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1. INTRODUCTION

The ability of Calculus to describe the world is one of the great triumphs of mathematics.
Below, we will briefly describe some of these successful applications. Some of these applica-
tions will be discussed in the second half of this course, and others may be found in your
future endeavors.

For example, calculus is very closely related to probability, which itself has applications to
statistics and algorithms. For example, the first generation of Google’s search technology
came from ideas from probability theory. In economics, optimization is often used to
e.g. maximize profit margins, or to find optimal strategies in game theory. Also, the
ideas of single variable calculus are developed and generalized within financial mathematics
to e.g. stochastic calculus. Signal processing and Fourier analysis provide some nice
applications within many areas of science. For example, our cell phones use Fourier analysis
to compress voice signals.

In physics, many models of the real world use solutions of differential equations.
These equations involve the slopes and shape of functions, and their solutions describe the
behavior of many physical systems. For example, the famous Navier-Stokes equations of fluid
dynamics are expressed in this language. Solutions of the Navier-Stokes equations show us
how water behaves, though these equations really just state Newton’s second law. Also,
Einstein’s Theory of General Relativity uses a version of Calculus, though geometry
is needed here as well.

In mathematics itself, the fundamental concepts of Calculus reappear in many places,
some of which have already been described above. Also, Calculus serves as the foundation of
probability, which itself serves as the foundation of statistics. For example, to prove that
a large number of numerical data samples have the distribution of a bell curve, one can use
tools from Calculus. As another example, we can repeat Calculus for a single real variable
by using a single complex variable, and we get the beautiful subject of Complex analysis.

For a complete understanding of biology, you need to understand Calculus. For example,
suppose someone is given an intravenous drug which is administered at a certain rate. If we
know the volume of fluid in the body, the concentration of the administered drug, and the
rate of flow of the drug into the body, then we can use Calculus to model the concentration
of drug in the person’s body. These calculations are done using differential equations. If one
wants to fully understand how MRIs and CT-scans work, one needs multivariable calculus.
Many of the concepts in multivariable calculus originate in single variable calculus, though
there are some new things that are needed.

Using differential equations, one can derive some of the equations for chemical concentra-
tions that were used in our high school chemistry classes. Also, the ideas of Calculus are
used in more advanced chemistry subjects, including quantum mechanics.

Even though computer science often deals with discrete problems, many of the ideas of
Calculus arise in computer science, and sometimes these ideas arise in unexpected ways. For
example, the methods used to encode music onto CDs and MP3s use Calculus, with some
additional tools from Fourier analysis. These same tools compress image and video data
for JPEGs and MPEGs, respectively.

The acts of thinking rigorously and using logic in our reasoning should become common
in this course. We want to transmit one of the great intellectual achievements of humanity,
just as we pass down great literature, art and philosophy to future generations.



1.0.1. A Brief History of Calculus. The rudiments of Calculus can be traced through many
ancient cultures including those of Greece, China and India. Calculus in its modern form is
generally attributed to Newton and Leibniz in the late 1600s. Newton was mainly motivated
by applying Calculus to physics. However, Leibniz invented most of the notation we use
today. Even though this topic is now taught in high school and college, it is still over 300
years old. In this course, perhaps we will try to give you glimpses of what happened in the
ensuing centuries.

1.0.2. The Calculus Paradigm. Mathematics before Calculus usually involves algebra,
trigonometry and some planar geometry. The concepts in Calculus are very different from
concepts that are learned before, so the following “paradoxes” are meant to help in under-
standing the new concepts. These paradoxes are known as Zeno’s Paradoxes.

Paradox 1.1. In a footrace, suppose a slower runner is in front of a quicker runner. When
the quicker runner reaches any point in the race, the slower runner was already at that point
in the past. Therefore, the quicker runner can never overtake the slower runner.

Paradox 1.2. Suppose I want to walk through a doorway, and I am standing a meter away
from the door. At some point I am at a half meter away from the door, then at another
point I am at a quarter of a meter away, then at another point I am at an eighth a meter
away, and so on. Therefore, I can never make it through the doorway.

Paradox 1.3. Suppose I shoot at arrow at a target. At any given moment, the arrow
occupies a fixed position in space. However, in order for an object to move, it cannot sit in
one place. So, the arrow must have no motion at all. The arrow is motionless.

The first two paradoxes are somewhat similar. In the first paradox, we know from empirical
observation that a quicker runner can overtake a slower runner. And in order to resolve the
paradox, we note that the total time that the quicker runner remains behind the slower
runner is finite. Similarly, in the second paradox, I know that it only takes a finite amount
of time to pass through a door. Paradox 1.2 seems to occur since I am subdividing the one
meter that I travel into an infinite number of smaller steps. Zeno seems to object, saying
that an infinite number of subdivisions cannot occur.

In mathematical terms, Zeno objects to the assertion % + }l + % + .-+ =1, because there
does not appear to be a rigorous way to think about an infinite sum of numbers. By using a
limit, we can actually speak rigorously about an infinite sum of numbers, thereby resolving
the paradox.

The third paradox is a bit different from the other two. Zeno is really questioning the
meaning of an instant of time. How can we rigorously discuss the instantaneous speed of an
object? Below, we will use limits to define derivatives, and these derivatives give a rigorous
meaning to instantaneous velocity, thereby resolving the paradox.

1.1. The Notion of a Limit.

Definition 1.4 (Intuitive Definition of a Limit). Let f: R — R, and let z,a,L € R.
We say that f has limit L as x approaches a and write

lim f(z) =L,

if f(x) gets closer and closer to L as = gets closer and closer to a, with x # a.


http://en.wikipedia.org/wiki/Zeno's_paradoxes

Definition 1.5 (Formal Definition of a Limit). Fix a € R and let « be a variable. We
write lim,_,, f(x) = L if the following occurs.

For all € > 0, there exists § = d(¢) > 0, such that:
if 0 < |z —a| <6, then |f(x) — L] <e.

(1)

Put another way, no matter how small I want | f(x) — L| to be, I can always choose a small
region around a that is so small such that f(x) is really close to L in this region.

Example 1.6. Let f(x) =z and let a = 1. Then lim,_,, f(z) =a = 1.
Example 1.7. Let f(z) = z* and let a = 2. Then lim,_,, f(z) = a* = 4.

Remark 1.8. The limit lim,_,, f(z) does not depend on the value of f at a.

1 ifx#0

0 ifz <o Then lim,_, f(z) = 1.

Example 1.9. Let f(x) = {

Definition 1.10 (Intuitive Definition of One-Sided Limits). Let f: R — R, and let
xr,a, L € R. We say that f has limit L as x approaches a from the left and write
lim f(z) =L,

r—a~
if f(z) gets closer and closer to L as x gets closer and closer to a, with z < a.
We say that f has limit L as x approaches a from the right and write
lim f(z) =L,

z—at

if f(z) gets closer and closer to L as z gets closer and closer to a, with z > a.

Remark 1.11. lim, ,, f(z) exists if and only if both one-sided limits lim, .,- f(z) and
lim, .- f(z) exist and are equal.

The limit may at first look a bit silly’, since for a polynomial, we can just plug in the
function value and the result agrees with the limit. So why are we defining a limit anyway?
First of all, we need limits in order to define tangent lines to functions (derivatives), and
derivatives are one of the extremely important concepts in Calculus. Second of all, there are
some subtleties to the definition that may not yet be apparent.

For example, the limit of a function may not always exist. This issue is important because
we will see that the derivatives of some functions may not exist. So, there may be no
reasonable way to talk about the instantaneous speed of certain trajectories.

Example 1.12 (A jump discontinuity)). Define H: R — R (the Heaviside function) by

the formula
H(z) = 0, z<0
1, >0

We claim that lim, ,o- H(z) = 0 and lim,_,o+ H(z) = 1. Therefore, lim,_,o H(x) does not
exist.

lHistorically, the definition (1) was invented over a century after Newton and Leibniz invented Calculus.
The approach of Newton and Leibniz was not quite rigorous by modern standards.



To see this, note that if z < 0, then H(z) = 0. That is, H(z) is always close to 0 whenever
x < 0. We conclude that lim, ,o- H(z) = 0.

Similarly, if x > 0, then H(z) = 1. That is, H(x) is always close to 1 whenever z > 0.
Therefore, lim, ,o+ H(z) = 1.

Both one-sided limits must be equal in order for lim,_,o H(z) to exist. Since we know that
lim, o+ H(z) = 1% 0 = lim,_,o- H(z) we conclude that lim,_,o H(x) does not exist.

Remark 1.13. If a function f becomes arbitrarily large as * — a, the limit lim,_,, f(x) does
not exist, but we still write lim,_,, f(x) = co. If a function f has |f(z)| arbitrarily large and
f(z) < 0asx — a, the limit lim,_,, f(x) does not exist, but we still write lim,_,, f(z) = —oc.

Example 1.14 (A singularity). Define f: R — R by the formula

o=y 17

We claim that lim, .o+ f(z) = oo and lim, ,o- f(z) = —o0. Therefore, lim,_,o f(x) does
not exist.

Note that if z > 0, then f(z) > 0. And, for example, if x = 1/n where n is a pos-
itive integer, then f(x) = n becomes arbitrarily large as n becomes large. Therefore,
lim, ,o+ f(z) = oo. Since lim, ,o+ f(z) does not exist, we already know that lim, o f(z)
does not exist.

Similarly, if z < 0, then f(z) < 0. And if = —1/n where n is a positive integer, then
f(x) = —n becomes negative and large as n becomes large. Therefore, lim,_,o- f(z) = —oc.

Example 1.15 (Infinite oscillation). Define f: R — R so that

= oo =

We claim that lim, o f(x) does not exist. To see this, let n be a positive integer and
consider the points 1/(27n) and 1/(2mn + 7). If n is large, both of these points can become
arbitrarily close to zero. However, f(1/(27n)) = cos(2mn) = 1, while f(1/(2mn + 7)) =
cos(2mn + m) = —1. So, f never becomes close to any value L as z — 0. So, lim, o f(2)
does not exist.

1.2. Calculating Limits. In order to manipulate limits, we need to be able to apply some
simple operations to them. The following statements summarize some ways that we can
manipulate limits.

Proposition 1.16 (Limit Laws). Let f,g: R — R. Let a,c € R. Assume that lim,_,, f(z)
exists and lim,_,, g(x) exists. Then

(i) limg o (f(2) + g(2)) = (limgq f(2)) + (limgq g(2)).
() T on((2) — g(x)) = (s e £(z)) — (s g(z)).
(i) limyo[cf(2)] = c(limy, f(2)).

(iii) limga[(f (2))(9(2))] = (limgoa f(2))(limg—q g(2)).
(iv) If lim,_,, g(z) # 0, then lim,_,, f@) _ limeoa fl@)

g(z) limg—q g(x)

Example 1.17. We know that lim, ., 2 = 2, so we know that lim, ,» 2% = (lim,_,o 2)? =
22 = 4, using Limit Law (7).



Example 1.18. Since we know that lim,_,» 2> = 4 and lim, .oz = 2, we then know that
lim, s 3 = (lim,_,p 2?)(lim, 5 z) = 2?2 = 8, using Limit Law (7).

Example 1.19. Since lim, ,o(z + 1) = 1, and lim,_o(z* + 3) = 3, we have
z+1 1

1m = .
z—0 12 +3 3

Example 1.20. We know that lim,_,o x = 0 and lim,_,o ! does not exist. So, the following

equality doesn’t make any sense:
T IERT REaT . -1
b=t = e = G )G

However, the assumptions of the Limit Laws are not satisfied, so we have not found a
contradiction within the Limit Laws.

1.3. Continuity.

Definition 1.21 (Intuitive Definition of Continuity). Let f: R — R and let a € R.
We say that f is continuous if we can draw f with a pencil, without lifting the pencil off
of the paper.

Alternatively, f is continuous at a if f does not “jump around too much” around a.

