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1. Introduction

The ability of Calculus to describe the world is one of the great triumphs of mathematics.
Below, we will briefly describe some of these successful applications. Some of these applica-
tions will be discussed in the second half of this course, and others may be found in your
future endeavors.

price of product

profit

How can we find
the maximum profit?

What forces are felt
along the red path?

How likely will a dart land
inside the green region?

For example, calculus is very closely related to
probability, which itself has applications to statis-
tics and algorithms. For example, the first gener-
ation of Google’s search technology came from ideas
from probability theory. In economics, optimiza-
tion is often used to e.g. maximize profit margins,
or to find optimal strategies in game theory. Also,
the ideas of single variable calculus are developed and
generalized within financial mathematics to e.g. sto-
chastic calculus. Signal processing and Fourier
analysis provide some nice applications within many
areas of science. For example, our cell phones use
Fourier analysis to compress voice signals.

In physics, many models of the real world use
solutions of differential equations. These equa-
tions involve the slopes and shape of functions, and
their solutions describe the behavior of many physi-
cal systems. For example, the famous Navier-Stokes
equations of fluid dynamics are expressed in this lan-
guage. Solutions of the Navier-Stokes equations show
us how water behaves, though these equations really
just state Newton’s second law. Also, Einstein’s
Theory of General Relativity uses a version of
Calculus, though geometry is needed here as well.

In mathematics itself, the fundamental concepts
of Calculus reappear in many places, some of which
have already been described above. Also, Calculus
serves as the foundation of probability, which itself
serves as the foundation of statistics. For example,
to prove that a large number of numerical data sam-
ples have the distribution of a bell curve, one can use
tools from Calculus. As another example, we can re-
peat Calculus for a single real variable by using a sin-
gle complex variable, and we get the beautiful subject
of Complex analysis.

For a complete understanding of biology, you need
to understand Calculus. For example, suppose some-
one is given an intravenous drug which is administered
at a certain rate. If we know the volume of fluid in
the body, the concentration of the administered drug,
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and the rate of flow of the drug into the body, then we can use Calculus to model the concen-
tration of drug in the person’s body. These calculations are done using differential equations.
If one wants to fully understand how MRIs and CT-scans work, one needs multivariable
calculus. Many of the concepts in multivariable calculus originate in single variable calculus,
though there are some new things that are needed.

utility

price of
price of

product A
product B

How to find the maximum
utility as a function of

two variables?

Using differential equations, one can derive some of
the equations for chemical concentrations that were
used in our high school chemistry classes. For ex-
ample, we could ask: after chemicals interact for along
time, what are their concentrations? Also, the ideas
of Calculus are used in more advanced chemistry sub-
jects, including quantum mechanics.

Even though computer science often deals with
discrete problems, many of the ideas of Calculus arise
in computer science, and sometimes these ideas arise
in unexpected ways. For example, the methods used
to encode music onto CDs and MP3s use Calculus,
with some additional tools from Fourier analysis.
These same tools compress image and video data for
JPEGs and MPEGs, respectively.

The acts of thinking rigorously and using logic in
our reasoning should become common in this course. We want to transmit one of the
great intellectual achievements of humanity, just as we pass down great literature, art and
philosophy to future generations.

x

y

1 2 3

1

2

3 f(x)

+2×

+(1/2)×

+

=

A sound wave split into its frequency components.

1.0.1. A Brief History of Calculus. The rudiments of Calculus can be traced through many
ancient cultures including those of Greece, China and India. Calculus in its modern form is
generally attributed to Newton and Leibniz in the late 1600s. Newton was mainly motivated
by applying Calculus to physics. However, Leibniz invented most of the notation we use
today. Even though this topic is now taught in high school and college, it is still over 300
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years old. In this course, perhaps we will try to give you glimpses of what happened in the
ensuing centuries.

1.0.2. The Calculus Paradigm. Mathematics before Calculus usually involves algebra,
trigonometry and some planar geometry. The concepts in Calculus are very different from
concepts that are learned before, so the following “paradoxes” are meant to help in under-
standing the new concepts. These paradoxes are known as Zeno’s Paradoxes.

Paradox 1.1. In a footrace, suppose a slower runner is in front of a quicker runner. When
the quicker runner reaches any point in the race, the slower runner was already at that point
in the past. Therefore, the quicker runner can never overtake the slower runner.

Paradox 1.2. Suppose I want to walk through a doorway, and I am standing a meter away
from the door. At some point I am at a half meter away from the door, then at another
point I am at a quarter of a meter away, then at another point I am at an eighth a meter
away, and so on. Therefore, I can never make it through the doorway.

Paradox 1.3. Suppose I shoot at arrow at a target. At any given moment, the arrow
occupies a fixed position in space. However, in order for an object to move, it cannot sit in
one place. So, the arrow must have no motion at all. The arrow is motionless.

The first two paradoxes are somewhat similar. In the first paradox, we know from empirical
observation that a quicker runner can overtake a slower runner. And in order to resolve the
paradox, we note that the total time that the quicker runner remains behind the slower
runner is finite. Similarly, in the second paradox, I know that it only takes a finite amount
of time to pass through a door. Paradox 1.2 seems to occur since I am subdividing the one
meter that I travel into an infinite number of smaller steps. Zeno seems to object, saying
that an infinite number of subdivisions cannot occur.

In mathematical terms, Zeno objects to the assertion 1
2

+ 1
4

+ 1
8

+ · · · = 1, because there
does not appear to be a rigorous way to think about an infinite sum of numbers. By using a
limit, we can actually speak rigorously about an infinite sum of numbers, thereby resolving
the paradox.

The third paradox is a bit different from the other two. Zeno is really questioning the
meaning of an instant of time. How can we rigorously discuss the instantaneous speed of an
object? Below, we will use limits to define derivatives, and these derivatives give a rigorous
meaning to instantaneous velocity, thereby resolving the paradox.

1.1. The Notion of a Limit.

Definition 1.4 (Intuitive Definition of a Limit). Let f : R → R, and let x, a, L ∈ R.
We say that f has limit L as x approaches a and write

lim
x→a

f(x) = L,

if f(x) gets closer and closer to L as x gets closer and closer to a, with x 6= a.

Definition 1.5 (Formal Definition of a Limit). Fix a ∈ R and let x be a variable. We
write limx→a f(x) = L if the following occurs.

For all ε > 0, there exists δ = δ(ε) > 0, such that:

if 0 < |x− a| < δ, then |f(x)− L| < ε.
(1)
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x

y

a

L

f(x)

a+ δa− δ

L+ ε

L− ε

Put another way, no matter how small I
want |f(x)− L| to be, I can always choose a
small region around a that is so small such
that f(x) is really close to L in this region.

Example 1.6. Let f(x) = x and let a = 1.
Then limx→a f(x) = a = 1.

Example 1.7. Let f(x) = x2 and let a = 2.
Then limx→a f(x) = a2 = 4.

Remark 1.8. The limit limx→a f(x) does
not depend on the value of f at a.

Example 1.9. Let f(x) =

{
1 ifx 6= 0

0 ifx = 0.

Then limx→0 f(x) = 1.

x

f(x)

1 2 3

1

y

Definition 1.10 (Intuitive Definition of One-Sided Limits). Let f : R → R, and let
x, a, L ∈ R. We say that f has limit L as x approaches a from the left and write

lim
x→a−

f(x) = L,

if f(x) gets closer and closer to L as x gets closer and closer to a, with x < a.
We say that f has limit L as x approaches a from the right and write

lim
x→a+

f(x) = L,

if f(x) gets closer and closer to L as x gets closer and closer to a, with x > a.

Remark 1.11. limx→a f(x) exists if and only if both one-sided limits limx→a− f(x) and
limx→a− f(x) exist and are equal.

The limit may at first look a bit silly1, since for a polynomial, we can just plug in the
function value and the result agrees with the limit. So why are we defining a limit anyway?
First of all, we need limits in order to define tangent lines to functions (derivatives), and
derivatives are one of the extremely important concepts in Calculus. Second of all, there are
some subtleties to the definition that may not yet be apparent.

For example, the limit of a function may not always exist. This issue is important because
we will see that the derivatives of some functions may not exist. So, there may be no
reasonable way to talk about the instantaneous speed of certain trajectories.

1Historically, the definition (1) was invented over a century after Newton and Leibniz invented Calculus.
The approach of Newton and Leibniz was not quite rigorous by modern standards.
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Example 1.12 (A jump discontinuity)). Define H : R→ R (the Heaviside function) by
the formula

H(x) =

{
0, x < 0

1, x ≥ 0

We claim that limx→0− H(x) = 0 and limx→0+ H(x) = 1. Therefore, limx→0H(x) does not
exist.

x

f(x)

1 2 3

1

y

To see this, note that if x < 0, then H(x) = 0. That is, H(x) is always close to 0 whenever
x < 0. We conclude that limx→0− H(x) = 0.

Similarly, if x > 0, then H(x) = 1. That is, H(x) is always close to 1 whenever x > 0.
Therefore, limx→0+ H(x) = 1.

Both one-sided limits must be equal in order for limx→0H(x) to exist. Since we know that
limx→0+ H(x) = 1 6= 0 = limx→0− H(x) we conclude that limx→0H(x) does not exist.

Remark 1.13. If a function f becomes arbitrarily large as x→ a, the limit limx→a f(x) does
not exist, but we still write limx→a f(x) =∞. If a function f has |f(x)| arbitrarily large and
f(x) < 0 as x→ a, the limit limx→a f(x) does not exist, but we still write limx→a f(x) = −∞.

