let E be a subset of R, let $f: E \to \mathbb{R}$, let $x_0 \in E$, and let $L \in \mathbb{R}$. Show that the following two statements are equivalent.

• f is differentiable at x_0 and $f'(x_0) = L$. • We have $\lim_{x \to x_0; x \in E \setminus \{x_0\}} \frac{|f(x) - (f(x_0) + L(x - x_0))|}{|x - x_0|} = 0$.

Exercise 2. Let E be a subset of \mathbb{R}^n , let $f: E \to \mathbb{R}^m$ be a function, and let x_0 be an *interior* point of E. Let $L_a: \mathbf{R}^n \to \mathbf{R}^m$ and let $L_b: \mathbf{R}^n \to \mathbf{R}^m$ be linear transformations. Suppose f is differentiable at x_0 with derivative L_a , and f is differentiable at x_0 with derivative L_b . Show that $L_a = L_b$. (Hint: argue by contradiction. Assume that $L_a \neq L_b$. Then there exists a nonzero vector $v \in \mathbf{R}^n$ such that $L_a v \neq L_b v$. Then, apply the definition of the derivative, and try to specialize to the case where $x = x_0 + tv$ for some scalar t, in order to obtain a contradiction.)

Exercise 3. Let E be a subset of \mathbb{R}^n , let $f: E \to \mathbb{R}^m$ be a function, let x_0 be an interior point of E, and let $v \in \mathbb{R}^n$. If f is differentiable at x_0 , then f is also differentiable in the direction v at x_0 , and

$$D_v f(x_0) = f'(x_0)v.$$

Exercise 4. Define $f \colon \mathbf{R}^2 \to \mathbf{R}$ by $f(x,y) := x^3/(x^2+y^2)$ when $(x,y) \neq (0,0)$, and f(0,0) := 0. Show that for any $v \in \mathbb{R}^2$, f is differentiable at (0,0) in the direction v. However, show that f is not differentiable at (0,0).

Exercise 5. Prove the following statements.

- Let $L \colon \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Show that there exists a real number M>0 such that $||Lx|| \leq M ||x||$, for all $x\in \mathbf{R}^n$. (Hint: first, using the equivalence between linear transformations and matrices, write L in terms of a matrix A. Then, set M to be equal to the sum of the absolute values of the entries of A. Use the triangle inequality a lot. There are many different ways to do this exercise, some of which use a different value of M. For example, you could try using the Cauchy-Schwarz inequality.) In particular, conclude that any linear transformation $L \colon \mathbf{R}^n \to \mathbf{R}^m$ is
- Let E be a subset of \mathbb{R}^n . Assume that $f: E \to \mathbb{R}^m$ is differentiable at an interior point x_0 of E. Then f is also continuous at x_0 .
- (The Chain Rule in Multiple Variables) Let E be a subset of \mathbb{R}^n , let F be a subset of \mathbf{R}^m , let $f: E \to F$ be a function, and let $g: F \to \mathbf{R}^p$. Let x_0 be a point in the interior of E. Assume that f is differentiable at x_0 and that $f(x_0)$ is in the

interior of F. Assume also that g is differentiable at $f(x_0)$. Show that $g \circ f : E \to \mathbf{R}^p$ is also differentiable at x_0 , and

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

(Hint: it may be helpful to review the proof of the single variable chain rule. It is probably easiest to use the sequence definition of a limit.)

Exercise 6. Let $f: \mathbf{R}^n \to \mathbf{R}$ be a differentiable function, and let $\alpha \in \mathbf{R}$. Suppose f is homogeneous of degree α . That is, for all $x \in \mathbf{R}^n$ and for all t > 0, we have $f(tx) = t^{\alpha} f(x)$. Prove that $f'(x)x = \alpha f(x)$, for all $x \in \mathbf{R}^n$.

Exercise 7. Define $f: \mathbf{R}^2 \to \mathbf{R}$ by $f(x,y) := (x^3y)/(x^2+y^2)$ when $(x,y) \neq (0,0)$, and f(0,0) := 0. Show that f is continuously differentiable, and the double derivatives $\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f$ and $\frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1}$ exist, but these derivatives are not equal at (0,0).