Definition 1.22 (Formal Definition of Continuity). Let f: R — R let a € R. We say
that f is continuous at a if the following three conditions are satisfied

(i) lim,,, f(z) exists
(ii) @ is in the domain of f
(iii) lim,q f(2) = f(a)
We say that a function f is continuous if f is continuous on all points of its domain. If f
is not continuous at a, we say that f is discontinuous at a.

Example 1.23. Let f(z) = x. Then f is continuous, since lim, ., f(z) = a = f(a) for all
points a € R.

Example 1.24 (Removable Discontinuity). Let
1 ifx#0
fle) = {0 it = 0.

Then lim, o f(z) = 0, but f(0) = 1. That is lim,_o f(z) # f(0). So f is discontinuous at
0. However, if we redefined f to be equal to 1 at 0, then f would be continuous at 0. For
this reason, we say that f has a removable discontinuity at 0.

Example 1.25 (Jump Discontinuity)). Recall we defined H: R — R where

H(x):{o, z <0

1, =>0.

We showed that lim, o H(x) does not exist. So, H(z) is discontinuous at z = 0.



Example 1.26 (A singularity). Define f: R — R by the formula

1z, 2z #0
o[ 271

We showed that lim,_,o f(x) does not exist. So, f(x) is discontinuous at x = 0. However,
f is actually continuous at any nonzero point, by the limit law for quotients. If a # 0, then

lim f(z) = lim(1/z) = 1/(limx) = 1/a = f(a).
z—a z—a T—a
Example 1.27 (Infinite oscillation). Define f: R — R so that

fio = {0 w20

We showed that lim,_,o f(x) does not exist. So, f is discontinuous at x = 0. We will show
later on that f is continuous at any point a # 0.

Verifying directly that a given function is continuous can be tedious. Thankfully, we can
often verify continuity of a function using the following rules, which are consequence of the
Limit Laws, Proposition 1.16.

Proposition 1.28 (Laws of Continuity). Let f,g: R — R. Let a,c € R. Assume that f
and g are both continuous at a. Then

(i) f+ g is continuous at a.
(i) f — g is continuous at a

(i) ¢f is continuous at a.

(iii) fg is continuous at a

(iv) If g(a) # 0, then /g is continuous at a.

Corollary 1.29. Let p,q be polynomials. Then p is continuous on the real line, and p/q is
continuous at all values a where q(a) # 0.

Proof. Note that p(x) is a sum of monomials ¢," +c¢, 12" '+ - -+ 12+ . Each monomial
is continuous, so p is continuous by the first law of continuity.

So, p,q are both continuous on all of R. Then p/q is continuous at all values a where
q(a) # 0, by the last law of continuity. O

Proposition 1.30.

e f(x) =sinz and g(x) = cosx are both continuous on the real line.

o Ifb>0, then f(x) =b" is continuous on the real line.

o [fb>0, then f(x) =log, x is continuous whenever x > 0.

e Ifn is a positive integer, then f(x) = x'/™ is continuous on its domain.

Example 1.31. Recall that cos(x) = 0 whenever © = km + m/2 for some integer k. So,
tan(z) = sin(x)/ cos(x) is continuous, except when x = km + 7/2 for some integer k.

Example 1.32. The function f(z) = z?cosz is continuous on the real line, by the third
law of continuity.



Theorem 1.33 (A Composition of Continuous Functions is Continuous). Let f,g
be functions. Define F(x) = f(g(x)). If g is continuous at x = a, and if [ is continuous at
g(a), then F(x) = f(g(z)) is continuous at x = a.

Example 1.34. Recall the function
1
Flz) = cos(l/x), x#0
0, z=0

Since g(z) = 1/z is continuous for = # 0, and f(y) = cos(y) is continuous for any y, we see
that F'(z) = f(g(x)) is continuous for any = # 0. And we saw before that F' is discontinuous
at v = 0.

Remark 1.35. If f: R — R is continuous, we can move limits inside or outside of f:
lim f(x) = f(lim z).

Example 1.36. lim,_,; V22 +1 = \/limxﬁl(gc2 +1) = V2.

Example 1.37. lim, /4 sin(2z — 7/4) = sin(lim, /(27 — 7/4)) = sin(r/4) = v/2/2.

Sometimes we need to do a bit of algebra before we can move the limits around or apply
limits laws.

Example 1.38.

24 -2 2
’ =li (z=2)(z+2) = lim(z 4+ 2) = 4.
x—2 r — 2 xr—2 (:E — 2) x—2

Example 1.39.

-1 -1 1 -1 1
lim\/_—:lim\/E Vot = lim ’ =lim —— = —.

a1 x—1 a1l z—1 V41 =1 (x—1D)Hz+1) «=1yz4+1 2
Example 1.40.

1 1

x+4—4_, T 1 _1

lim = S —

— = = lim ——— = lim lim ——— .
z—0 (4x x(z + 4)) 20 4x(x+4)  «=0dx(z+4) 2—04(x+4) 16
1.4. Trigonometric Limits, Limits at Infinity.

Theorem 1.41 (Squeeze Theorem). Let f,g,h: R — R. Suppose f(z) < g(x) < h(z)
and lim,_,, f(x) = lim,_,, h(x) = L. Then lim,_,, g(z) exists and lim,_,, g(x) = L.

Example 1.42. We show that lim,_,o x cos(x) = 0. Since —1 < cos(z) < 1, we have — |z| <
xcosx < |x|. Since lim, ,o(— |z|) = lim,_ |z| = 0, we conclude that lim,_,ox cosx = 0.

Corollary 1.43.
. sinz . l—cosz
lim =1, lim —— =
z—0 X z—0 X

Proof. If x is small, then the right triangle with vertices (0,0), (cosz,0) and (cosz,sinz)
is inscribed in the unit circle. The height of the triangle is larger than the arc of the circle
between (cosz,sinz) and (1,0). This arc has length z. So, sin(z) < z. On the other hand,
the sector formed by this arc of the circle has area (1/2)z. And this sector is contained in
the right triangle with one edge formed by (0,0) and (1,0) and the other edge with slope

8



tanxz. This triangle has area (1/2)sin(z)/cos(x). So, (1/2)x < (1/2)sin(z)/ cos(x), i.e.
cos(z) < sin(x)/z. In summary,

sinx

cos(x) < < 1.

T

Since lim, ,ocos(z) = cos(0) = 1, and lim, ,o1 = 1, the Squeeze Theorem implies that
lim, ,o(sinx)/x = 1. Lastly,

1 —cosz . 1—cosx1+coszx . 1 —cos’zx

=lim ————
a0 T @0 x  1+4cosx =2-0z(l+ cosx)

ST (st o sing
2=0 (1 4 cosx) z—=0 1+ cosx

O

1.4.1. Limits at Infinity. So far we have only considered limits of the form lim,_,, f(z) where
a is a real number. We can also consider limits of the form lim, ., f(z) and lim,_, o, f(x),
using essentially the same rules as before. Alternatively, we could make the following defini-
tion, if the limit on the right exists:

lim f(x) = lim f(1/y).

z—00 y—0+
Similarly, if the limit on the right exists, we can define
im f(z) = Jimn, f(=1/y).

We can think of lim; ., f(t) as describing where f eventually ends up, as time goes to
infinity.
Example 1.44. lim, ., 1/z = 0.
Example 1.45. lim,_,,, 2* = 00, lim,_,,, 27" = 0.
Example 1.46.

47% 42 . 47242 72 4+ 3 lim, oo 44 2 4

im ————— = lim — S im e = = = .
z00 302+ +3 w3+ +3 2 voo0 3+ 4+ limp o3+ o+ 3

Example 1.47. More generally, if n is a positive integer and d,, # 0,
Cn[Bn—l—Cn_la?n*l‘F"““CO Y Cn_|_6”7—1+..._|_0_0

im = lim il
z—00 dpx™ + dp_gx" 4+ dy z00 d, + d”x* 4+t z_g
Hm, eocn + 2+ + 5 ¢y
- dn— d
hmmoodn+"71+-'-+x—2 d,

1.5. Intermediate Value Theorem. Continuous functions have many nice properties.
One such property is expressed in the following Theorem.

Theorem 1.48 (Intermediate Value Theorem). Let a,b € R, a < b. Let f: [a,b] = R
be continuous. Then f achieves every value between f(a) and f(b). That is, for every y € R
in between f(a) and f(b), there exists x € [a,b] such that f(z) =y.



Example 1.49. For a real-world example, suppose f: [0,10] — R and f(¢) is your position
at time ¢ as you walk along a straight path. Suppose f(0) = 0 and f(10) = 2. Then you
must visit every point along the path [0, 2] at some time between time 0 and time 10.

Example 1.50. There is some nonzero number z such that 2sin(z) = z. To see this, let
g(x) = 2sin(x) — . Then g(7/2) =2 — /2 > 0 and g(7) = —7 < 0. By the Intermediate
Value Theorem, there is some x € (7/2,7) such that g(x) = 0. At this point, we have
2sin(z) = x.

Example 1.51. Continuity is needed for the conclusion of the Intermediate Value Theorem
to hold. For example, consider the jump discontinuity

H(x):{o, z <0

, x>0

Then H(—1) =0, H(1) = 1, but there does not exist some = € (—1,1) with H(z) = 1/2.

2. THE DERIVATIVE

2.1. Definition of the Derivative. The derivative is one of the central concepts in calculus.
It is also one of the most useful. For a function f: R — R, where f(¢) denotes the vertical
position of a falling object at time ¢, the derivative of ¢ is the velocity of the object at time .
For a general function f: R — R, the derivative of f is the rate of change of f. We denote
the derivative of f at x by f'(x).

We now begin the construction of the derivative. Let f: R — R. Suppose Let a,z € R
with a < t. Consider the points (a, f(a)) and (x, f(x)). Recall that the line passing through
these points has a slope equal to the rise over run of the points. That is, the slope of the
line passing through these two points is

f(x) — f(a)
r—a
The numerator is the change in the value of f from a to x, and the denominator is the change
in the domain of f from a to z. So, (f(z) — f(a))/(x — a) is essentially the rate of change
of f at a. The line passing through the points (a, f(a)) and (z, f(x)) is also known as the
secant line.

The slope of the secant line is a decent approximation to the slope of the tangent line to f
at a. It turns out that as x — a, the slope of the secant line will often go to the slope of the
tangent line. That is, suppose as x goes to a, the quantity W goes to some number L.
We can then think of L as the infinitesimal rate of change of f. To see this approximation
procedure in action, see the following JAVA applet: secant approximation.

This discussion leads the following definition of a derivative

Definition 2.1 (The Derivative at a Point). Let a,b,z € R, f: R — R. We say that f
is differentiable at a if the following limit exists.
df(a) _ df

Cf@) - fa) _ flath) - fl@) o d
L = flo) === =gf@

If f'(a) exists, we call f’(a) the derivative of f at a. We say that f is differentiable if f
is differentiable on its domain.

10
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Example 2.2. Let f(z) = ¢ be a constant function. Then f/(0) = limy,_o {80 —

h

Let f(z) = x. Then f'(0) = lim,_, w = limh_m% = limp_1 = 1.
Let f(z) = a2 Then f/(1) = limy_ LW — jipy, o W22 g, (9 4 h) = 2.
Let f(z) = 27!, Then
C fBHR)-fB) . s 3 . 3-B+h . -1 1
/ _ _ — — N —
f3) = lim h R A L RETC WH A T TE Ry i

Definition 2.3 (Tangent Line). Let f: R — R. Assume f is differentiable at a. The
tangent line to the graph y = f(z) at the point x = a is the line with slope f’(a) which
passes through the point (a, f(a)). So, this line has equation
y=fla)+ (z—a)f(a).

Example 2.4. Let’s find the tangent line to the curve y = z? at x = 1. If f(z) = 22, then
f(1) =1, and we computed already f'(1) = 2. So, the tangent line is y = 1 + 2(z — 1).
Example 2.5. Let’s find the tangent line to the curve y = 7' at x = 3. If f(z) = 271,
then f(3) = 1/3, and we computed already f’(3) = —1/9. So, the tangent line is y =

(1/3) = (1/9)(z = 3).