Example 1.14 (A singularity). Define f : R→ R by the formula

f(x) =

{
1/x, x 6= 0

0, x = 0.

x

y

1 2 3

1

2

3

f(x)

We claim that limx→0+ f(x) =∞ and limx→0− f(x) =
−∞. Therefore, limx→0 f(x) does not exist.

Note that if x > 0, then f(x) > 0. And, for
example, if x = 1/n where n is a positive integer,
then f(x) = n becomes arbitrarily large as n be-
comes large. Therefore, limx→0+ f(x) = ∞. Since
limx→0+ f(x) does not exist, we already know that
limx→0 f(x) does not exist.

Similarly, if x < 0, then f(x) < 0. And if x = −1/n
where n is a positive integer, then f(x) = −n becomes
negative and large as n becomes large. Therefore,
limx→0− f(x) = −∞.

Example 1.15 (Infinite oscillation). Define f : R→ R so that

f(x) =

{
cos(1/x), x 6= 0

0, x = 0.
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x

f(x)1

yWe claim that limx→0 f(x) does not exist. To see
this, let n be a positive integer and consider the points
1/(2πn) and 1/(2πn+ π). If n is large, both of these
points can become arbitrarily close to zero. However,
f(1/(2πn)) = cos(2πn) = 1, while f(1/(2πn + π)) =
cos(2πn+π) = −1. So, f never becomes close to any
value L as x→ 0. So, limx→0 f(x) does not exist.

1.2. Calculating Limits. In order to manipulate
limits, we need to be able to apply some simple operations to them. The following statements
summarize some ways that we can manipulate limits.

Proposition 1.16 (Limit Laws). Let f, g : R→ R. Let a, c ∈ R. Assume that limx→a f(x)
exists and limx→a g(x) exists. Then

(i) limx→a(f(x) + g(x)) = (limx→a f(x)) + (limx→a g(x)).
(i’) limx→a(f(x)− g(x)) = (limx→a f(x))− (limx→a g(x)).
(ii) limx→a[cf(x)] = c(limx→a f(x)).

(iii) limx→a[(f(x))(g(x))] = (limx→a f(x))(limx→a g(x)).

(iv) If limx→a g(x) 6= 0, then limx→a
f(x)
g(x)

= limx→a f(x)
limx→a g(x)

.

Example 1.17. We know that limx→2 x = 2, so we know that limx→2 x
2 = (limx→2 x)2 =

22 = 4, using Limit Law (iii).

Example 1.18. Since we know that limx→2 x
2 = 4 and limx→2 x = 2, we then know that

limx→2 x
3 = (limx→2 x

2)(limx→2 x) = 222 = 8, using Limit Law (iii).

Example 1.19. Since limx→0(x+ 1) = 1, and limx→0(x
2 + 3) = 3, we have

lim
x→0

x+ 1

x2 + 3
=

1

3
.

Example 1.20. We know that limx→0 x = 0 and limx→0 x
−1 does not exist. So, the following

equality doesn’t make any sense:

1 = lim
x→0

1 = lim
x→0

(x/x)
?
= (lim

x→0
x)(lim

x→0
x−1).

However, the assumptions of the Limit Laws are not satisfied, so we have not found a
contradiction within the Limit Laws.

1.3. Continuity.

Definition 1.21 (Intuitive Definition of Continuity). Let f : R → R and let a ∈ R.
We say that f is continuous if we can draw f with a pencil, without lifting the pencil off
of the paper.

Alternatively, f is continuous at a if f does not “jump around too much” around a.

Definition 1.22 (Formal Definition of Continuity). Let f : R → R let a ∈ R. We say
that f is continuous at a if the following three conditions are satisfied

(i) limx→a f(x) exists
(ii) a is in the domain of f

(iii) limx→a f(x) = f(a)

8



We say that a function f is continuous if f is continuous on all points of its domain. If f
is not continuous at a, we say that f is discontinuous at a.

Example 1.23. Let f(x) = x. Then f is continuous, since limx→a f(x) = a = f(a) for all
points a ∈ R.

Example 1.24 (Removable Discontinuity). Let

f(x) =

{
1 ifx 6= 0

0 ifx = 0.

Then limx→0 f(x) = 0, but f(0) = 1. That is limx→0 f(x) 6= f(0). So f is discontinuous at
0. However, if we redefined f to be equal to 1 at 0, then f would be continuous at 0. For
this reason, we say that f has a removable discontinuity at 0.

Example 1.25 (Jump Discontinuity)). Recall we defined H : R→ R where

H(x) =

{
0, x < 0

1, x ≥ 0.

We showed that limx→0H(x) does not exist. So, H(x) is discontinuous at x = 0.

Example 1.26 (A singularity). Define f : R→ R by the formula

f(x) =

{
1/x, x 6= 0

0, x = 0

We showed that limx→0 f(x) does not exist. So, f(x) is discontinuous at x = 0. However,
f is actually continuous at any nonzero point, by the limit law for quotients. If a 6= 0, then

lim
x→a

f(x) = lim
x→a

(1/x) = 1/(lim
x→a

x) = 1/a = f(a).

Example 1.27 (Infinite oscillation). Define f : R→ R so that

f(x) =

{
cos(1/x), x 6= 0

0, x = 0

We showed that limx→0 f(x) does not exist. So, f is discontinuous at x = 0. We will show
later on that f is continuous at any point a 6= 0.

Verifying directly that a given function is continuous can be tedious. Thankfully, we can
often verify continuity of a function using the following rules, which are consequence of the
Limit Laws, Proposition 1.16.

Proposition 1.28 (Laws of Continuity). Let f, g : R→ R. Let a, c ∈ R. Assume that f
and g are both continuous at a. Then

(i) f + g is continuous at a.
(i’) f − g is continuous at a
(ii) cf is continuous at a.

(iii) fg is continuous at a
(iv) If g(a) 6= 0, then f/g is continuous at a.
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Corollary 1.29. Let p, q be polynomials. Then p is continuous on the real line, and p/q is
continuous at all values a where q(a) 6= 0.

Proof. Note that p(x) is a sum of monomials cnx
n+cn−1x

n−1+ · · ·+c1x+c0. Each monomial
is continuous, so p is continuous by the first law of continuity.

So, p, q are both continuous on all of R. Then p/q is continuous at all values a where
q(a) 6= 0, by the last law of continuity. �

Proposition 1.30.

• If b > 0, then f(x) = bx is continuous on the real line.
• If b > 0, then f(x) = logb x is continuous whenever x > 0.
• If n is a positive integer, then f(x) = x1/n is continuous on its domain.

Example 1.31. f(x) = 1/x is continuous when x 6= 0 by the fourth law of continuity.

Example 1.32. The function f(x) = x2ex is continuous on the real line, by the third law
of continuity.

Theorem 1.33 (A Composition of Continuous Functions is Continuous). Let f, g
be functions. Define F (x) = f(g(x)). If g is continuous at x = a, and if f is continuous at
g(a), then F (x) = f(g(x)) is continuous at x = a.

Example 1.34. Consider the function

F (x) =

{
e1/x, x 6= 0

0, x = 0

Since g(x) = 1/x is continuous for x 6= 0, and f(y) = ey is continuous for any y, we see
that F (x) = f(g(x)) is continuous for any x 6= 0. Also, F is discontinuous at x = 0,
since limx→0 F (x) does not exist. More specifically, limx→0+ F (x) = limy→∞ e

y = ∞ and
limx→0− F (x) = limy→−∞ e

y = 0. Since the right and left limits at x = 0 do not agree,
limx→0 F (x) does not exist, so F is not continuous at x = 0.

Remark 1.35. If f : R→ R is continuous, we can move limits inside or outside of f :

lim
x→a

f(x) = f(lim
x→a

x).

Example 1.36. lim
x→1

√
x2 + 1 =

√
lim
x→1

(x2 + 1) =
√

2.

Example 1.37. limx→2 e
x2−3

= elimx→2(x2−3) = e1.

x

y

1 2 3

1

2

3

f(x) =
√
x2 + 1

√
2

Sometimes we need to do a bit of alge-
bra before we can move the limits around or
apply limits laws.

Example 1.38. lim
x→2

x2 − 4

x− 2
= lim

x→2

(x− 2)(x+ 2)

(x− 2)
= lim

x→2
(x+ 2) = 4.
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Example 1.39. lim
x→1

√
x− 1

x− 1
= lim

x→1

√
x− 1

x− 1

√
x+ 1√
x+ 1

= lim
x→1

x− 1

(x− 1)(
√
x+ 1)

= lim
x→1

1√
x+ 1

=
1

2
.

Example 1.40. lim
x→0

(
1

4x
− 1

x(x+ 4)

)
= lim

x→0

x+ 4− 4

4x(x+ 4)
= lim

x→0

x

4x(x+ 4)

= lim
x→0

1

4(x+ 4)
=

1

16
. x

y

1 2 3

1

2

3 f(x) = x2−4
x−2

4

1.4. Limits at Infinity.

Theorem 1.41 (Squeeze Theorem). Let f, g, h : R → R. Suppose f(x) ≤ g(x) ≤ h(x)
and limx→a f(x) = limx→a h(x) = L. Then limx→a g(x) exists and limx→a g(x) = L.