Recall that if f is a constant function, we computed f’(0) = 0. And if f(z) = x, we
computed f’(0) = 1. Imitating these calculations leads to the following proposition.
Proposition 2.6.

e Suppose f(x) = ¢ where ¢ is a constant. Then f'(a) =0 for all a.

e Suppose f(x) = mx + b where m,b are constants. Then f'(a) = m for all a.

2.2. The Derivative as a Function. Let z € R, and let f: R — R. If f’(z) exists, then

. flath) = fx) df _ df d
1 = = —-——= — _ —
lim . flla) == -() = - f(2)
Note that f’(z) is also a function of .
Example 2.7. Let f(z) = z%. Then
St h) ) (et h)?—a?
/ _ _
e
2 2 _ .2
= lim = Torh e lim(2z + h) = 2z.
h—0 h h—0

So, f'(x) = 2x.
We can generalize this computation to arbitrary powers of positive integers.

Proposition 2.8. Let f(x) = 2™, where n is any constant. Then f'(x) = na™ ', (Ifn <1
and n # 0, then f'(0) is undefined.)

Proof. For simplicity, we assume n is a positive integer. Let a,b > 0. We need a generaliza-
tion of the identity a® — b* = (a — b)(a +b), or a® — b = (a — b)(a® + ab + b?).

a" —b" = (a—b)(a" ' +a"2b+a" b 4 - ab" 20,
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Using this identity with a = (z + h) and b = z, we get

, . fle+h)—flx) . (x+h)"—2a"
fiz) = Jim 2 B R —

h
=lim—((z+h)"+@+h)" v+ +(@+h)a"?+2" "
h—0 h
= lim ((z + R4 (x+h)" x4+ (R R4 ")
_)

="t x"_ll =na" L

Vv
n times

Example 2.9. If f(z) = 23, then f'(z) = 322
If f(x) = 23, then f'(x) = (2/3)x~1/3,
If f(z) =22, then f'(z) = —/22 V21,

Remark 2.10. There is a real number denoted by e ~ 2.718... such that %ew =e".
Proposition 2.11. Let f: R — R be differentiable on R. Then f is continuous on R.

Proof. Let a € R. Since f is differentiable at a, lim,_,, W exists. For x # a, write

f(z) — f(a) = M(Jﬁ —a). Then our limit law for products applies, yielding

r—a

lim (£(z) — f(a)) = lim (M@s - a>)

T—ra r—a Tr— a

_ (lim M) (lim(x - a)> = f(2)-0=0

T—a T —a T—a
So, lim, . f(z) = f(a), i.e. f is continuous at a. O

Is there a continuous function that is not differentiable at one point? In other words, does
the converse to Proposition 2.11 hold?

Example 2.12 (A Discontinuous Derivative). Consider the function f(z) = |z|, x € R.
Since f(xz) =z for z > 0, and f(x) = —z for 2 < 0, we see that f’(x) resembles the Heaviside

function
1 z >0
/ o )
f(x)_{—l, x <0

But what happens at zero? Observe,

f(O+h) - f(0)

hli{(l)l* h B h1i>I(I)1+ ho hli>r(€l+ =1
lim JO+h) = 1) = lim — = lim (—-1) = -1
h—0~ h h—0- h h—0~

So, limy,_, w does not exist, i.e. f/(0) does not exist and the converse of Proposition
2.11 is false. In fact, a stronger statement holds.

From the contrapositive of Proposition 2.11, we know that if f is discontinuous, then f is
not differentiable. There are even more ways for f to not be differentiable.

12



Example 2.13 (A Derivative Approaching Infinity). Let = € R, and let f(z) = /3.
For x # 0, f'(x) = (1/3)x2/3. So, lim, o f'(z) = oo, i.e. lim, o f'(x) does not exist. Also,
1'(0) does not exist.

2.3. Product Rule, Quotient Rule, Chain Rule.

Proposition 2.14 (Properties of the Derivative). Let f,g: R — R be differentiable
functions. Let ¢ € R be a constant.

o Licf(z)] = c f(x).
o L(f(x)+9@) = (L) + (£9())
o L(f(x)—g(x)) —d(%ﬂx)) — (9
e (Product rule) —x[f(x)g(w)] = f

)
d [f(ﬂf)} _ 9(@)f(x) = f(x)g'(x)
dz | g(z) (9(x))
e (Chain rule) If f,g: R — R are differentiable, then
d

T g@)] = f(g(z))g'(x).
Writing u = g(x), and y = f(g(z)), we can also write this as
dy _dydn
dr  dudzr
Remark 2.15. The quotient rule can be memorized with the mnemonic “low d-hi minus hi

d-low over low squared.”

Example 2.16.

d ., 4 2 1/2 d 4 d , d 15 d -
— = (— — 2(——a"/ —1) = 4a° 12,
dx(:c + 32 + 2277 4+ 1) (dxa: )+3(dxx )+ (dacx )+<dx ) =42" +6x+x
Example 2.17. Let f(z) = 22— 2z +1 = (z —1)%. Note that f'(z) =2z —2=2(z—1). So,
when z > 1, f’(x) > 0, and f is increasing. And when x < 1, f'(z) < 0, and f is decreasing.
Finally, when z = 1, f’(z) = 0, so f is neither increasing nor decreasing, and the tangent
line to f is horizontal.

Example 2.18. Let f(z) = 2° + x and let g(z) = /2 — 3. Then (d/dx)(f(z)g(z)) =
(d/dx)[(z® + x)(x¥/? = 3)] = (2% + ) (xz7V/2/2) + (x1/? — 3)(32% + 1).

Example 2.19. Let f(r) = 2% and let g(z) = 2'/2—3. Then (d/dz)(f(g(x))) = (d/dx)(x"/*—
3)% = 3(x/? — 3)%(1/2)x~ /2.

= 2241) L (z)—z-L (2241 2 —z(2x
Example 2.20. Let f(z) = z°5. Then f'(z) = Sy )d?ig)_’_l)gdz( U (J;é)ﬂ)g )
2342)-L (1)—1-% (2342 3z
Example 2.21. Let f(x) = 13;+2 Then f'(z) = Sk )d’fig)+2)§”( 2 _ (xiii;)z.
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Proof of the Product Rule. Let z,h € R. Then
fl@+h)g(z+h) — f(z)g(x)

h
_ fle+hg(x+h) = f@)g(x +h) + gl + h)f(z) - f(z)g(z)
h
_ flethglr+h) = f@)gle+h)  glth)f) - fl@)g@)
h h
:ﬂx+mﬂx+2—f@%+ﬂwﬂﬁ+2—9@)

Since ¢ is differentiable, g is continuous by Proposition 2.11, so that lim,_o g(x + h) = g(z).
Applying our limit laws (which ones, and how are they justified?), we get

flx+h)g(x+h) — fx)g(z)

lim

h—0 h
— <l1£>%g<x+ h)f(x—l— hli— f(w)) N <}g%f(x)g(x+ h})L—g(x)>
= g(z)f'(z) + f(z)g'(v).

Proof of the Quotient Rule. Let x such that g(x) # 0. We first show that (1/g(z)) is differ-

entiable, and
df 1] _ g §
i @) = ey @

Observe,

1( 1 1 )_1( g(x) g(x +h) >
h\glx+h) g(x)) h\glx)glz+h) glx)glz+h)
h g(x)g(z +h)’
Since g is differentiable, g is continuous by Proposition 2.11, so limj_,og(z + h) = g(z).
Using our quotient limit law,

1 1

li = .
ho glx+h) limpsog(z+h) g(x)

So, taking the limit of (#x), and using our limit law for products,

Eﬁégwim‘g@):(gf@%i@+m)@%R&ﬁiﬂ)zig%'

1 1
g(z+h) — g(z)
We can now conclude by using the product rule. Observe

2 - () o

8@ e g@)f @)~ fa)g @
= O GwE T D0y GO

Since limy_,o ¢ ( ) exists, 1/g(z) is differentiable, and formula (x) is proven.
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Proof sketch of the Chain Rule.

d%f(g(a:)) = lim flg(w + h)})L — f(g(x))
_ (g LY@ ) = f9@) [ 9(z +h) — g(2)
= (;ll—>0 glx+h) —g(x) ) (ilz—>0 h >
(

_ ( i AW~ f g)(l‘))) (hm g(x+h})L—g(I)) — Fg(2))d ().

h—0

O

Corollary 2.22. Let f,g: R — R be differentiable. Let n be a positive integer, let m,b be
constants. Then
o =(9(@)" =n(g(x)" g (x).
° %eg(w) = ¢(x)ed®,
o L f(mz+b)=mf(mz+D).
2.4. Higher Derivatives. Let f: R — R. Recall that f’ is also a function, and f’ > 0
when f is increasing, while f’ < 0 when f is decreasing. Also, if f(t) represents the position
of an object at time ¢, then f’(¢) is the velocity of the object at time ¢, since f'(t) is the rate
of change of the position over time. We can also consider the rate of change of the velocity
over time, which is known as acceleration. That is, we can consider the derivative (d/dt) f'(t)
of f'(t) to be the acceleration of the object at time t. We denote this second derivative as
f().
Definition 2.23 (Higher Derivatives). Let f: R — R. We define the second derivative
of f at the point z € R by
d2
() = (/) f'(x) = o5 (x).
We similarly define the third derivative of f by
d3
(@) = (d/da) () = 5 (2),

we define the fourth derivative of f by f@W(z) = (d/dx)f"(x) = d*f(z)/dz*, and so
on. In general, for any positive integer n, we define the n'* derivative of f by f(z) =

(d/dw) fD(z) = 75 f(2).

Example 2.24. Let f(x) = 2 — 3z + 1. Then f'(z) = 32%* — 3, f"(z) = 6z, f"(x) = 6,
f@(z) =0, fO®(z) = 0, and all higher derivatives of f are zero.

Example 2.25. Suppose you throw a baseball vertically in the air, with initial upward

velocity vy and initial position 7o (and we neglect air friction). Then, the position of the
baseball (in meters) at time ¢ (in seconds) is

r(t) = 1o + tvg — (9.8/2)t%.

Note that 7(0) = 7o, '(0) = vg, and r”(t) = —9.8. That is, for any time ¢, the acceleration of
the baseball (due to gravity) is constant. Also, all higher derivatives of r are zero: r"(t) = 0,
r®(t) = 0, and so on.
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2.5. Trigonometric Functions.

. di(sm(:v)) = cos(x), dgc(cos( r)) = —sin(x)

)
4 (tan(x)) = (sec(2))?,  (sec(w)) = sec() tan(z)

[
o L(ese(x)) = —ese(x) cot(x), L(cot(x)) = —(ese(x))?.
Proof. We first recall that limy, o 25 = 1 and limy o ()= = 0. Recall also that sin(x +

h) = sin(z) cos(h) + cos(z) sin(h). So, applying our limit law for addition, we get

lim sin(z + h) — sin(z) _ lim sin(x) cos(h) + cos(x) sin(h) — sin(z)

I (1 %) ooste) (f =5 )
= (sin(z)) - 0 + (cos(x)) - 1 = cos(x).

So, (d/dx)sinz = cos(x). Then, since cos(z) = sin(z + 7/2), we have (d/dz) cos(x) =
(d/dz)sin(x+m/2) = cos(z+7/2) = —sin(z). The remaining identities follow from the first
two. O

Example 2.26.

d d [sinx cos x(sinz) — sin z(cos )’
— tan(z) = — = 5
dx dx \ cosx cos®x
cos’ ¥ +sin’x 1 .
= 5 = —5— =sec .
cos? x cos? x

2.6. Implicit Differentiation. Suppose we have a curve satisfying some equation in = and
y. For example, consider the unit circle

4+ =1

We would like to find dy/dz, but maybe it is difficult or impossible to solve for y directly.
In such a case, we can use implicit differentiation. That is, we treat y as a function of z, so
that y = y(z). And we simply differentiate the equation x? + y? = 1 with respect to x. For
example, we get

2z + 2y(dy/dx) = 0.
So, if y # 0, we solve for dy/dz to get
@ o

dz ~ y’

For example, at the point (ﬁ, \[) the slope of the tangent line is dy/dx = —% = —1.