Example 1.42. We show that limx→0 x cos(x) = 0. Since −1 ≤ cos(x) ≤ 1, we have − |x| ≤
x cosx ≤ |x|. Since limx→0(− |x|) = limx→0 |x| = 0, we conclude that limx→0 x cosx = 0.

x

y

1 2 3

1

2

3

f(x) = −|x|

h(x) = |x|

g(x) = x cos(x)

1.4.1. Limits at Infinity. So far we have only considered limits of the form limx→a f(x) where
a is a real number. We can also consider limits of the form limx→∞ f(x) and limx→−∞ f(x),
using essentially the same rules as before. Alternatively, we could make the following defini-
tion, if the limit on the right exists:

lim
x→∞

f(x) = lim
y→0+

f(1/y).

Similarly, if the limit on the right exists, we can define

lim
x→−∞

f(x) = lim
y→0+

f(−1/y).
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x

y

1 2 3

1
2
3 f(x) = 2x

x

y

1 2 3

1
2
3

f(x) = 2−x

a b

f(a)

f(b)

y

x

We can think of limt→∞ f(t) as describing where f eventually
ends up, as time goes to infinity.

Example 1.43. limx→∞ 1/x = 0.

Example 1.44. limx→∞ 2x =∞, limx→∞ 2−x = 0.

Example 1.45. lim
x→∞

4x2 + 2

3x2 + x+ 3
= lim

x→∞

4x2 + 2

3x2 + x+ 3
· x
−2

x−2

= lim
x→∞

4 + 2
x2

3 + 1
x

+ 3
x2

=
limx→∞ 4 + 2

x2

limx→∞ 3 + 1
x

+ 3
x2

=
4

3
.

Example 1.46. More generally, if n is a positive integer and
dn 6= 0,

lim
x→∞

cnx
n + cn−1x

n−1 + · · ·+ c0
dnxn + dn−1xn−1 + · · ·+ d0

= lim
x→∞

cn + cn−1

x
+ · · ·+ c0

xn

dn + dn−1

x
+ · · ·+ d0

xn

=
limx→∞ cn + cn−1

x
+ · · ·+ c0

xn

limx→∞ dn + dn−1

x
+ · · ·+ d0

xn

=
cn
dn
.

1.5. Intermediate Value Theorem. Continuous functions have many nice properties.
One such property is expressed in the following Theorem.

Theorem 1.47 (Intermediate Value Theorem). Let a, b ∈ R, a < b. Let f : [a, b] → R
be continuous. Then f achieves every value between f(a) and f(b). That is, for every y ∈ R
in between f(a) and f(b), there exists x ∈ [a, b] such that f(x) = y.

Example 1.48. For a real-world example, suppose f : [0, 10]→ R and f(t) is your position
at time t as you walk along a straight path. Suppose f(0) = 0 and f(10) = 2. Then you
must visit every point along the path [0, 2] at some time between time 0 and time 10.

Example 1.49. There is some nonzero number x such that 2 sin(x) = x. To see this, let
g(x) = 2 sin(x) − x. Then g(π/2) = 2 − π/2 > 0 and g(π) = −π < 0. By the Intermediate
Value Theorem, there is some x ∈ (π/2, π) such that g(x) = 0. At this point, we have
2 sin(x) = x.

Example 1.50. Continuity is needed for the conclusion of the Intermediate Value Theorem
to hold. For example, consider the jump discontinuity

H(x) =

{
0, x < 0

1, x ≥ 0

Then H(−1) = 0, H(1) = 1, but there does not exist some x ∈ (−1, 1) with H(x) = 1/2.

2. The Derivative

2.1. Definition of the Derivative. The derivative is one of the central concepts in calculus.
It is also one of the most useful. For a function f : R → R, where f(t) denotes the vertical
position of a falling object at time t, the derivative of t is the velocity of the object at time t.

12



For a general function f : R→ R, the derivative of f is the rate of change of f . We denote
the derivative of f at x by f ′(x).

a x

f(x)

f(a)

slope f(x)−f(a)
x−a

x− a

f(x)− f(a)

We now begin the construction of the de-
rivative. Let f : R → R. Let a, x ∈ R
with a < x. Consider the points (a, f(a))
and (x, f(x)). Recall that the line passing
through these points has a slope equal to
the rise over run of the points. That is,
the slope of the line passing through these
two points is

f(x)− f(a)

x− a
.

The numerator is the change in the value of
f from a to x, and the denominator is the
change in the domain of f from a to x. So,
(f(x)−f(a))/(x−a) is essentially the rate of
change of f at a. The line passing through
the points (a, f(a)) and (x, f(x)) is also known as the secant line.

The slope of the secant line is a decent approximation to the slope of the tangent line to f
at a. It turns out that as x→ a, the slope of the secant line will often go to the slope of the

tangent line. That is, suppose as x goes to a, the quantity f(x)−f(a)
x−a goes to some number L.

We can then think of L as the infinitesimal rate of change of f . To see this approximation
procedure in action, see the following JAVA applet: secant approximation.

This discussion leads the following definition of a derivative

Definition 2.1 (The Derivative at a Point). Let a, b, x ∈ R, f : R→ R. We say that f
is differentiable at a if the following limit exists.

lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
= f ′(a) =

df(a)

dx
=
df

dx
(a) =

d

dx
f(a).

If f ′(a) exists, we call f ′(a) the derivative of f at a. We say that f is differentiable if f
is differentiable on its domain.

Example 2.2. Let f(x) = c be a constant function. Then f ′(0) = limh→0
f(0+h)−f(0)

h
=

limh→0
c−c
h

= limh→0 0 = 0.

Let f(x) = x. Then f ′(0) = limh→0
f(0+h)−f(0)

h
= limh→0

h
h

= limh→0 1 = 1.

Let f(x) = x2. Then f ′(1) = limh→0
f(1+h)−f(1)

h
= limh→0

1+2h+h2−1
h

= limh→0(2 + h) = 2.
Let f(x) = x−1. Then

f ′(3) = lim
h→0

f(3 + h)− f(3)

h
= lim

h→0

1
3+h
− 1

3

h
= lim

h→0

3− (3 + h)

3(3 + h)h
= lim

h→0

−1

3(3 + h)
= −1

9
.

Definition 2.3 (Tangent Line). Let f : R → R. Assume f is differentiable at a. The
tangent line to the graph y = f(x) at the point x = a is the line with slope f ′(a) which
passes through the point (a, f(a)). So, this line has equation

y = f(a) + (x− a)f ′(a).
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Example 2.4. Let’s find the tangent line to the curve y = x2 at x = 1. If f(x) = x2, then
f(1) = 1, and we computed already f ′(1) = 2. So, the tangent line is y = 1 + 2(x− 1).

Example 2.5. Let’s find the tangent line to the curve y = x−1 at x = 3. If f(x) = x−1,
then f(3) = 1/3, and we computed already f ′(3) = −1/9. So, the tangent line is y =
(1/3)− (1/9)(x− 3).

a

slope f ′(a)

tangent line at a

x

y

f(x)

x

y

1 2 3

1

2

3
y = x2

y = 1 + 2(x− 1)

Recall that if f is a constant function, we computed
f ′(0) = 0. And if f(x) = x, we computed f ′(0) =
1. Imitating these calculations leads to the following
proposition.

Proposition 2.6.

• Suppose f(x) = c where c is a constant. Then
f ′(a) = 0 for all a.
• Suppose f(x) = mx+b where m, b are constants.

Then f ′(a) = m for all a.

2.2. The Derivative as a Function. Let x ∈ R, and
let f : R→ R. If f ′(x) exists, then

lim
h→0

f(x+ h)− f(x)

h
= f ′(x) =

df

dx
=
df

dx
(x) =

d

dx
f(x).

Note that f ′(x) is also a function of x.
If f(t) is the position of an object at time t, then

f ′(t) is called the velocity of the object at time t. If
f(x) is the utility of a commodity as a function of the
price x of the commodity, then f ′(x) is called the marginal utility of the commodity. In
both cases, f ′ is the instantaneous rate of change of f .

Example 2.7. Let f(x) = x2. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h
= lim

h→0
(2x+ h) = 2x.

So, f ′(x) = 2x.

x

y

1 2 3

1
2

3

f(x) = x2

f ′(x) = 2x

x

y

1 2 3

1
2

3

f(x) = (1/3)x3

f ′(x) = x2

We can generalize this computation to arbitrary powers
of positive integers.

Proposition 2.8. Let f(x) = xn, where n is any constant.
Then f ′(x) = nxn−1. (If n < 1 and n 6= 0, then f ′(0) is
undefined.)
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Proof. For simplicity, we assume n is a positive integer. Let a, b > 0. We need a generaliza-
tion of the identity a2 − b2 = (a− b)(a+ b), or a3 − b3 = (a− b)(a2 + ab+ b2).

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1).

Using this identity with a = (x+ h) and b = x, we get

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)n − xn

h

= lim
h→0

h

h
((x+ h)n−1 + (x+ h)n−2x+ · · ·+ (x+ h)xn−2 + xn−1)

= lim
h→0

((x+ h)n−1 + (x+ h)n−2x+ · · ·+ (x+ h)xn−2 + xn−1)

= xn−1 + · · ·+ xn−1︸ ︷︷ ︸
n times

= nxn−1.

�

Example 2.9. If f(x) = x3, then f ′(x) = 3x2. If f(x) = x2/3, then f ′(x) = (2/3)x−1/3. If

f(x) = x−
√
2, then f ′(x) = −

√
2x−

√
2−1.

Proposition 2.10. Let f : R→ R be differentiable on R. Then f is continuous on R.