Example 2.27. Consider the equation z* + ysin(z) + y*> = 1. We want to find dy/dz. We
write y = y(z) and differentiate with respect to x to get

32% + sin(x)(dy/dx) + y cos(z) + 3y*(dy/dx) = 0.

Solving for dy/dx, we get
dy  ycosz+ 3a?
de  sinz + 3y2
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Example 2.28. Let 22 + y?> = 1. We showed that ¢/'(x) = —z/y, or yy = —x. We can
differentiate implicitly again to obtain d?y/dz?. Implicitly differentiating, we have yy” +
(¥')* = —1. So,

" . —-1- (y/)2 _

Y (':C) - - 3 - 3
Y ) Y Y

2.7. Related Rates. In a related rates problem, typically some quantity is changing, and
we would like to find the rate of change of another related quantity. These problems are best
understood with examples.

—1-2y oyt ]

Example 2.29. Suppose the radius of a circle is increasing at a rate of 1 meter per second.
What is the rate of change of the area of the circle, when the radius is 3 meters?

Let r be the radius of the circle. Then the area satisfies A = A(r) = mr?. So, considering
r to be a function of ¢, we have A(r(t)) = wr(t)%. So, dA/dt = 2nr(dr/dt) = 27r, since
dr/dt = 1. When r = 3, we therefore have dA/dt = 6m. Alternatively, we could have used
the Chain Rule in the form dA/dt = (dA/dr)(dr/dt) = 27r(dr/dt).

Example 2.30. Suppose a vertical cylindrical tank of radius 3 meters is draining water at
a rate of 3000 Liters per minute. How fast is the level of water dropping?

Let h be the height of water in the tank. The current volume of water in the tank is
V = 7r?’h = 97h cubic meters. Recall that 1000 Liters is one cubic meter. Considering
h to be a function of t, we have dV/dt = (dV/dh)(dh/dt) = 9n(dh/dt). We know that
dV/dt = —3 cubic meters per minute. So, dh/dt = —3/(97) = —1/(37) meters per minute.

Example 2.31. A 10 foot ladder is leaning against a wall. While touching both the wall
and the ground, the bottom of the ladder is sliding away from the wall at a rate of 1 foot per
second. What is the speed of the top of the ladder when the top is 6 feet off of the ground?

Let h be distance of the top of the ladder from the ground, and let r be the length from
the bottom of the ladder to the wall. The ladder makes a right triangle with legs r, h and
hypotenuse 10. So, from the Pythagorean Theorem, 72+ h? = 10? = 100. Differentiating this
equation with respect to ¢, we have 2r(dr/dt) + 2h(dh/dt) = 0. When h = 6, we have r = 8
since 2 + h? = 100. Also, we know that dr/dt = 1. So, we have 2(8)(1) + 2(6)(dh/dt) = 0.
So, dh/dt = —8/6 = —4/3 feet per second.

3. APPLICATIONS OF DERIVATIVES

3.1. Linear Approximation. When we look at a very small domain of a function f near
a point a, the function f looks like a linear function. This heuristic is expressed with the
following approximation

f(@) ~ f(a) + (x — a) f'(a).
That is, when x is near a, the quantity f(z) is approximately equal to the quantity f(a) +
(z —a)f'(a).

Definition 3.1. Let f: R — R and let a be a point in R. The linearization of f near a is
the following function of x:

L(z) = f(a) + (x — a) f'(a).

The expression



is referred to as the linear approximation of f at a. Note that y = L(z) is exactly the
equation for the tangent line to f at a.

Example 3.2. Let’s estimate sin(7/6 4 .01) using linear approximations. We approximate
sin(z) by L(xz) when a = 7/6. We have

L(z) = sin(n/6) + (x —7/6) sin’(7/6) = (1/2) + (z —7/6) cos(7/6) = (1/2) + (z —7/6)V/3/2.
So, using the linear approximation of sin(z) at 7/6, we have
sin(m/6 4 .01) ~ L(7/6 4 .01) = (1/2) + (.01)v/3/2.

Example 3.3. Let’s estimate 1/(9.9) using linear approximation. We approximate 1/x by
L(z) when a = 10. We have

L(z) = 1/10 + (z — 10)(—(10)"%) = 1/10 — (= — 10)/100.

So, we have

1/(9.9) ~ L(9.9) = 1/10 — (—.1)/100 = 1/10 + 1/1000 = %.

3.2. Extreme Values and Optimization.

Nothing takes place in the world whose meaning is not that of some mazximum

or minimum.
Leonhard Euler

Given a function f, it is often desirable to find the maximum or minimum value of f.
For example, if f(x) represents the profit obtained from setting the price = of a product, we
would like to maximize the profit function f. If f represents the energy or cost of an object
moving between two points, we would like to minimize this energy or cost. Many physical
principles can be rephrased as statements about minimizing energy or some other quantity.
For example, light always travels on the path of shortest length between two points. That is,
photons minimize the length over which they travel. And so on. Thankfully there are often
very general methods for maximizing or minimizing functions. Unfortunately, these general
methods do not always work. For example, suppose the mailman has 1000 houses to visit,
and he wants to visit them in the shortest amount of time. We do not yet know an efficient
way to find the path that takes the shortest amount of time.

Definition 3.4 (Extrema). Let D be a domain in the real line. Let f: D — R. We say
that f has an absolute maximum on D at the point ¢ € D if

flz) < f(e) for allz € D.
We say that f has an absolute minimum on D at the point ¢ € D if

f(z) > f(e) for allz € D.

We refer to the absolute minimum and absolute maximum values of f as the extreme
values or extrema of f. The process of finding the extrema of f is called optimization.

Since we would often like to find the extrema of a function f, let’s first look at some
examples where the extrema cannot possibly be found (since they don’t exist).

Example 3.5. Let f(z) = 1/x where f has domain (0,1). Then f has no absolute maximum
since lim, o+ f(z) = 0o. So, a discontinuity of a function can interfere with the existence of
extrema.
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Example 3.6. Let f(z) = 2% where f has domain [0,2]. Then the absolute maximum of f
is 4, which occurs at = 2. And the absolutely minimum of f is 0, which occurs at x = 0.

Let f(x) = x* where f has domain (0,2). Then the absolute maximum of f does not exist.
And the absolutely minimum of f does not exist either. Given any point ¢ € (0,2), there
are always points a,b € (0,2) with a < ¢ < b, so that f(a) < f(c) < f(b). So, an extreme
value cannot occur at any point in (0,2). Even though f is continuous, the open interval is
interfering with the existence of extrema.

In summary, if we want extrema to exist, it looks like we need our function to be continuous,
and we cannot consider a domain which is an open interval. Fortunately, being continuous
on a closed interval guarantees that the extrema exist.

Theorem 3.7 (Extreme Value Theorem). Let a < b. Let f: [a,b] — R be a continuous

function. Then f achieves its minimum and maximum values. More specifically, there exist
¢, d € [a,b] such that: for all x € [a,b], f(c) < f(x) < f(d).

The proof of this Theorem is outside the scope of this course; at UCLA it would be proven
in Math 131A.

Sometimes it is also desirable to find extreme values for a function when it is restricted to
a small domain. Such points are called local extrema.

Definition 3.8 (Local Extrema). Let f: R — R. We say that f has an local maximum
at the point ¢ € R if

flz) < f(e) for all points = in some open interval containing c.

We say that f has an local minimum at the point ¢ € R if
f(x) > f(e) for all points  in some open interval containing c.
Finding local extrema often reduces to the problem of finding critical points.

Definition 3.9 (Critical Point). Let f: R — R. We say that f has a critical point at
the point ¢ if f'(¢) =0 or f’(c) does not exist.

Example 3.10. Let f(z) = 2% Then f/(x) = 2x. So, f'(z) = 0 only when z = 0. That is,
x = 0 is the only critical point of f. Note that x = 0 is also the absolute minimum for f
with the domain R.

Example 3.11. Let f(z) = |z|. If z < 0, then f'(z) = —1. If z > 0, then f'(z) = 1. If
x = 0, then f’(x) is undefined. So, z = 0 is the only critical point of f. Note that z = 0 is
also the absolute minimum for f with the domain R.

Example 3.12. Let f(z) = 23. Then f’(z) = 32%. So, f’(z) = 0 only when z = 0. That is,
x = 0 is the only critical point of f. Note that x = 0 is neither a local maximum nor a local
minimum of f. So, a critical point is not necessarily a local extremum.

We have just seen that a critical point is not necessarily a local extremum. However, a
local extremum is always a critical point.

Theorem 3.13. Let f: R — R. If a local minimum or mazximum of f occurs at c, then c is
a critical point of f.
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Proof. Suppose ¢ is a local maximum of f and f’(c) exists. Then ¢ is an absolute maximum
of f on some open interval (¢ —b,c+b) where b > 0. Let h € (=b,b). Then f(x+h) < f(c),
since ¢ is a local maximum of f. If h > 0, we have (f(x + h) — f(¢))/h > 0. So,

flz+h) = fle)

: >0
hll>r(r)1+ h =0

If h <0, we have (f(z+h) — f(c))/h < 0. So,
i JEED =@
h—0~ h

We therefore have 0 < f/(¢) <0, so that f'(c) =0 (if f'(c) exists). O

This Theorem allows us to find absolute extrema on closed intervals.

Proposition 3.14 (Extreme Values on Closed Intervals). Let a < b. Let f: [a,b] - R
be continuous. Then the extreme values of f on |a,b] occur either at critical points of f, or
at the endpoints a,b of the interval |a, b].

Proof. Let ¢ be a point where an extreme value of f occurs, and assume ¢ # a and ¢ # b.
Then c¢ is a local extremum of f on (a,b). So, ¢ is a critical point of f by the Theorem
3.13. ]

Example 3.15. Let’s find the extreme values of f(z) = 2? — 3z + 1 on the interval [0, 2].
We have f'(z) = 2x — 3, so that f'(z) = 0 only when x = 3/2. So, the only critical
point of f occurs at x = 3/2. So, the extreme values of f must occur at elements of the
following list: 0,3/2,2. We now check the values of f at these points. We have f(0) = 1,
f(3/2)=1(9/4) —(9/2)+1=—-5/4,and f(2)=4—-6+1=—1.

So the absolute maximum of f on [0,2] is 1, which occurs at = 0. And the absolute
minimum of f on [0, 2] is —5/4 which occurs at = = 3/2.

Example 3.16. Let’s find the extreme values of f(x) = z—sin(z) on the interval [—7 /2, 7/2].
We have f'(z) = 1 —cos(x), so that f’(z) = 0 only when cos(x) = 1. When = € [—7/2,7/2],
we only have cos(z) =1 at x = 0. So, x = 0 is the only critical point of f. So, the extreme
values of f must must occur at elements of the following list: —7/2,0,7/2. We now check the
values of f at these points. We have f(0) =0, f(r/2) =7/2—-1, and f(—7/2) = —7/2+ 1.

So the absolute maximum of f on [—7/2,7/2] is m/2 — 1, which occurs at x = 7/2. And
the absolute minimum of f on [—7 /27 /1] is —7/2 4+ 1 which occurs at x = —7/2.

3.3. Mean Value Theorem. The following theorems allow us to better understand the
graphs of functions.

Theorem 3.17 (Rolle’s Theorem). Let f: [a,b] — R be continuous function that is dif-
ferentiable on (a,b) with f(a) = f(b) = 0. Then there ezists ¢ with ¢ € (a,b) and f'(c) = 0.

Proof. From the Extreme Value Theorem, let ¢ be an extreme value of f on [a,b]. If an
extreme value ¢ occurs in (a,b), then f'(¢) = 0 by Theorem 3.13. If not, both the max and
min occur at the endpoints a, b, which implies that f is a constant function. But if f is a
constant, then f’ = 0 everywhere. So, in any case, there is a ¢ € (a,b) with f'(¢c) =0. O
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Theorem 3.18. (Mean Value Theorem) Let f: [a,b] — R be continuous function that
is differentiable on (a,b). Then there exists ¢ with ¢ € (a,b) and

Fo =101

Proof. Let g(z) = f(z) — f(a) — (z — a)((f(b) — f(a))/(b— a)). Then g(a) = g(b) = 0. So,
by applying Rolle’s Theorem, Theorem 3.17, to g, there exists ¢ € (a, b) such that

0=g(0)= o)~ {U =T

That is, f'(c) = (f(b) — f(a))/(b—a). U

Remark 3.19. Rolle’s Theorem corresponds to the case f(b) = f(a) in the Mean Value
Theorem.