Proof. Let a ∈ R. Since f is differentiable at a, limx→a
f(x)−f(a)

x−a exists. For x 6= a, write

f(x)− f(a) = f(x)−f(a)
x−a (x− a). Then our limit law for products applies, yielding

lim
x→a

(f(x)− f(a)) = lim
x→a

(
f(x)− f(a)

x− a
(x− a)

)
=

(
lim
x→a

f(x)− f(a)

x− a

)(
lim
x→a

(x− a)
)
. = f ′(x) · 0 = 0

So, limx→a f(x) = f(a), i.e. f is continuous at a. �

x

y

1 2 3

1

2

3
f(x) = |x|

f ′(x)

Is there a continuous function that is not
differentiable at one point? In other words,
does the converse to Proposition 2.10 hold?

Example 2.11 (A Discontinuous Deriv-
ative). Consider the function f(x) = |x|,
x ∈ R. Since f(x) = x for x > 0, and
f(x) = −x for x < 0, we see that f ′(x) re-
sembles the Heaviside function

f ′(x) =

{
1, x > 0

−1, x < 0.

But what happens at zero? Observe,

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

h

h
= lim

h→0+
1 = 1,

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

−h
h

= lim
h→0−

(−1) = −1.
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So, limh→0
f(0+h)−f(0)

h
does not exist, i.e. f ′(0) does not exist and the converse of Proposition

2.10 is false. In fact, a stronger statement holds.

x

y

1 2 3

1

2

3

f(x) = 3x1/3

f ′(x) = x−2/3

From the contrapositive of Proposition
2.10, we know that if f is discontinuous, then
f is not differentiable. There are even more
ways for f to not be differentiable.

Example 2.12 (A Derivative Approach-
ing Infinity). Let x ∈ R, and let f(x) =
3x1/3. For x 6= 0, f ′(x) = x−2/3. So,
limx→0 f

′(x) =∞, i.e. limx→0 f
′(x) does not

exist. Also, f ′(0) does not exist.

2.3. Product Rule, Quotient Rule,
Chain Rule.

Proposition 2.13 (Properties of the De-
rivative). Let f, g : R→ R be differentiable
functions. Let c ∈ R be a constant.

• d
dx

[cf(x)] = c d
dx
f(x).

• d
dx

(f(x) + g(x)) =
(
d
dx
f(x)

)
+
(
d
dx
g(x)

)
• d

dx
(f(x)− g(x)) =

(
d
dx
f(x)

)
−
(
d
dx
g(x)

)
.

• (Product rule)
d

dx
[f(x)g(x)] = f ′(x)g(x) + g′(x)f(x).

• (Quotient rule) If g(x) 6= 0, then

d

dx

[
f(x)

g(x)

]
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
.

• (Chain rule) If f, g : R→ R are differentiable, then

d

dx
[f(g(x))] = f ′(g(x))g′(x).

Writing u = g(x), and y = f(g(x)), we can also write this as

dy

dx
=
dy

du

du

dx
.

Remark 2.14. The quotient rule can be memorized with the mnemonic “low d-hi minus hi
d-low over low squared.”

Example 2.15.

d

dx
(x4 + 3x2 + 2x1/2 + 1) = (

d

dx
x4) + 3(

d

dx
x2) + 2(

d

dx
x1/2) + (

d

dx
1) = 4x3 + 6x+ x−1/2.

Example 2.16. Let f(x) = x2−2x+1 = (x−1)2. Note that f ′(x) = 2x−2 = 2(x−1). So,
when x > 1, f ′(x) > 0, and f is increasing. And when x < 1, f ′(x) < 0, and f is decreasing.
Finally, when x = 1, f ′(x) = 0, so f is neither increasing nor decreasing, and the tangent
line to f is horizontal.
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Example 2.17. Let f(x) = x3 + x and let g(x) = x1/2 − 3. Then (d/dx)(f(x)g(x)) =
(d/dx)[(x3 + x)(x1/2 − 3)] = (x3 + x)(x−1/2/2) + (x1/2 − 3)(3x2 + 1).

Example 2.18. Let f(x) = x3 and let g(x) = x1/2−3. Then (d/dx)(f(g(x))) = (d/dx)(x1/2−
3)3 = 3(x1/2 − 3)2(1/2)x−1/2.

Example 2.19. Let f(x) = x
x2+1

. Then f ′(x) =
(x2+1) d

dx
(x)−x d

dx
(x2+1)

(x2+1)2
= (x2+1)−x(2x)

(x2+1)2
.

Example 2.20. Let f(x) = 1
x3+2

. Then f ′(x) =
(x3+2) d

dx
(1)−1 d

dx
(x3+2)

(x3+2)2
= −3x2

(x3+2)2
.

Proof of the Product Rule. Let x, h ∈ R. Then

f(x+ h)g(x+ h)− f(x)g(x)

h

=
f(x+ h)g(x+ h)− f(x)g(x+ h) + g(x+ h)f(x)− f(x)g(x)

h

=
f(x+ h)g(x+ h)− f(x)g(x+ h)

h
+
g(x+ h)f(x)− f(x)g(x)

h

= g(x+ h)
f(x+ h)− f(x)

h
+ f(x)

g(x+ h)− g(x)

h
.

Since g is differentiable, g is continuous by Proposition 2.10, so that limh→0 g(x+h) = g(x).
Applying our limit laws (which ones, and how are they justified?), we get

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

=

(
lim
h→0

g(x+ h)
f(x+ h)− f(x)

h

)
+

(
lim
h→0

f(x)
g(x+ h)− g(x)

h

)
= g(x)f ′(x) + f(x)g′(x).

�

Proof of the Quotient Rule. Let x such that g(x) 6= 0. We first show that (1/g(x)) is differ-
entiable, and

d

dx

[
1

g(x)

]
= − g′(x)

(g(x))2
. (∗)

Observe,

1

h

(
1

g(x+ h)
− 1

g(x)

)
=

1

h

(
g(x)

g(x)g(x+ h)
− g(x+ h)

g(x)g(x+ h)

)
=
g(x)− g(x+ h)

h

1

g(x)g(x+ h)
. (∗∗)

Since g is differentiable, g is continuous by Proposition 2.10, so limh→0 g(x + h) = g(x).
Using our quotient limit law,

lim
h→0

1

g(x+ h)
=

1

limh→0 g(x+ h)
=

1

g(x)
.
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So, taking the limit of (∗∗), and using our limit law for products,

lim
h→0

1

h

(
1

g(x+ h)
− 1

g(x)

)
=

(
lim
h→0

g(x)− g(x+ h)

h

)(
lim
h→0

1

g(x)g(x+ h)

)
=

g′(x)

(g(x))2
.

Since limh→0
1
h

(
1

g(x+h)
− 1

g(x)

)
exists, 1/g(x) is differentiable, and formula (∗) is proven.

We can now conclude by using the product rule. Observe

d

dx

(
f(x)

1

g(x)

)
= f(x)

d

dx

(
1

g(x)

)
+ f ′(x)

1

g(x)

= −f(x)
g′(x)

(g(x))2
+ f ′(x)

g(x)

(g(x))2
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
.

�

Proof sketch of the Chain Rule.

d

dx
f(g(x)) = lim

h→0

f(g(x+ h))− f(g(x))

h

=

(
lim
h→0

f(g(x+ h))− f(g(x))

g(x+ h)− g(x)

)(
lim
h→0

g(x+ h)− g(x)

h

)
=

(
lim

y→g(x)

f(y)− f(g(x))

y − g(x)

)(
lim
h→0

g(x+ h)− g(x)

h

)
= f ′(g(x))g′(x).

�

Corollary 2.21. Let f : R → R be differentiable. Let n be a positive integer, let m, b be
constants. Then

• d
dx

(f(x))n = n(f(x))n−1f ′(x).

• d
dx
f(xn) = f ′(xn)nxn−1.

• d
dx
f(mx+ b) = mf ′(mx+ b).

x

y

1 2 3

1

2

3

f(x) = (1/3)x3

f ′(x) = x2

f ′′(x) = 2x

f ′′′(x) = 2

2.4. Higher Derivatives. Let f : R → R.
Recall that f ′ is also a function, and f ′ > 0
when f is increasing, while f ′ < 0 when f
is decreasing. Also, if f(t) represents the
position of an object at time t, then f ′(t)
is the velocity of the object at time t, since
f ′(t) is the rate of change of the position
over time. We can also consider the rate
of change of the velocity over time, which
is known as acceleration. That is, we can
consider the derivative (d/dt)f ′(t) of f ′(t) to
be the acceleration of the object at time t.
We denote this second derivative as f ′′(t).
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Definition 2.22 (Higher Derivatives).
Let f : R → R. We define the second de-
rivative of f at the point x ∈ R by

f ′′(x) = (d/dx)f ′(x) =
d2

dx2
f(x).

t

y

1 2 3

5

10

15

r(t) = −4.9t2 + 5t+ 10

r′(t) = −9.8t+ 5

r′′(t) = −9.8

We similarly define the third derivative of
f by

f ′′′(x) = (d/dx)f ′′(x) =
d3

dx3
f(x),

we define the fourth derivative of f by
f (4)(x) = (d/dx)f ′′′(x) = d4f(x)/dx4, and
so on. In general, for any positive inte-
ger n, we define the nth derivative of f by
f (n)(x) = (d/dx)f (n−1)(x) = dn

dxn
f(x).

Example 2.23. Let f(x) = x3 − 3x + 1.
Then f ′(x) = 3x2 − 3, f ′′(x) = 6x, f ′′′(x) =
6, f (4)(x) = 0, f (5)(x) = 0, and all higher
derivatives of f are zero.

Example 2.24. Suppose you throw a base-
ball vertically in the air, with initial upward
velocity v0 and initial position r0 (and we ne-
glect air friction). Then, the position of the
baseball (in meters) at time t (in seconds) is

r(t) = r0 + tv0 − (9.8/2)t2.