Example 3.20. Let f: R — R be a differentiable function such that f(0) = 0 and f(1) = 1.
Then there is some point « € (0, 1) such that f'(z) = (f(1) — f(0))/(1 —0) = 1.

Recall that a constant function has a derivative that is zero. The converse is also true,
though we technically did not know it to be true until now.

Corollary 3.21 (Functions with Zero Derivative are Constant). Let a < b. Let
f: (a,b) = R be differentiable with f'(x) =0 for all x € (a,b). Then there is a constant C
such that f(x) = C for all x € (a,b).

Proof. 1f there is some d € (a,b] with f(d) # f(a), then the Mean Value Theorem says that
there is some ¢ € (a,d) with f'(c) = (f(d) — f(a))/(d —a) # 0, a contradiction. So, we must
have f(d) = f(a) for all d € (a,b]. That is, f is a constant function. O

Corollary 3.22 (Two Functions with the Same Derivative Differ by a Constant).
Let a < b. Let f,g: (a,b) — R be differentiable with f'(x) = ¢'(x) for all x € (a,b). Then
there is a constant C such that f(z) = g(x) + C for all x € (a,b).

Proof. Apply the previous Corollary to the function h(z) = f(x)—g(x). Note that h'(z) = 0,
so h(z) = C for some constant C.

Example 3.23. Let’s find the function f such that f’'(z) = cosz and such that f(0) = 2.

Recall that (d/dx)sinxz = cosz. So, from the Corollary above, we must have f(z) =
sinz + C for some constant C. Since f(0) = sin(0) + C = C' = 2, we have C = 2. So,
f(z) = sin(x) + 2.

Example 3.24. Recall our example of an idealized trajectory. Suppose you throw a baseball
vertically in the air, with initial upward velocity vy and initial position 7y (and we neglect
air friction). Let r(t) denote the position of the baseball (in meters) at time ¢ (in seconds).
We know that the acceleration due to gravity is constant, so that r”(t) = —9.8. That is,
(d/dt)r'(t) = —9.8. The function —9.8¢ also satisfies (d/dt)(—9.8t) = —9.8. Therefore,
r'(t) = —9.8t + C for some constant C. Since r'(0) = vy = C, we conclude that r/(t) =
—9.8t +vg. Also, the function (—9.8/2)t? 4 vyt satisfies (d/dt)[(—9.8/2)t? +vot] = —9.8t +vy.
So, there is some constant C; such that r(t) = (—=9.8/2)t? + vt + Cy. Since 7(0) = C; = o,
we have found that

O

r(t) = (—9.8/2)t* + vot + 70.
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By examining the first and second derivatives of a function, we can say a lot about the
properties of that function. In the previous section, we saw that the zeros of the first
derivative tell us most of the information about the maximum and minimum values of a
given function. To see what else the derivatives tell us, see the JAVA Applet, graph features.
Below, we will describe several tests on the first and second derivatives that allow us to find
several properties of a function, as in this Applet.

Definition 3.25. Let f: (a,b) — R. If f(z) < f(y) whenever z < y with z,y € (a,b), we
say that f is increasing on (a,b). If f(x) > f(y) whenever z < y with =,y € (a,b), we say
that f is decreasing on (a,b). If f is increasing on (a,b), or if f is decreasing on (a,b), we
say that f is monotonic.

Proposition 3.26 (Increasing/Decreasing Test). Let f: (a,b) — R be differentiable.
o [f f'(x) >0 for all x € (a,b), then f is increasing on (a,b).
o [f f'(x) <O for all x € (a,b), then f is decreasing on (a,b).

Proof. We prove the first assertion by contradiction. Suppose f is not increasing but f’ > 0
on (a,b). Then there are z,y € (a,b) with © <y but f(z) > f(y). That is, f(y) — f(x) <O0.
By the Mean Value Theorem, there is some ¢ € (z,y) with f'(c) = (f(y)—f(z))/(y—x) <0, a
contradiction. We conclude that f is increasing. The second assertion is proven similarly. [J

Example 3.27. Consider f(z) = 2> — 3z + 1. We have f'(z) = 322 —=3 = 3(2* - 1) =
3(x+1)(z—1). So, when z < —1, f'(x) > 0 and f is increasing; when —1 <z < 1, f'(x) <0
and f is decreasing; and when z > 1, f’(z) > 0 and f is increasing.

Proposition 3.28 (First Derivative Test). Let ¢ € (a,b) be a critical point for a contin-
uous function f: (a,b) — R. Assume that f is differentiable on (a,c) and on (c,b).
o If f'(x) > 0 on (a,c), and if f'(x) < 0 on (¢,b), then f has a local mazimum at
T =c.
o [ff'(x) <0 on(a,c), and if f'(x) > 0 on (c,b), then f has a local minimum at x = c.
o If f'(x) >0 on (a,c)U(c,b), orif f'(z) <0 on (a,c)U(c,b), then f does not have a

local mazimum or a local minimum at © = c.

Proof. Suppose f'(x) > 0 on (a,c) and f'(x) < 0 on (¢,b). Then f is increasing on (a,c)
and decreasing on (c¢,b). So, f'(c) is a local maximum. The other assertions are proven

similarly. 0]
Example 3.29. Consider again f(x) = 2® — 3z + 1. Recall that when z < —1, f/(z) > 0;
when —1 <z < 1, f'(z) < 0; and when z > 1, f'(x) > 0. So, x = —1 is a local maximum,

and z = 1 is a local minimum.

Example 3.30. Let f(z) = 2. Then f'(x) = 322. So, f'(0) = 0, but f'(x) > 0 for = # 0.
So, 0 is not a local extremum of f.

3.4. Graph Sketching.

Definition 3.31 (Concavity). Let f: (a,b) — R be a differentiable function.

e If f’ is increasing on (a,b), then f is concave up. That is, if y(z) = ax + b denotes
a tangent line to f, then f(z) > y(x) for all x € (a,b).

o If f’ is decreasing on (a,b), then f is concave down. That is, if y(z) = ax + b
denotes a tangent line to f, then f(x) < y(z) for all x € (a,b).
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Example 3.32. Let f(z) = 22. Then f'(x) = 2z is increasing, so f is concave up.
Let f(z) = —2?. Then f’(x) = —2u is decreasing, so f is concave down.

If f” exists, and if f” > 0 then [’ is increasing, and if f” < 0 then f’ is decreasing. We
therefore get the following test.

Proposition 3.33 (Concavity Test). Let f: (a,b) — R be a differentiable function such
that f" exists on (a,b).

o If f"(x) >0 on (a,b), then f is concave up on (a,b)

o If f"(x) <0 on (a,b), then f is concave down on (a,b)

Definition 3.34 (Inflection Point). Let f: (a,b) — R be a differentiable function and let
c € (a,b). If f is concave up on one side of ¢, and if f is concave down on the other side of
¢, then c is called an inflection point. If f” exists on (a,b), then an inflection point occurs
when f” changes sign.

Example 3.35. Let f(x) = x3. Then f”(x) = 6z, so f” changes sign at x = 0. That is,
x = 0 is an inflection point of f. Also, f”(x) < 0 when x < 0, so f is concave down when
x < 0. Similarly, f”(xz) > 0 when z > 0 so f is concave up when z > 0.

Proposition 3.36 (Second Derivative Test). Let f: (a,b) — R. Let ¢ € (a,b). Assume
that f'(c) and f"(c) exist. Assume also that f'(c) =0, and that " is continuous near c.

(1) If f"(c) > 0, then f has a local minimum at c.
(2) If f"(c) <0, then f has a local mazimum at c.
(3) If f"(c) =0, then f may or may not have a local extremum at c.

Example 3.37. Let f(x) = 2% Then f’(0) = 0 and f”(0) = 2 > 0. So, f has a local
minimum at z = 0.

Let f(z) = —2%. Then f’(0) = 0 and f”(0) = —2 < 0. So, f has a local maximum at
x=0.

The functions f(z) = x4, f(z) = —z* and f(z) = 2? all satisfy f/(0) = 0 and f”(0) = 0,

though they have a local minimum, maximum and neither, respectively.

Proof. We only prove (1), since (2) is proven similarly. Since f” is continuous near ¢, the
definition of continuity says that there is a small interval containing ¢ where f”(z) > 0. Then
the Concavity Test, Proposition 3.33, says that f(c+ h) > f'(¢c)h + f(c) for all sufficiently
small h. Since f’(c) =0, we have f(c+ h) > f(c), so ¢ is a local minimum of f. O

Exercise 3.38. Consider the function f(z) = 2®/3 — z — 1. Identify all local maxima,
minima and inflection points. Identify where f is increasing and decreasing. Identify where
f is concave up and concave down. Then, sketch the function f.

We have f'(z) = 2> — 1= (x+1)(z — 1) and f"(x) = 2x. So, x = 0 is an inflection point
and x = 1,—1 are critical points. The function f is increasing when x < —1, decreasing
when —1 < z < 1 and increasing when x > 1. So, z = —1 is a local maximum and x = 1 is a
local minimum. Alternatively, f”(—1) < 0 and f”(1) > 0, which again implies that z = —1
is a local max and x = 1 is a local min. Lastly, f”(z) < 0 when z < 0 and f”(x) > 0 when
x > 0. So, f is concave down when z < 0, and f is concave up when x > 0.

Definition 3.39 (Asymptotes). Let f be a function and let L be a constant. A horizontal
line y = L is called a horizontal asymptote of f if lim, ,,, f(z) = L or if lim, , ., f(z) =
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L. A vertical line x = L is called a vertical asymptote if lim, ,;+ f(z) = +oo or if
lim, ;- f(z) = +o0.

Example 3.40. Let’s identify all asymptotes of the function f(x) =1/x.

We have lim, .+, f(z) = 0. Therefore, y = 0 is a horizontal asymptote of f. Also,
lim, ,o+ f(x) = 0o and lim,_,o- f(z) = —o0. So, = 0 is a vertical asymptote. At all other
points, f is a bounded function, so these are the only asymptotes of f.

To sketch the graph of the function f, note that f'(z) = —z~2 and f"(z) = 2273, So, f
is concave up when x > 0 and concave down when x < 0.

3.5. Applied Optimization. Optimization problems occur in all applications of mathe-
matics. Here is a simplified example.

Example 3.41. Suppose we want to design a cylindrical soda can with a minimal amount
of material. The can’s volume is 1 liter (1000 cm?), and it will be made from aluminum of
a fixed thickness. What dimensions should the can have?

Suppose the can has radius r and height A where r,h > 0. Then the volume of the can
is 7r2h. And the surface area of the can is 27r? + 27rh. So, we have 7r2h = 1000, or
h = 1000/(7r?). And we want to minimize the surface area

f(r) =2mr® +2000/r, > 0.

We look for critical points of f. We have f'(r) = 4mxr — 2000r—2. So, f'(r) = 0 when
4rr = 200072, i.e. when r® = 500/7, so that r = (500/7)"/3. So, a critical point occurs
with radius r = (500/7)'/3 and height h = 1000/ (7r?) = 1000/ (7'/3(500)%3) = 2(500/7)'/3.
That is, the critical soda can has a height which is twice its radius.

Note that f'(r) < 0 when 0 < r < (500/7)"/% and f'(r) > 0 when r > (500/7)/3. So, the
value r = (500/7)/? is an absolute minimum of f.

Note also that this optimization problem has no absolute maximum, since lim,_,o f(r) = 00
and lim, o, f(r) = oco.

An algorithm for solving optimization problems can be described as follows.