Note that r(0) = r0, r
′(0) = v0, and r′′(t) = −9.8. That is, for any time t, the acceleration of

the baseball (due to gravity) is constant. Also, all higher derivatives of r are zero: r′′′(t) = 0,
r(4)(t) = 0, and so on.

2.5. Exponential Functions. From our previous courses (or our calculators), we should
have a good understanding of the meaning of the following numbers

21 = 2, 32 = 9,

6−1 = 1/6, (1/2)1.5 = 2−3/2 ≈ 0.354.

Perhaps it is less obvious what is meant by the numbers

2π, 00, (−1)
√
2.

We will eventually understand the first two numbers, but the last one will not be discussed in
this class (though calculators seem to have an idea of what the last number should be). We
would like to give a general treatment of numbers of this sort, since they arise so frequently.
We therefore will discuss exponential functions below. There are several ways to introduce
exponential functions, and we will try to describe these different presentations later on, since
they are all useful.
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Definition 2.25. Let b > 0 with b 6= 1. Let x be a real number. An exponential function
is a function of the form

f(x) = bx.

(Since 1x = 1 for all real numbers x, the case b = 1 is excluded.)

Here are some properties of exponential functions.

Proposition 2.26 (Properties of Exponential Functions). Let b > 0, let x, y be real
numbers, let n be a positive integer, and let f(x) = bx.

• Exponential functions are always positive: bx > 0 for all real numbers x.
• If b > 0 with b 6= 1, the range of f(x) = bx is the set of all positive real numbers.
• If b > 1, then f(x) = bx is increasing. If 0 < b < 1, then f is decreasing.
• b0 = 1.
• bx+y = bxby.
• bx

by
= bx−y.

• b−x = 1
bx

.

• (bx)y = b(xy).

• b1/n = n
√
b.

2.5.1. Derivatives of Exponential Functions. Let b > 0, let x be a real number, and let
f(x) = bx. Let’s try to compute the derivative of f(x).

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

bx+h − bx

h
= lim

h→0

bxbh − bx

h

= lim
h→0

bx
bh − 1

h
= bx lim

h→0

bh − 1

h
= bxm(b).

Here we defined m(b) = limh→0
bh−1
h

. In summary,

Proposition 2.27. Let b > 0. The function f(x) = bx is proportional to its own derivative.
That is,

f ′(x) = m(b)f(x).

We will compute m(b) later on, but for now, let’s find a case where m(b) = 1.

x

y

1 2 3

1

2

3 f(x) = 2x

f(x) = ex

f(x) = (1.3)x

Note that m(1) = 0, m(3) seems larger
than 1, and m seems to be continuous. So,
by the Intermediate Value Theorem, there
seems to be a unique number 0 < e < 3
such that m(e) = 1. In summary,

Proposition 2.28. There is a unique posi-
tive real number e such that

d

dx
ex = ex.

Also, e ≈ 2.718281828 . . ..

Remark 2.29. Let b > 0, f(x) = bx. Then f(0) = 0, and f ′(0) = m(b) is the slope of f at
x = 0.
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Remark 2.30. The number e was actually discovered in an investigation related to com-
pound interest. We will discuss this later on, but we note for now that

e = lim
n→∞

(
1 +

1

n

)n
.

n 1 2 3 4 5 · · · 10 · · · 100 · · · 1000 · · ·(
1 + 1

n

)n
2 2.25 2.3704 2.4414 2.4883 · · · 2.5937 · · · 2.7048 · · · 2.7169 · · ·

And more generally,

ex = lim
n→∞

(
1 +

x

n

)n
.

The last formula is natural in the following sense. Suppose I have 100 dollars in a bank that
computes interest compounded once a year, at a 6 percent interest rate. After a year, I then
have

100(1 + .06).

If instead, the bank compounds the interest daily at the 6 percent rate, then after a year I
have

100(1 + .06/(365))365

If instead, the bank compounds the interest every second at the 6 percent rate, then after a
year I have

100(1 + .06/(31536000))31536000

So, for x = .06, 100ex computes the money that I have after a year when the interest rate is
x, and when the compounding time goes to zero.

Proposition 2.31. Let g : R→ R be a function. Then

d

dx
eg(x) = g′(x)eg(x).

In particular, for c, d constants, we have (d/dx)ecx+d = cecx+d.

x

y

1 2 3

1

2

3

f(x) = x3

f−1(x) = x1/3

2.6. Inverse Functions. Let f be a real
valued function on the real line. An inverse
function for f does not always exist. If an
inverse function for f exists, it will un-do
the effect of f . For example, the function
f(x) = x3 has an inverse f−1(x) = x1/3.
Note that

f(f−1(x)) = (x1/3)3 = x,

f−1(f(x)) = (x3)1/3 = x.

The function f(x) = x3 is a bit special, in
that it actually has an inverse function. To
see what makes this function special, let’s
consider an example that does not have an
inverse. Consider the function f(x) = x2 on
the whole real line. Note that f(2) = f(−2) = 4. This implies that f does not have an
inverse. If we could find a function f−1 that un-does the effect of f , then when we apply f−1
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to the equality f(2) = f(−2), we would get 2 = −2, which is clearly false. Let’s therefore
take this obstruction to creating an inverse, and turn it into a definition.

Definition 2.32. Let f be a function with domain D and range R. We say that f is one-
to-one if and only if, for every c ∈ R, there exists exactly one x ∈ D such that f(x) = c.

Definition 2.33. Let f be a function with domain D and range R. If there is a function g
with domain R and range D such that

g(f(x)) = x for all x ∈ D and f(g(x)) = x for all x ∈ R,
then f is said to be invertible. The function g is called the inverse of f , and we denote it
by g = f−1.

Remark 2.34. If f is a one-to-one function with domain D and range R, then f is invertible.
If f is not one-to-one, then f is not invertible.

Example 2.35. The function f(x) = x3 with domain (−∞,∞) and range (−∞,∞) is one-
to-one, since any real number c has exactly one cube root x with x3 = c. So, f is invertible.
As we showed above, f−1(x) = x1/3.

Example 2.36. The function f(x) = x2 with domain (−∞,∞) and range [0,∞) is not one-
to-one, since, as we saw above, the number 4 has two distinct numbers 2 and −2 such that
f(2) = f(−2) = 4. So, f is not invertible when it has the domain (−∞,∞). However, if we
restrict the domain of f , so that we consider f(x) = x2 with domain [0,∞) and range [0,∞),
then f is one-to-one. Every nonnegative number c has exactly one nonnegative square root
x such that x2 = c. So, f is invertible when it has the domain [0,∞). In this case, f−1

is the square root function, which we write as f−1(x) =
√
x. (Note that the square root

function
√
x is distinct from the concept of “the square roots of x.” In particular,

√
x is only

defined when x ≥ 0, and it holds that
√
x2 = |x| for any real number x. So, if x is negative,√

x2 6= x. Moreover, the answer to “What are the square roots of 9” is 3 and −3.)

Remark 2.37 (Horizontal Line Test). Let f be a function with domain D and range R.
Suppose we look at the graph of f over the domain D. Then f is one-to-one if and only if
every horizontal line passes through the graph of f in at most one point.

Remark 2.38. The function f(x) = x3 with domain (−∞,∞) satisfies the horizontal line
test. The function f(x) = x2 with domain (−∞,∞) does not satisfy the horizontal line test.

Proposition 2.39. Let f be a strictly increasing function. That is, if x < y, then f(x) <
f(y). Then f is one-to-one.

Remark 2.40. Recall that a continuously differentiable function with domain (−∞,∞)
such that f ′(x) > 0 is increasing. This follows from the Mean Value Theorem (Theorem
3.18 below). If we had x < y with f(x) ≥ f(y), then there would be some c with x < c < y
such that f ′(c) = (f(y) − f(x))/(y − x) ≤ 0. But f ′(c) > 0, so we must have f(x) < f(y),
so that f is strictly increasing.

Remark 2.41. Since (d/dx)ex = ex > 0, the function ex is increasing on (−∞,∞). So, this
proposition implies that the exponential function is one-to-one, so that it has an inverse.
Similarly, if b > 1, then (d/dx)bx = m(b)bx, and m(b) > 0, so bx is increasing and invertible.
And if b < 1, then (d/dx)bx = m(b)bx and m(b) < 0, so −bx is increasing and invertible.

22



To better understand the inverse of the exponential function, let’s consider the graph of
the inverse of the exponential function.

Remark 2.42. Suppose y = f(x) is an invertible function. Then (x, y) = (x, f(x)) is a
point in the graph of f . Since f is invertible, we can apply f−1 to both sides of y = f(x) to
get f−1(y) = x. So, the point (y, x) = (y, f−1(y)) is in the graph of f−1. So, whenever the
graph of f contains (x, y), the graph of f−1 contains (y, x). Note that (y, x) is the reflection
of the point (x, y) across the line y = x. Graphically, this means that if we plot the function
y = f(x), then the graph of the inverse function f−1 is the reflection of the graph of f across
the line y = x.

Example 2.43. Let’s plot the function f(x) = ex. Note that f(0) = 1, and ex > x for all
x. This follows since e0 > 0, and since f ′(x) = ex > 1 for all x > 0, while (d/dx)x = 1. To
find the graph of the inverse function f−1, we then just reflect the graph of f across the line
y = x.

x

y

1 2 3

1

2

3

f(x) = ex

f−1(x) = ln(x)

A function and its inverse are not only re-
lated with respect to their graphs, but also with
respect to their derivatives, as we now show.