Algorithm 1.

e Introduce variables, and introduce a function f to be optimized.

e Identify the domain of the optimization. Then, apply our usual optimization proce-
dure:

e Find critical points of f in the domain of f.

e Test the critical points of f, and check the endpoints of the domain of f.

e Choose the largest and smallest values of f from these points.

Example 3.42. Find two numbers which sum to 50 and whose product is a maximum.

Given two numbers z, y such that z 4+ y = 50, we want to maximize the product xy. Since
y = 50 — z, we want to maximize f(z) = zy = z(50 — z) over all of x € R. We check for
critical points. We have f(x) = —22+50x, so f'(z) = —2x+50. And f'(x) = 0 when z = 25.
So, the only critical points occurs when z = 25. At this point, we have y = 50—z = 25. Note
that f/'(x) > 0 when z < 25 and f'(x) < 0 when x > 25. So, f has an absolute maximum
at x = 25, and it is unnecessary to check the endpoints of the domain. Note however that
lim, 1o f(2) = —00, so f has no absolute minimum.
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3.6. Newton’s Method. From Algorithm 1, we see that most of the work of optimizing a
function involves finding = such that f’(z) = 0. In practice, the function f’(x) is sometimes
too complicated, and the equation f’(z) = 0 may be difficult to solve for x. Thankfully,
Newton came up with a general method for finding the zeros of general differentiable func-
tions. This procedure does not work all the time, but it works enough of the time that it is
quite useful. It is used by your calculator, for example, whenever you try to find the zeros
of a function.

Algorithm 2. Newon’s Method, a general way to find the roots of a differentiable function
f:R—=R.
(1) Choose any point zy € R.
(2) Compute the tangent line of f at zo: y(z) = f'(x0)(x — x0) + f(z0).
(3) Find z; such that y(x;) = 0. This is the intersection of the tangent line y(z) with
the z-axis. Note that x; satisfies

o — f (o)
f'(xo)
4) Return to step (2), but replace zy with z1. At the n!* iteration of the algorithm,
g

compute the tangent line of f at z, in step (2), and then find an z,.; in step (3)
which is a zero of the tangent line. So, in general we iterate the following equation.

n

Example 3.43. Let’s find the first few iterations of Newton’s Method when f(z) = 2? — 3
with g = 1. Then f'(z) = 2z, and

fao) . f) =2
fla) M) T2
fa) o, J2 5 1 o

) T 4

f(x2) f(1/4) 1/16
T3 = T F () 7/4 F(7/a) 7/4 7 7/4 —1/56 = 97/56.
And so on. It looks like x,, is getting close to the positive zero of f. That is, z, is getting
close to a value x > 0 where f(z) = 0, i.e. where 22 = 3, i.e. where v = v/3 ~ 1.7320508....
Indeed, already at the third iteration we have x3 = 97/56 ~ 1.73214...

r1 =

Ty = Ty —

To =X

Remark 3.44. To see an illustration of Newton’s Method, see the Applet, Newton Example.
In many examples, it only takes a few iterations of the algorithm to get a good approximation
for a zero of f.

Remark 3.45. If we ever find a point in step (2) where f’ = 0, the algorithm will be unable
to continue. Actually, if we repeatedly encounter points where f’ is close to zero, then
Newton’s Method will not work very well. There are a few ways to adjust the function f or
the starting value xy to deal with these issues, so that a suitable modification of Algorithm
2 can find the zeros of many functions.

25


http://de2de.synechism.org/dart/newton/web/newton.html

4. THE INTEGRAL

Along with the derivative, the integral is one of the two most fundamental concepts that we
find in Calculus. Unfortunately, the formal definition of the integral is more complicated than
that of the derivative. However, we should still try to understand these formal definitions,
since the ideas that go into the construction of the derivative and the integral are pervasive
throughout mathematics and the sciences. In the case of the integral, the quantity fab f(x)dx
intuitively represents the area under the curve y = f(z) on the interval [a, b] (if f is positive
on the interval [a, b]).

Ultimately, we want to find the area under any given curve. The strategy is similar in
spirit to our construction of the derivative. We would like to perform some process that
requires infinitely many steps, and as noted by Zeno, doing so does not make any sense. To
resolve this issue, we approximate some infinite thing by a finite number of steps. And we
hope that, as our approximation gets “finer,” some number will approach some limit.

Using this paradigm, we first approximate the area under a given curve by a finite number
of rectangles. We know the area of a rectangle, so we therefore know the area of several
non-overlapping rectangles. We then want to make our approximation of rectangles finer
and finer, and then take some limit. If we complete this process in the right way, and if our
curve is nice enough, then this limit will exist. Unfortunately, the limit of the sum of the
areas of these rectangles may not always exist, so we have to be careful in our construction
of the integral. So, although the notation below and the details may appear pedantic or
unnecessary, these things really are necessary in order to get a sensible answer in the end.

4.1. Summation Notation. Below, we will be using summation notation often.
Definition 4.1 (Summation Notation). Let y;,ys, ..., y, be a set of numbers. We define
wi=uityt ot Yo+

i=1
Example 4.2. > " i=14+2+3+ -+ (n—1)+n=n(n+1)/2.
Example 4.3. > " i*=1444+94 -+ (n—12+n*=n(n+1)(2n+1)/6.
Example 4.4. If y; = (—1)%, then

u —1 ,ifnisodd
=l l—l4+l—1+ -+ (=) (=)= o
p 0 , if n is even.
Proposition 4.5 (Properties of Finite Sums). Let yy,...,y, be a set of numbers, and

let z1,..., 2z, be a set of numbers. Let ¢ be a constant. Then

o Y (Wit az) = Qv+ (i i)
b 2?21(3/1 —z) = (Z?:l Yi) — (ZL zi).
b Z?:1 CYi = 02?21 Yi-

o> " c=cn.

Example 4.6. >0 (3t —i%) =301, 4) — (O, ).



4.2. The Definite Integral. Let a < b. Let f: [a,b] — R be a positive function. We would
like to compute the area under the curve of f on the interval [a,b]. We will eventually do
this, but for now we will settle for an approximation. We will first approximate this area by
a set of rectangles.

Definition 4.7 (Riemann Sums). Let a = 29 < 11 < 23 < ... < Tp_1 < x, = b. The
Riemann sum of f on [a, b] evaluated at the right endpoints of the rectangles is the quantity
Z(l‘z — zi-1) f ().

i=1
The Riemann sum of f on [a,b] evaluated at the left endpoints is the quantity
Z(Iz’ —zi1) f(Ti).
i=1

The Riemann sum of f on [a, b] evaluated at the midpoints is the quantity

i(xi —w)f (%) .

=1

In each case, we are approximating the area under the curve f by a set of rectangles. For
the Riemann sum evaluated at the right endpoints, the quantity (x; — z;_1) is the width of
the i'" rectangle, and the quantity f(x;) is the height of the i** rectangle, where 1 < i < n.

Each of these Riemann sums provides a good approximation to the area under the curve
of f when n is large. In fact, some of these Riemann sums even have a limiting value as
n — 00, if we make the right choices for the points zg, ..., x,.

Example 4.8. Let f(z) = x and consider the interval [0, 1]. We know that the area under
the curve of f on [0,1] is a triangle of area 1/2. Let’s show that the Riemann sums defined
above converge to 1/2 as n — oo, if we choose g = 0, 1 = 1/n, 29 = 2/n, x3 = 3/n, ...,
ZTp_1 = (n—1)/n, x, = 1. That is, we have z; = i/n for all i € {1,...,n}. With these
choices, we always have x; — x; 1 =i/n— (i —1)/n = 1/n, for any i € {1,...,n}. So, the
Riemann sum evaluated at the right endpoints is equal to

_Inn+1) n+1
Z(xi—xil Z f(i/n) = Zfz/n ;/ T

i=1

So,
< n+l 1
dn, 3 (o1 —wi-)f (@) = Jim == =
Similarly,
& 1
nlgrolo ;(mz —zi1)f(zia) = )
and



That is, each Riemann sum approaches the area under the curve, as n — oo. More precisely,
the Riemann sum approaches the area under the curve, as the maximum spacing between
the points goes to zero. That is, as max;—1,_,(z; — z;_1) — 0, the Riemann sum approaches
the area under the curve.

Example 4.9. Let f(x) = z? and consider the interval [0, 1]. Let’s show that the Riemann
sums defined above converge as n — oo, if we choose 9 =0, z1 = 1/n, 9 = 2/n, 3 = 3/n,
ey Ty = (n—1)/n, x, = 1. That is, we have z; = i/n for all i € {1,...,n}. With these
choices, we always have x; — x;_y = i/n— (i — 1)/n = 1/n, for any i € {1,...,n}. So, the
Riemann sum evaluated at the right endpoints is equal to

n n

S = w0 fw) = S0 1) = 37 flafn) = 3R

- 1n(n+1)2n+ 11):_ (n+1)(2n + 1)'

n 6n2 6n?
So,
i z”:( V) = i (ntD@n+l) 2743041 2 1
im x; —xi_1)f(x;) = lim =lim —=-=—.
n—o0 < ! n— 00 6n2 n— 00 671/2 6 3

1=1

That is, as max;—y,__,(z; — ;1) — 0, the Riemann sum approaches the the value 1/3, which
is presumably the area under the curve of f on the interval [0, 1].

We recommend seeing this picture in action with the help of the JAVA applet, Riemann
sums.

Definition 4.10 (Riemann Sums). A general Riemann sum of f on [a,b] is defined as
follows. Let a = 29 < 21 < 29 < ... < xp_1 <z, =b. Let ¢1 € [xo,21], 2 € |21, 22, ..
Cn € [Tn_1,T,]. A general Riemann sum is any sum of the form

)

n

Z(% —xi-1) f(ci).

i=1
Example 4.11. Choosing ¢; = z;, or ¢; = x;_ or ¢; = (x;_1+x;)/2 yields the right endpoint,

left endpoint, and midpoint Riemann sums, respectively.

Definition 4.12. Let a < b, and let a = 29 < 17 < -+ < 2,1 < T, = b. The maximum
width of the rectangles of the Riemann sum is denoted by

max (:CZ — .Z'ifl).
i=1,...,n

This number is the maximum of the numbers (x; — x¢), (x2 — x1), (x5 — 22), ..., (T, — Tp—1)-
If max;—1__,(z; — x;-1) is small, then the partition is very fine. More specifically, all of our
approximating rectangles will have small width. In order to construct the integral, we will
let max;—y __,(z; — z;,-1) approach zero.

We can finally define the Definite Integral.
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Definition 4.13 (The Definite Integral). Let f: [a,b] — R. If the following limit exists,
we say that f is integrable on [a, b].
b n
/ f(z)dz = lim Z(xz —z;1)f(c)-
a ( max (z; — zi1)) = 0 =
Remark 4.14. We now describe the limit appearing in the Definite Integral more explicitly.
For lim( max (z; — 7)) = 0 Yory(z;—x_1) f(c;) to exist and be equal to I, we mean the
following. For every € > 0, there exists a 6 = d(¢) > 0 such that: for any choices of a = z¢ <
xy < --- <z, =>b,and for any choices of ¢; € [z;_1,;], as long as max;—; __,(x; —x;-1) < 0,

we have
n

Z(‘xl —x;)f(e) —I| <e.

=1

That is, for the limit hm( max (2 — ;1)) = 0 Yoiq (@i — xi21) f(¢;) to exist, we require
i=1,...,n
that any sufficiently fine partition has a Riemann sum that is close to the value I.

Remark 4.15.

e We refer to fab f(z)dz as the integral of f on [a, b].
e The function f inside the integral is called the integrand.
e The numbers a, b representing the interval [a, b] are called the limits of integration.

In the integral f; f(z)dz, the variable z is just a placeholder, which has no intrinsic
meaning. For example, we could just as easily write the integral of f on [a,b] as

fabf(z)dz or fabf(s)ds.
Remark 4.16 (Geometric Interpretation of the Integral). If f: [a,b] — Rhas f(z) >0
for all x € [a,b], then f;f(x)dx represents the area under the curve of f. If f: [a,b] - R
has some negative values, then ff f(z)dz represents the signed area under the curve of f.