Theorem 2.44 (Inverse Differentiation).
Let f be a function of a real variable with in-
verse g = f−1. If x is in the domain of g, and
if f ′(g(x)) 6= 0, then g′(x) exists, and

g′(x) =
1

f ′(g(x))
.

Remark 2.45. The proof of this identity fol-
lows from the Chain Rule. If we additionally
assume that g is differentiable at x, then the
Chain rule applied to f(g(x)) = x says that

f ′(g(x)) · g′(x) =
d

dx
f(g(x)) =

d

dx
x = 1.

That is, g′(x) = 1/(f ′(g(x))).

Remark 2.46. This Theorem is another tool that will allow us to understand the inverse
of the exponential function. In particular, it will allow us to compute the derivative of the
inverse of the exponential function.

Example 2.47. Let’s consider again the function f(x) = x3 on (−∞,∞), where f−1(x) =
x1/3. Then f ′(x) = 3x2, so

(f−1)′(x) = [f ′(f−1(x))]−1 = [3(f−1(x))2]−1 = x−2/3/3.

However, we already “knew” that (f−1)′(x) = (1/3)x−2/3, by our usual differentiation rules.

Remark 2.48. You should not confuse the notation f−1, which denotes the inverse function
of f , with a number to the −1 power. That is, it is typically true that f−1(x) 6= (f(x))−1.
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2.7. Logarithms. As discussed in Remark 2.41, if b > 0 with b 6= 1, then the function
f(x) = bx is invertible. We write f−1(x) = logb(x). By the definition of invertibility, we have

Proposition 2.49.

blogb x = x, logb b
x = x.

Remark 2.50. When b = e, we write logb(x) = ln(x), and we call ln(x) the natural
logarithm.

Example 2.51. Since 23 = 8, we have log2(8) = log2(2
3) = 3, and 2log2 8 = 8.

Since 3−2 = 1/9, we have log3(1/9) = log3(3
−2) = −2, and 3log3(1/9) = 1/9.

Let b > 0 with b 6= 1. Let f(x) = bx. If b > 1, then

lim
x→∞

bx =∞, lim
x→−∞

bx = lim
x→∞

1

bx
= 0.

So, f has domain (−∞,∞) and range (0,∞). So, if b > 1, we can see from the graph of logb
that

lim
x→∞

logb(x) =∞, lim
x→0+

logb(x) = −∞.

If b < 1, then

lim
x→∞

bx = 0, lim
x→−∞

bx = lim
x→∞

1

bx
=∞.

So, f has domain (−∞,∞) and range (0,∞). And, if b < 1, we can see from the graph of
logb that

lim
x→∞

logb(x) = −∞, lim
x→0+

logb(x) = +∞.

Remark 2.52. The logarithm of a negative number is undefined. To see why, note that if
we could write x = log3(−2), then by exponentiation both sides, we would have 3x = −2.
But this equation has no real solution.

Here is a summary of properties of logarithm functions. These properties typically follow
by the corresponding properties of the exponential functions

Proposition 2.53 (Properties of Logarithm Functions). Let b > 0, with b 6= 1, let x, y
be positive real numbers, let n be a positive integer, and let f(x) = logb(x).

• The domain of f(x) = logb(x) is the set of all positive numbers, and the range of f
is the set of all real numbers
• If b > 1, then f(x) = logb(x) is increasing. If 0 < b < 1, then f is decreasing.
• logb(1) = 0.
• logb(xy) = logb(x) + logb(y)
• logb(x/y) = logb(x)− logb(y).
• logb(1/x) = − logb(x).
• logb(x

n) = n logb x.

Moreover, if a > 0 with a 6= 1, then the logarithm functions are proportional in the following
sense

logb(x) =
loga(x)

loga(b)
, logb(x) =

lnx

ln b
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To see why some of these properties are true, recall that b0 = 1. So, taking the log of both
sides, logb(1) = 0, proving the third property. To prove the fourth property, note that

blogb(xy) = xy = (blogb(x))(blogb(y)) = blogb(x)+logb(y).

So, taking logb of both sides, we get logb(xy) = logb(x)+logb(y). The other properties follow
in a similar way.

To see the final property, note that

eln(b) logb(x) = (eln(b))logb(x) = blogb(x) = x.

So, taking ln of both sides shows that ln(b) logb(x) = ln(x), proving the final property. This
property then implies that

logb(x) =
lnx

ln b
=

(lnx)/(ln a)

(ln b)/(ln a)
=

loga(x)

loga(b)
.

Example 2.54.

log6(9) + log6(4) = log6(9 · 4) = log6(36) = log6(6
2) = 2.

Using the properties of the logarithm, we can now finally differentiate exponential functions
and logarithms.

Theorem 2.55 (Derivative of Exponential). Let b > 0. Then

d

dx
bx = (ln b)bx.

This formula follows readily from the properties of the logarithm, as follows.

d

dx
bx =

d

dx
(eln b)x =

d

dx
ex ln b = (ln b)ex ln b = (ln b)(eln b)x = (ln b)bx.

We can then use the inverse differentiation formula to differentiate the logarithm as follows.

Theorem 2.56 (Derivative of Logarithm). Let x > 0. Then

d

dx
lnx =

1

x
.

Consequently, for any b > 0 with b 6= 1, since logb(x) = lnx
ln b

, we have

d

dx
logb(x) =

1

x ln b
.

To justify this differentiation, we apply the inverse differentiation formula (Theorem 2.44)
where f(x) = ex and f−1(x) = lnx to get

d

dx
lnx =

1

f ′(f−1(x))
=

1

ef−1(x)
=

1

elnx
=

1

x
.

Remark 2.57. Let f be a positive function. From the chain rule, we have

d

dx
ln f(x) =

f ′(x)

f(x)
.

This formula can be useful for calculating derivatives.
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Example 2.58. Let j be a positive number. Let’s calculate the derivative of

f(x) = xj.

Strictly speaking, you never learned why the formula f ′(x) = jxj−1 holds. Let’s see why it
holds now. Let x > 0. Then ln f(x) = j lnx. So, differentiating both sides and using the
above remark,

f ′(x)

f(x)
=
j

x
.

That is, f ′(x) = f(x)j
x

= jxj−1.
We can carry this method further to more exotic functions that are not covered by any

rules we have learned before. Consider

f(x) = xx.

You might think the Chain Rule applies, but I do not see an obvious method for applying
the chain rule. You can use some properties of the logarithm function to write

d

dx
xx =

d

dx
ex lnx = ex lnx

d

dx
(x lnx) = ex lnx(1 + ln x) = xx(1 + ln x).

Alternately, we can write

f ′(x)

f(x)
=

d

dx
ln(xx) =

d

dx
(x lnx) = 1 + lnx.

So that, once again, f ′(x) = f(x)(1 + ln x) = xx(1 + ln x).

Remark 2.59. Note that for t < 0, (d/dt) ln(−t) = 1/t, so for any t 6= 0, we have

d

dt
ln |t| = 1

t
So, from the chain rule, if f is a nonzero function, then

d

dt
ln |f(t)| = f ′(t)

f(t)
.

2.8. Application: Exponential Growth. One of the many reasons to care about the
exponential function is that it appears in so many applications. For example, bacteria grow
at an exponential rate (if they have unlimited food and space). Money in a bank account
grows at an exponential rate. But also, money devalues at an exponential rate (roughly
three percent per year in the US.) This last observation (known as inflation) explains why
most common material possessions “used to cost a nickel and a dime.” Specifically, if money
loses roughly three percent of its value per year, then the current value of one dollar will
be equal to the value of two dollars in roughly twenty years. Put another way, the amount
of goods you can buy with a fixed amount of money gets cut in half, roughly every twenty
years. So, one hundred years ago, money was roughly 25 = 32 times more valuable. A dime
roughly a hundred years ago could buy the same amount as around three dollars now. A
20, 000 dollar car now would cost roughly 600 dollars one hundred years ago. And indeed,
the latter number is comparable to the original price of a Ford Model T. To compare money
at different historical periods, we therefore hear monetary amounts that have been inflation
adjusted, which means that they take into account this change in the value of money over
time.
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Let’s be more precise about exponential growth. Let t, k and P0 be real numbers, and
define

P (t) = P0e
kt.

If k > 0, we say that P grows exponentially. If k < 0, we say that P decays exponen-
tially.

For example, if P (t) denotes a population of bacteria at time t, then P (0) = P0 is the
population of the bacteria at time zero, and k > 0 represents the rate of growth of the
bacteria.

Note that P (t) satisfies the differential equation

P ′(t) = kP (t), P (0) = P0.

It turns out that this differential equation uniquely characterizes the exponential function.

Theorem 2.60 (Differential Equation Characterization of Exponential). Let y(t) be
a continuously differentiable function of t such that

y′(t) = ky(t), y(0) = P0.

Then we must have y(t) = P0e
kt.

To justify this statement, we differentiate y(t)e−kt to get

d

dt
(y(t)e−kt) = −ky(t)e−kt + y′(t)e−kt = e−kt(−ky(t) + ky(t)) = 0.

Therefore, there exists a constant C such that y(t)e−kt = C, so that y(t) = Cekt. Since
P0 = y(0) = Ce0 = C, we conclude that C = P0, so that y(t) = P0e

kt, as desired.

Remark 2.61. We interpret this characterization of the exponential function as follows.
Suppose we have a quantity y(t) whose growth is proportional to y(t). Then y(t) must
be an exponential function. In this way, the exponential function arises naturally when
discussing the growth of bacteria, interest rates, radioactive decay, chemical kinetics, and so
on. However, more complicated differential equations have more exotic solutions.

Example 2.62. Certain therapeutic drugs in the body are filtered by the kidneys at a rate
which is proportional to their concentration in the blood stream. That is, if y(t) is the
concentration of the drug at time t, then there exists a constant k < 0 such that dy/dt = ky.
Therefore, y(t) = y0e

kt.

Example 2.63. In chemistry class, we learned about “first order” reactions. In these reac-
tions, the concentration y(t) of a certain chemical is proportional to its rate of change. So,
as before, dy/dt = ky(t) and then y(t) = y0e

kt.

Exercise 2.64. In chemistry, a “second order” reaction satisfies dy/dt = k(y(t))2. If y0 =
y(0) 6= 0, verify that we must have

y(t) =
1

y−10 − kt
.

Example 2.65. Radioactive isotopes decay at a rate that is proportional to their concen-
tration.
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As we discussed in the introduction, it is helpful to think about the doubling time (if
k > 0) or half-life (if k < 0) of an exponential function P (t) = P0e

kt. Given any real t, the
doubling time T > 0 of P (t) = P0e

kt is a time such that{
P (t+ T ) = 2P (t) , if k > 0

P (t+ T ) = (1/2)P (t) , if k < 0
.

It is evident that we have

T =
ln 2

|k|
.

To see this, note that

P

(
t+

ln 2

|k|

)
= P (t)e

k ln 2
|k| = P (t)2k/|k| =

{
2P (t) , if k > 0

(1/2)P (t) , if k < 0
.

Example 2.66. A radioactive isotope decays exponentially with a half-life of 4 days. Sup-
pose we want to know how long it takes for 80% of the isotope to decay. In this case, we
have P (t) = P0e

−kt where k > 0, and the half life satisfies 4 = (ln 2)/k, so that k = (ln 2)/4.
That is,

P (t) = P0e
−t(ln 2)/4 =

P0

2t/4
.

We want to find t such that P (t)/P0 = .2. That is, we need to solve 2−t/4 = .2, i.e.
(−t/4) ln 2 = ln(1/5), so t = 4 ln 5

ln 2
≈ 9.2877. Note that this answer is reasonable since the

doubling time is 4 days, so it takes 8 days to get 75% decay, so 80% decay should take a bit
longer than 8 days (but not more than 12, which would have 87.5% decay).

2.9. Application: Compound Interest. As we discussed above, if I have an account
that starts with P0 dollars at time t = 0 which earns an annual interest rate r which is
compounded M times during the year, then the amount of money in the account after t
years is

P (t) = P0

(
1 +

r

M

)Mt

.

Also, using the limit formula for e

er = lim
M→∞

(
1 +

r

M

)M
,

we see that as the compounding time per year M goes to infinity, we actually reach some
finite limiting quantity. That is,

lim
M→∞

P (t) = P0

[
lim
M→∞

(
1 +

r

M

)M]t
= P0(e

r)t = P0e
rt.

We therefore say that, if an interest rate is compounded continuously at the rate r, then

P (t) = P0e
rt.

In fact, such a consideration led to the very discovery of the constant e.
We will now return to some of our economic discussions related to interest rates and

deflation.

28



Definition 2.67. Suppose there is a (continuously compounded) interest rate r > 0 at which
I can lend or borrow money. The present value of an amount P of money that is received
at time t is defined as Pe−rt.

Example 2.68. If r = .1, and if you agree to give me $1000 twenty years from now, then
this would be equivalent to giving me 1000e−.1(20) = 1000e−2 ≈ $135 right now (since I could
put this money into an account that earns 10% interest for twenty years.)

Example 2.69. Returning to our discussion of inflation, if r = .03 is the rate of inflation of
money, then money becomes half as valuable roughly every (ln 2)/.03 ≈ 23 years. So, if you
agree to buy me a $20000 car in 115 years, this would be equivalent to buying a car worth
20000e−.03(115) ≈ 635 dollars right now.

To some extent, we can think of an income as a continuous function R(t), in which case
we can compute the present value of that income as follows.

2.10. Application: Terminal Velocity. Suppose an object of mass m is falling due to
the force of gravity −mg in the negative y-direction. The force due to air friction is then
−kv where v is the velocity of the object and k > 0. That is, the air friction opposes the
velocity of the object. The total force on the object is then −mg − kv. If a denotes the
acceleration of the object, then a = v′ and F = ma, so ma = mv′ = −mg − kv. That is,
v′(t) = −g − kv(t)/m. That is,

v′(t) = −g − kv(t)/m = (−k/m)(v(t) + gm/k).

If f(t) = v(t) + gm/k, then f ′(t) = v′(t) = (−k/m)f(t), so f(t) = Ce−kt/m. That is,

v(t) = Ce−kt/m − gm/k.
As t→∞, we see that

lim
t→∞

v(t) = −gm/k.

We therefore refer to −gm/k as the terminal velocity of the body. That is, after falling
for a while, the forces of gravity and air friction cancel each other out, and the body falls at
a constant velocity (the terminal velocity).

A similar differential equation gives Newton’s Law of Cooling.

Exercise 2.70 (Newton’s Law of Cooling). Suppose y(t) is the temperature of an object
at time t. If an object is of a different temperature than its surroundings, then the rate of
change of the object’s temperature is proportional to the difference of the temperature of
the object and the temperature of the surroundings. That is, if Y denotes the temperature
of the surroundings, and if y(0) = y0 6= Y , then there exists a constant k > 0 such that

y′(t) = −k(y(t)− Y ).

Note that if y(0) < Y , then y′(0) > 0, so that the temperature of y is increasing to the
environment’s temperature. And if y(0) > Y , then y′(0) < 0, so that y is decreasing to the
environment’s temperature.

Let f(t) = y(t) − Y . Verify that f ′(t) = −kf(t). Conclude that f(t) = y(t) − Y =
(y0 − Y )e−kt. That is, we have Newton’s Law of cooling:

y(t) = Y + (y0 − Y )e−kt.

29



t

y

1 2 3

1

2

3

f(t) = 3
1+e−2t

Exercise 2.71. The exponential growth model for bacteria is a bit unrealistic, since after a
while, the bacteria are limited by their environment and food supply. We therefore consider
the logistic growth model. Suppose y(t) is the amount of bacteria in a petri dish at time
t and k > 0 is a constant. Let C be the maximum possible population of the bacteria. We
model the growth of the bacteria by the formula

y′(t) = ky(t)(C − y(t)), y(0) = y0

So, when y is small, y′(t) is proportional to y. However, when y becomes close to C, y′

becomes very small. That is, the rate of growth of bacteria is constrained by the environment.

• Verify that the following function satisfies the above differential equation.

y(t) =
C

1 + (C−1y−10 − 1)e−kt
.

• Plot the function y(t). (What are the limits of y as t goes to +∞ and −∞?)
• Find out where y′(t) is the largest. (Hint: find the maximum of the function of y:
ky(C − y).)

The latter observation explains the “J-curve” scare for human population growth in the
1980s. At this point in time, many people were afraid that the human population would
grow too large for the earth to support us. However, it seems that we were simply observing
the maximum possible growth rate of the human population at this time (if we believe that
logistic growth models the human population reasonably well).

3. Applications of Derivatives

3.1. Linear Approximation. When we look at a very small domain of a function f near
a point a, the function f looks like a linear function. This heuristic is expressed with the
following approximation

f(x) ≈ f(a) + (x− a)f ′(a).

That is, when x is near a, the quantity f(x) is approximately equal to the quantity f(a) +
(x− a)f ′(a).
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Definition 3.1. Let f : R→ R and let a be a point in R. The linearization of f near a is
the following function of x:

L(x) = f(a) + (x− a)f ′(a).

a

x

y

f(x)

L(x)

x

y

a = 1

1

2

3

f(x) = x2

L(x) = 1 + 2(x− 1)

The expression

f(x) ≈ L(x)

is referred to as the linear approximation of f at
a. Note that y = L(x) is exactly the equation for the
tangent line to f at a.

Example 3.2. Let’s estimate (1.1)2 using linear ap-
proximation (even though we know (1.1)2 = 1.21). We
approximate f(x) = x2 by L(x) when a = 1. We have

L(x) = f(1) + (x− 1)f ′(1)

= 1 + (x− 1)(2)

= 1 + 2(x− 1).

So, using the linear approximation of f(x) at 1, we have

f(1 + .1) ≈ L(1 + .1)

= 1 + .2.

Example 3.3. Let’s estimate 1/(9.9) using linear ap-
proximation. We approximate 1/x by L(x) when a =
10. We have

L(x) = 1/10 + (x− 10)(−(10)−2) = 1/10− (x− 10)/100.

So, we have

1/(9.9) ≈ L(9.9) = 1/10− (−.1)/100 = 1/10 + 1/1000 =
101

1000
.

3.2. Extreme Values and Optimization.

Nothing takes place in the world whose meaning is not that of some maximum
or minimum.