That is, fab f(z)dz is the area enclosed by f lying above the z-axis, minus the area enclosed
by f lying below the z-axis.

Example 4.17. Let f(z) = z. Then fjl f(z)dz = 0, since the area of f above the z-axis is
a triangle of area 1/2, and the area of f below the z-axis is also a triangle of area 1/2, so

[ f@)yde=1/2—-1/2=0.

For a function f: [a,b] — R, we do not yet have a way to determine whether or not

fab f(z)dzr exists. Thankfully, if f: [a,b] — R is continuous, then fj f(z)dz exists, as the
following very important theorem shows. However, there are situations where the integral of
a function does not exist. We will investigate these situations more below. If we understand
when integrals do not exist, then our understanding of the integral is improved, just as an
understanding of nonexistence of derivatives improves our understanding of derivatives.

Theorem 4.18 (Continuous Functions on Closed Intervals are Integrable). Let
a<b. Let f: [a,b] = R be continuous. Then f:f(x)dx erists.
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Remark 4.19. We should also mention that the closed interval condltlon is crucial in The-
orem 4.18. For example, f(z) = 1/z is continuous on (0, 1), but fo z)dz does not exist.

Since a composition of continuous functions is continuous, and a product of continuous
functions is continuous, we have the following Corollary of Theorem 4.18.

Corollary 4.20. Let f,g: R — R be continuous. Then f flg(z))dz exists, and also
f f(x)g(x)dx ezists.

Pr0p051t10n 4.21 (Properties of the Definite Integral). Let a,b,c,k € R, a < b < c.
Let f g: R — R be integrable on any closed interval.

f f(z)dz = — [ f(z)dx

0) If m < f <M, then m(b—a) < [* f(z)de < M(b— a).
1) | f) f(x)da] < [)]f(x)| da.

12) [y f@)de = lim, o 30, 2 F (£)

f f(z)dr = lim, Zz 1 ( ) ( Z(b;a)>'

Remark 4.22. Property (12) can be used to evaluate certain infinite sums.

(1)
2) [, fa )d:c =0.
3) [P kdr =k(b—a).
(4) ff[f(x) + g(z)]dr = ff f(x)dx + ffg(x)dx
(5) [V[f(2) = g(@))dz = [} f(x)dz — [7 g(x)de.
(6) [, kf(@)de =k [ f(x)de
(7) [S fla)de = [} f(2)dz + [f f(a)da.
(8) If f >0, then [° f(z)dx >0
9) If f > g, then [* f(z)dx > [ g(z)dx
10)
)
)
)

13

All of these properties can be proven in similar ways, by going back to the definition of
the integral. Let’s just prove property (4) for the sake of illustration.

Proof sketch of (4). Let a = xg < 21 < -+ < xp_1 < x, = b and let ¢; € [x; 1, x;] for each
ie{l,...,n}. Then

Z(ﬂfz —xi-1)(f(e) + 9(ci)) = Z( —xi1) f(e) + Z —xi-1)9(ci).

i=1 i=1

So, letting max;—1 . (x; — x;_1) — 0, and using the limit law for sums,

.....

n

| (@) + gl = i > (o w6 + 9(e)

n n

_ lim S (@i — ia) fle) + lim > (i —zi1)g(c)

( ‘max (CL’Z — ZL’Z'_1>) — 0= ( max (l’z — ZEZ'_1>) — 0521

i=1,...,n i=1,...,n

b
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Example 4.23. Suppose fo r)dr = 3 and fo r)dr = —2. Then fo )+ g(x))dr =
2:1,fO 2f(x ())dsz 3—(—2)—8andf2 r)dr = —3.

Example 4.24. Let’s use property (10) to estimate the integral f02 /1 +sin(x)dx. Since
—1 < sin(z) <1, we have 0 < 1 4+ sinz < 2. So, 0 < /I +sinz < /2, and by property
(10), we have

2 2
OS/ \/1+sinxdx§/ V2dx = 2V/2.
0 0

4.3. The Indefinite Integral. So far, we know that a continuous function can be integrated
on a closed interval. But we cannot yet compute very many integrals. We now head towards
our goal of computing many integrals.

Recall Corollary 3.22: if f/'(x) = ¢'(z) for all x € R, then there is a constant C' € R such
that f(z) = g(x) + C.

Definition 4.25 (Antiderivative, Indefinite Integral). Let f: R — R. We say that F’
is an antiderivative of f if F'is differentiable, and for all x € R we have F'(x) = f(x). We
then use the notation

[ t@de=Fw)+

where C is any constant. We refer to [ f(x)dz as the indefinite integral of f.

Remark 4.26. The indefinite integral is not associated to any interval. Also, while the
definite integral is a number, the indefinite integral is a function. The definite and indefinite
integral are related to each other, as we will see below, but they are not quite the same.

Remark 4.27. Let F, G be antiderivatives of f, so that F'(z) = G'(z) = f. From Corollary
3.22, there must be a constant C' such that F'(z) = G(x)+C'. So, if we have one antiderivative
F of f, then the set of all antiderivatives of f is given by the set of all F(z) + C, C' € R.

Example 4.28. Let f(x) = 22, Then the set of all antiderivatives of f is given by F(x) =
(1/3)2* +C, C € R.

Example 4.29 (Idealized Trajectories). Recall our example of idealized trajectories.
Suppose I throw a ball straight up in the air at a velocity vo m/s, with initial vertical position
so meters, ignoring air friction. Suppose the ball has mass m kg. The only acceleration that
acts on the ball is a constant acceleration due to gravity, of roughly a(t) = —9.8 m/s?, where
t is the time after the ball is thrown, measured in seconds. Taking the antiderivative and
using Remark 4.27, the ball must have velocity v(t) = —9.8t + C. Since v(0) = vy, we
conclude that v(t) = —9.8¢ 4+ vy. Taking the antiderivative again and using Remark 4.27,
the ball must have position s(t) = —(9.8/2)t* 4+ vt + C. My initial vertical position is sg, so
we conclude that the ball has position

s(t) = —4.9t* + vot + $o.

For now, antiderivatives may seem a bit strange. Also, if we have a function f, how can we
know whether or not an antiderivative exists? It turns out that, if f is continuous, then you
can create an antiderivative of f by measuring the areas under the curve f. So, calculating
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areas under a curve has the “opposite” effect of taking a derivative of a curve. This statement
will be made more precise when we state the Fundamental Theorem of Calculus. For now,
we give a precise description of how to find the area under a curve, via the Riemann integral.

Theorem 4.30 (Indefinite Integral of Powers of x). Let n # —1. Then

mn—i—l
/x"dx = +C.
n+1

Proof. Recall that £ (£ + C) = 2an = o7, O

n+1 n+1
Example 4.31. [23dx =2*/4+C.  [232dz = (2/5)2°2 + C

Proposition 4.32 (Properties of the Indefinite Integral). Let ¢ be a constant and let
fig: R—R.

o [[f(z)+g(x)lde = [ f(x)de+ [ g(x)dz.
o [[f(x) —g(@)ldz = [ f(z)dz — [ g(x)dz.
o [cf(x)dx =c [ f(x)dx.

Example 4.33.

o [sinxdr=—cosz+C.
o [coszdr =sinz+ C.
o [sec?xdx =tanz + C.
o [secxtanzdr =secx + C.
o [efdr=e"+C.
o [etdy = teertd 4 O e £ 0.
4.4. The Fundamental Theorem of Calculus. We can finally describe the precise man-

ner in which differentiation and integration “cancel each other out.” The following Theorem
will also allow us to compute many integrals.

Theorem 4.34 (Fundamental Theorem of Calculus). Let a < b.

(i) Let f: [a,b] — R be differentiable. Assume also that f': [a,b] — R is continuous.
Then

b
| = 10) - 1@,
(ii) Let f: [a,b] = R be continuous. For x € (a,b) define g(x) = [ f(t)dt. Then g is an
antiderivative of f, i.e.

d xT
@) = 5 [ = s
Remark 4.35. Part (i) of Theorem 4.34 can be used to evaluate many different integrals.
For example, we have the following two corollaries.
Corollary 4.36 (Integrating Powers of z). Letn € R, n # —1, 0 <a <b. Then

b 1 w=b 1
/ ZL’ndlL‘ — {L‘n+1 — _(bn+1 . an—&—l)‘
a n+1 e N1
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Proof. Let f(z) = (1/(n+1))z"™'. Note that f'(z) = 2", and then apply the Fundamental
Theorem, Theorem 4.34(i) to get

/ i —/ e — fla) = 0 - )

Remark 4.37. What happens if we allow a = -1, b=1, n < 07
Example 4.38.

/lxd:v—[ 2/2)"=0 =1/2 -0 =1/2.
/1:7020[:)3—[ 2/3]"=8 =1/3 -0 =1/3.
/3(x4—a:2)dx:[x5/5+:c =2 =3°/5+31-1/5—1.

/2
/_ , cos(x)dx = [sinx]izi/:/z = sin(n/2) —sin(—7/2) =1 —(—1) = 2.

Example 4.39.

T

cos(t)dt = cos(z).

dz J,

d [~ 1 . 1

de Jy 1+t27 1422
d (v
a |, cos(t)dt = 2z cos(x?).

For the last example, write f1$2 cos(t)dt = f(g(x)), where f(y) = [} cos(t)dt and g(z) = 2?.
Then the Chain Rule says (d/dz)f(g(z)) = f'(g9(x))d' (x).

Proof of of Theorem /.34 (i). Suppose we have a partition of [a,b]. That is, we have
Q=T < T <Xy < < Tp1 <z, =b.
Then
f(b) = fla) = f(za) — f(zo)
= flan) + [=f(@n-1) + fland)] + -+ [ f($1)+f( 1)] = f(@o)
= [f(zn) = f(@n-1)] + [f(zn1) — f(l’n )+ + [f(@2) = fla)] + [f(z1) — flzo)]

= Z Y
By the Mean Value Theorem, there exists ¢; € [x;, x;_1] such that, for i =1,... n,

(i —2i1) f(e) = f(2) = f(zioa).
Therefore,
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The right side of (%) is a Riemann sum for f’. Since f’ is continuous, we know that f’ is
integrable. So, letting max;—; _,(x; — x;—1) — 0 and applying the definition of the definite
integral, (*) becomes our desired equality:
b
= / 1 (t)dt

Proof sketch of Theorem /.34 (ii). We treat the difference quotient directly. Let h € R. Then

(:B—l—h —g(z / £t

For simplicity, assume that f is differentiable. Then, using the linear approximation of f for
values of ¢ near the point z, we have f(t) = f(z) + f'(z)(t — z), so

rera= e [f<95>+f’(f6>(t—w)]dt=%f(x>+f’(x)% [ o

= Fa) + F)rl - /A = F@) + @)L = f) )2

So, letting h — 0 we get limy,_,q w = f(x). O

O

4.5. Integration by Substitution.

Theorem 4.40 (Change of Variables/ Substitution). Let a < b, ¢ < d. Let g: [a,b] —
e, d] be differentiable. Also, suppose that f: [c,d] — R is continuous. Then

g(b)
/ flg x)dr = f(t)dt

g(a)

Or, in indefinite form, with u = g(x), we have

[ o )ds = [ fudu

Example 4.41. The following integral may appear difficult if not impossible to evaluate,
but Theorem 4.40 allows us to evaluate it. For z > 0, let f(t) = e, and let g(x) = 1/x.
Applying Theorem 4.40 and then Theorem 4.34(i),

2 1/:p 9(2) 1/2 1 d
/ / flg :—/ etdt:—/ etdt:/ —eldt = e — \/e.
g9(1) 1 172 dt

Example 4.42. Let f(t) = cos(t), and let g(x) = 2?. Applying Theorem 4.40 and then
Theorem 4.34(i),

/4 /4 9(v/7/4) /4
/0 x cos(x?)dx = %/0 f(g(x)d (x)dx = %/g(o) f®)dt = %/0 cos(t)dt
w/4
= %/0 %Sln(t)dt = %(sin(w/él) —sin(0)) = ;\é_ = \Z_
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Example 4.43. Let u = 2> + 1 so that du = 2xdz, i.e. zdx = (1/2)du. Then

z 1 1 1
T dr == 2= -yt
/(g:2+1)2 . 2/“ “= o 2(2z2 + 1)

And indeed, we can verify that ——+ 2(z21+1) = (2($§i1))2 = (xzil)z-

Example 4.44. Let u = x + 1 so that du = dx. Then

/x\/a: + ldx = /(u — Duldu = /u3/2 — udu
= (2/5)u”? — (2/3)u*? = (2/5)(x +1)*? = (2/3)(x + 1)*"%.
And we can verify that £[(2/5)(z + 1)*/% — (2/3)(z + 1)3?] = (z + 1)3? — (x + 1)'/? =
(x—irl—l)\/x—irl—a:\/x—l—

Proof of Theorem 4.40. For a < x < b, define F(z) = [” f(t)dt. From the Fundamen-
tal Theorem of Calculus, Theorem 4. 34(11) F'(x) = f(z). Also, by the Chain Rule,
(d/dx)[F(g(x))] = F'(9(x))g'(x) = F(9(x))g'(x). Note also that f(g(x))g'(x) is integrable
by Corollary 4.20. Putting everything together, we have

" d
/ f(g x)dr = / %[F(g(x))]dw = F(g(b)) — F(g9(a)), by Theorem 4.34(i)
9(@) g
:/ y —F(z)dx, by Theorem 4.34(i)
gv) AT
g(a)
= f(z)
g(b)

5. APPLICATIONS OF THE INTEGRAL

5.1. Areas Between Curves.

Definition 5.1. Let a < b. Suppose f,g: [a,b] — R satisfy f(z) > g(x) for all z € [a,].
We define the area between the curves f and g on [a,b] to be

/ (f(2) - glx))d.

For general functions f, g, we define the area between the curves f and g on [a,b] to be

/ (@) — g(x)] d.

Example 5.2. Let f(z) = x and let g(x) = —z. Then the area between these curves on
0,1] is

1 1
/ r— (—x)dr = / 2rdr = [2°]'=y =1—-0=1.
0 0
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Example 5.3. Let f(z) = x and let g(x) = 2% Note that f(z) > g(x) when z € [0,1] and
g(x) > f(z) when z € [-2,0]. So, the area between these curves on [—2, 1] is

/ o= = /01‘”" o /“f — w)dz = [2*/2 - 2* /32 + 2 /3 — 2 /20220,

=(1/2) — (1/3) — (=2)3/3 + (—2)?/2 = (1/2) — (1/3) +8/3 + 2 = 29/6.

Example 5.4. Let’s find the area between the curves x = 0 and = y? + 1 lying between
the lines y = 0 and y = 1. This area is given by

1
|67 0y = 0315 + 2 = 13+ 1= 473
0
5.2. Average Value.

Definition 5.5 (Average Value). Let a < b. Let f: [a,b] — R. The average value of f
on the interval [a, 0] is defined to be
1 b
T /a f(x)dx.

Example 5.6. The average value of f(z) = z on the interval [0, 20] is
1 2

20 Jo

1 1
xdr = %[xQ/Z]gO = E(400) = 10.

Example 5.7. The average value of f(z) = z/(z* + 1)? on the interval [3,6] is (using
u=z*+1so0 du=2zdr, ie. xdr=du/2)

1 6 1 [ y2 1 1 1 1
| ormde =3 [ Sdu= gl i = o (g
6—3 /5 (22+1)2 30 2 6 6\ 37 10

5.3. Volumes by Revolution.

Definition 5.8. A solid of revolution is obtained by taking a region in the plane and
rotating the region about an axis.

Example 5.9. Consider the region in the plane lying above the z-axis and below the curve
y = V1 — 22, If we rotate this region around the z-axis, we obtain the ball of radius 1.

Example 5.10. Consider the region in the plane lying above the z-axis, below the line
y = 1, and between the lines x = 0 and x = 1. If we rotate this region around the x-axis,
we obtain a circular cylinder of radius 1 and of height 1.

Proposition 5.11 (Volume of a Solid by Revolution: Disk Method). Let f: [a,b] —
R be continuous with f(x) > 0 for all x € [a,b]. Consider region in the plane lying above
the interval [a,b] (on the x-azxis) and lying below the curve y = f(x). When this region is
rotated around the x-axis, the resulting solid of revolution has volume

-/ ()

In this formula, we think of f(x) as the radius of a thin disk encircling the point x.
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Remark 5.12. If ¢ is a constant, and if f = ¢ is a constant function, then the solid of
revolution is a cylinder of radius ¢ and height b — a. So, the cylinder has volume 7c?(b — a).
This formula agrees with the integral above

o b(f@))?dx o [ an = 7c(b— a).
/ /

For a general function f, we can think of f as being roughly constant on small intervals of
the form [x,x + h|. If f is roughly constant, then the solid produced by revolving f around
the interval [z, z + h] is essentially a cylinder of radius f(z) and of height (x + h) — z = h.
So, the volume of this thin cylinder is 7(f(x)?)h. Summing up all of the contributions of
these small cylinders then gives the integral above (if we intuitively think of A as being equal
to dz, an infinitesimally small cylinder height).

Example 5.13. Let » > 0. Consider the region in the plane lying above the x-axis and
below the curve f(z) = vr? — 22, —r < x < r. If we rotate this region around the z-axis,
we obtain the ball of radius r, which we know to have volume (4/3)7r®. This formula can
also be derived as follows:

7r/ (f(z)dz = 7r/ (r?—a2?)dr = w[r*r—2/3)°=", = w[r* —r® /3403 =13 /3] = 7r3(4/3).
Example 5.14. Let r; > ry > 0. Consider the region in the plane lying above the z-axis,

above the curve g(x) = /73 — 22 and below the curve f(x) = \/r? — 22, If we rotate this
region around the z-axis, we obtain the ball of radius ry, with a ball of radius ry removed.

So, the volume of this region is
(4/3)mri — (4/3)7rs5.

Example 5.15. We can also revolve regions around the y-axis. Consider the region bounded
between the lines z = 0, y = 0, x = 1 and y = 2. Revolving this region around the y-axis
produces a solid cylinder of volume

2 2
7r/ (1—0)2dy:7r/ dy = 2m.
0 0

5.4. Volumes by Cylindrical Shells.

Proposition 5.16 (Volume of a Solid by Revolution: Cylindrical Shells). Let b >
a>0. Let f: [a,b] = R be continuous with f(x) > 0 for all x € [a,b]. Consider the region
in the plane lying above the interval [a,b] (on the x-azis) and lying below the curve y = f(x).
When this region is rotated around the y-axis, the resulting solid of revolution has volume

o /ab o f()da.

In this formula, we think of x as the radius of a cylindrical shell, and we think of f(x) as
the height of a cylindrical shell.

Remark 5.17. If ¢ is a constant, and if f = ¢ is a constant function, then the solid of
revolutions is a cylinder of height ¢ and radius b, with a cylinder of height ¢ and radius a
removed. So, the solid has volume 7c(b? — a?). This formula agrees with the integral above

b b
27r/ zf(x)dr = 27T/ redr = 2me[2? /2720 = me(b? — a?).
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For a general function f, we can think of f as being roughly constant on a small intervals
of the form [x,z + h]. If f is roughly constant, then the solid produced by revolving f
on [x,z + h] around the y-axis is essentially a cylinder of radius = + h and of height f(x),
minus a cylinder of radius x and of height f(x). So, the volume of this cylindrical shell is
7f(x)((z + h)* — 2?) = 7 f(x)((2* + 2zh + h?) — 2?) = 27z f(x)h + 7f(x)h*. The second
term does not contribute much when h is small, so it can be ignored. Summing up all of the
contributions of these cylindrical shells then gives the integral above (if we intuitively think
of h as being equal to dz, an infinitesimally small width).

Example 5.18. Let r > 0. Consider the region in the plane lying above the x-axis and
below the curve f(x) = /12 — 22, 0 <z < r. If we rotate this region around the z-axis, we
obtain one half of a ball of radius 7, which we know to have volume (2/3)7r®. This formula
can also be derived as follows (using u = r? — 22, —du = 2xdz):

o /0 of (x)de = 2 /0 oVr? — g2de = —n /20 Vudu = 7[(2/3)u®?"=5 = (2/3)mr.

Example 5.19. Consider the region in the plane lying above interval [0, r] on the z-axis and
below the curve y = h > 0. If we rotate this region around the y-axis, we obtain a cylinder
of radius r and height h. So, the volume of this region is

27r/ xf(r)dx = 27T/ whdx = 2rh[x?/2)*Z) = 7r?h.
0 0

Example 5.20. We can also revolve regions around other axes. Consider the region bounded
by the curves x = 0 and y = 1 — 22. When we revolve this region around the axis z = 1 for
points —1 <z < 1, the radius of the cylindrical shells will be (1 — ), and their height will
be (1 — x?). So, the solid has volume

27r/1(1 —2)(1 — 2%)dx = 27r/1(1 —2® — 2+ 2%)dr = 2n[xr — 2*/3 — 2?2 + 2 J4)2!

r=—1
1 -1

=2m[l —(—-1)—1/3 —(—1/3)] = 8n/3.
6. APPENDIX: NOTATION

R denotes the set of real numbers
€ means “is an element of.” For example, 2 € R is read as “2 is an element of R.”
f: A— B means f is a function with domain A and range B. For example,

f:10,1] — R means that f is a function with domain [0, 1] and range R

Let f: R = R, and let a,b,x € R with a < b. Let n be a positive integer.

38



lim f(z) denotes the limit of f(z) as x approaches a

oy~ Y@ S ) - @)

dr  dz h—0 h
the derivative of f with respect to x

denotes

d
f(x) = o f'(x) denotes the second derivative of f with respect to z
T

™ (z) denotes the n'" derivative of f with respect to z

b
/ f(z) dx denotes the definite integral of f on the interval [a, 0]

/ f(z) dx denotes the indefinite integral of f

Remark 6.1. In the book, there are several expressions of the form

cos2x —x
flz) = — 2
When the cosine is written without parentheses in the argument, it is usually understood
that the very first thing that is written after the cosine (in this case 2x) is the argument
of the cosine. The next minus or plus sign that appears is assumed to occur outside of the
parentheses (that have been omitted). That is, the expression above can be equivalently

written as follows
cos(2x) — x

f(l‘): 2

x
Remark 6.2. The following two expressions are equal:

cos?(z) = (cos(x))2.

Remark 6.3. Whenever a fraction has a radical of a number in the denominator, we prefer
to move the radical to the numerator, as in the following example:

L _LV5 V5
Vi VBB 5

If a variable occurs in the radical, then we usually leave the radical in the denominator.

UCLA DEPARTMENT OF MATHEMATICS, Los ANGELES, CA 90095-1555
E-mail address: heilman@math.ucla.edu

39



	1. Introduction
	1.1. The Notion of a Limit
	1.2. Calculating Limits
	1.3. Continuity
	1.4. Trigonometric Limits, Limits at Infinity
	1.5. Intermediate Value Theorem

	2. The Derivative
	2.1. Definition of the Derivative
	2.2. The Derivative as a Function
	2.3. Product Rule, Quotient Rule, Chain Rule
	2.4. Higher Derivatives
	2.5. Trigonometric Functions
	2.6. Implicit Differentiation
	2.7. Related Rates

	3. Applications of Derivatives
	3.1. Linear Approximation
	3.2. Extreme Values and Optimization
	3.3. Mean Value Theorem
	3.4. Graph Sketching
	3.5. Applied Optimization
	3.6. Newton's Method

	4. The Integral
	4.1. Summation Notation
	4.2. The Definite Integral
	4.3. The Indefinite Integral
	4.4. The Fundamental Theorem of Calculus
	4.5. Integration by Substitution

	5. Applications of the Integral
	5.1. Areas Between Curves
	5.2. Average Value
	5.3. Volumes by Revolution
	5.4. Volumes by Cylindrical Shells

	6. Appendix: Notation