Leonhard Euler

Given a function f , it is often desirable to find the maximum or minimum value of f .
For example, if f(x) represents the profit obtained from setting the price x of a product, we
would like to maximize the profit function f . If f represents the energy or cost of an object
moving between two points, we would like to minimize this energy or cost. Many physical
principles can be rephrased as statements about minimizing energy or some other quantity.
For example, light always travels on the path of shortest length between two points. That is,
photons minimize the length over which they travel. And so on. Thankfully there are often
very general methods for maximizing or minimizing functions. Unfortunately, these general
methods do not always work. For example, suppose the mailman has 1000 houses to visit,
and he wants to visit them in the shortest amount of time. We do not yet know an efficient
way to find the path that takes the shortest amount of time.
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Definition 3.4 (Extrema). Let D be a domain in the real line. Let f : D → R. We say
that f has an absolute maximum on D at the point c ∈ D if

f(x) ≤ f(c) for allx ∈ D.
We say that f has an absolute minimum on D at the point c ∈ D if

f(x) ≥ f(c) for allx ∈ D.

x

y

1

2

3

f(x) = x2

1 2

absolute

absolute minimum

maximum

We refer to the absolute minimum and ab-
solute maximum values of f as the extreme
values or extrema of f . The process of
finding the extrema of f is called optimiza-
tion.

Since we would often like to find the ex-
trema of a function f , let’s first look at some
examples where the extrema cannot possibly
be found (since they don’t exist).

Example 3.5. Let f(x) = 1/x where f has
domain (0, 1). Then f has no absolute max-
imum since limx→0+ f(x) =∞. So, a discon-
tinuity of a function can interfere with the
existence of extrema.

Example 3.6. Let f(x) = x2 where f has domain [0, 2]. Then the absolute maximum of f
is 4, which occurs at x = 2. And the absolutely minimum of f is 0, which occurs at x = 0.

Let f(x) = x2 where f has domain (0, 2). Then the absolute maximum of f does not exist.
And the absolutely minimum of f does not exist either. Given any point c ∈ (0, 2), there
are always points a, b ∈ (0, 2) with a < c < b, so that f(a) < f(c) < f(b). So, an extreme
value cannot occur at any point in (0, 2). Even though f is continuous, the open interval is
interfering with the existence of extrema.

In summary, if we want extrema to exist, it looks like we need our function to be continuous,
and we cannot consider a domain which is an open interval. Fortunately, being continuous
on a closed interval guarantees that the extrema exist.

Theorem 3.7 (Extreme Value Theorem). Let a < b. Let f : [a, b]→ R be a continuous
function. Then f achieves its minimum and maximum values. More specifically, there exist
c, d ∈ [a, b] such that: for all x ∈ [a, b], f(c) ≤ f(x) ≤ f(d).

The proof of this Theorem is outside the scope of this course.
Sometimes it is also desirable to find extreme values for a function when it is restricted to

a small domain. Such points are called local extrema.

Definition 3.8 (Local Extrema). Let f : R→ R. We say that f has an local maximum
at the point c ∈ R if

f(x) ≤ f(c) for all points x in some open interval containing c.

We say that f has an local minimum at the point c ∈ R if

f(x) ≥ f(c) for all points x in some open interval containing c.
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Finding local extrema often reduces to the problem
of finding critical points.

Definition 3.9 (Critical Point). Let f : R → R.
We say that f has a critical point at the point c if
f ′(c) = 0 or f ′(c) does not exist.

Example 3.10. Let f(x) = x2. Then f ′(x) = 2x.
So, f ′(x) = 0 only when x = 0. That is, x = 0 is the
only critical point of f . Note that x = 0 is also the
absolute minimum for f with the domain R.

Example 3.11. Let f(x) = |x|. If x < 0, then
f ′(x) = −1. If x > 0, then f ′(x) = 1. If x = 0,
then f ′(x) is undefined. So, x = 0 is the only criti-
cal point of f . Note that x = 0 is also the absolute
minimum for f with the domain R.

Example 3.12. Let f(x) = x3. Then f ′(x) = 3x2.
So, f ′(x) = 0 only when x = 0. That is, x = 0 is the
only critical point of f . Note that x = 0 is neither
a local maximum nor a local minimum of f . So, a
critical point is not necessarily a local extremum.

We have just seen that a critical point is not neces-
sarily a local extremum. However, a local extremum
is always a critical point.

Theorem 3.13. Let f : R → R. If a local minimum
or maximum of f occurs at c, then c is a critical point
of f .

Proof. Suppose c is a local maximum of f and f ′(c)
exists. Then c is an absolute maximum of f on some
open interval (c−b, c+b) where b > 0. Let h ∈ (−b, b).
Then f(x + h) ≤ f(c), since c is a local maximum of
f . If h > 0, we have (f(x+ h)− f(c))/h ≥ 0. So,

lim
h→0+

f(x+ h)− f(c)

h
≥ 0.

If h < 0, we have (f(x+ h)− f(c))/h ≤ 0. So,

lim
h→0−

f(x+ h)− f(c)

h
≤ 0.

We therefore have 0 ≤ f ′(c) ≤ 0, so that f ′(c) = 0 (if
f ′(c) exists). �

This Theorem allows us to find absolute extrema on closed intervals.

Proposition 3.14 (Extreme Values on Closed Intervals). Let a < b. Let f : [a, b]→ R
be continuous. Then the extreme values of f on [a, b] occur either at critical points of f , or
at the endpoints a, b of the interval [a, b].
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Proof. Let c be a point where an extreme value of f occurs, and assume c 6= a and c 6= b.
Then c is a local extremum of f on (a, b). So, c is a critical point of f by the Theorem
3.13. �
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We now apply Theorem 3.14 to a few examples.

Example 3.15. Let’s find the extreme values of
f(x) = x2 − 3x + 1 on the interval [0, 2]. We have
f ′(x) = 2x− 3, so that f ′(x) = 0 only when x = 3/2.
So, the only critical point of f occurs at x = 3/2.
So, the extreme values of f must occur at elements of
the following list: 0, 3/2, 2. We now check the values
of f at these points. We have f(0) = 1, f(3/2) =
(9/4)− (9/2) + 1 = −5/4, and f(2) = 4−6 + 1 = −1.

So the absolute maximum of f on [0, 2] is 1, which
occurs at x = 0. And the absolute minimum of f on
[0, 2] is −5/4 which occurs at x = 3/2.

Example 3.16. Let’s find the extreme values of
f(x) = x3/6 on the interval [−π/2, π/2]. We have
f ′(x) = x2/2, so that f ′(x) = 0 only when x = 0. So,
x = 0 is the only critical point of f . So, the extreme
values of f must occur at elements of the following
list: −π/2, 0, π/2. We now check the values of f at
these points. We have f(0) = 0, f(π/2) = π3/48, and
f(−π/2) = −π3/48.

So the absolute maximum of f on [−π/2, π/2] is
π3/48, which occurs at x = π/2. And the absolute
minimum of f on [−π/2π/1] is −π3/48 which occurs
at x = −π/2.

3.3. Mean Value Theorem. The following theo-
rems allow us to better understand the graphs of func-
tions.

Theorem 3.17 (Rolle’s Theorem). Let f : [a, b]→
R be continuous function that is differentiable on
(a, b) with f(a) = f(b) = 0. Then there exists c with
c ∈ (a, b) and f ′(c) = 0.

Proof. From the Extreme Value Theorem, let c be an
extreme value of f on [a, b]. If an extreme value c
occurs in (a, b), then f ′(c) = 0 by Theorem 3.13. If
not, both the max and min occur at the endpoints
a, b, which implies that f is a constant function. But
if f is a constant, then f ′ = 0 everywhere. So, in any
case, there is a c ∈ (a, b) with f ′(c) = 0. �
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Theorem 3.18. (Mean Value Theorem) Let f : [a, b] → R be continuous function that
is differentiable on (a, b). Then there exists c with c ∈ (a, b) and

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let g(x) = f(x)− f(a)− (x− a)((f(b)− f(a))/(b− a)). Then g(a) = g(b) = 0. So,
by applying Rolle’s Theorem, Theorem 3.17, to g, there exists c ∈ (a, b) such that

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
.

That is, f ′(c) = (f(b)− f(a))/(b− a). �

Remark 3.19. Rolle’s Theorem corresponds to the case f(b) = f(a) in the Mean Value
Theorem.

Example 3.20. Let f : R→ R be a differentiable function such that f(0) = 0 and f(1) = 1.
Then there is some point x ∈ (0, 1) such that f ′(x) = (f(1)− f(0))/(1− 0) = 1.
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Recall that a constant function has a de-
rivative that is zero. The converse is also
true, though we technically did not know it
to be true until now.

Corollary 3.21 (Functions with Zero
Derivative are Constant). Let a < b. Let
f : (a, b) → R be differentiable with f ′(x) =
0 for all x ∈ (a, b). Then there is a constant
C such that f(x) = C for all x ∈ (a, b).

Proof. If there is some d ∈ (a, b] with f(d) 6=
f(a), then the Mean Value Theorem says
that there is some c ∈ (a, d) with f ′(c) =
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(f(d) − f(a))/(d − a) 6= 0, a contradic-
tion. So, we must have f(d) = f(a) for all
d ∈ (a, b]. That is, f is a constant func-
tion. �

Corollary 3.22 (Two Functions with the Same Derivative Differ by a Constant).
Let a < b. Let f, g : (a, b) → R be differentiable with f ′(x) = g′(x) for all x ∈ (a, b). Then
there is a constant C such that f(x) = g(x) + C for all x ∈ (a, b).

Proof. Apply the previous Corollary to the function h(x) = f(x)−g(x). Note that h′(x) = 0,
so h(x) = C for some constant C. �

Example 3.23. Let’s find the function f such that f ′(x) = ex and such that f(0) = 2.
Recall that (d/dx)ex = ex. So, from the Corollary above, we must have f(x) = ex +C for

some constant C. Since f(0) = e0 + C = 1 + C = 2, we have C = 1. So, f(x) = ex + 1.

Example 3.24. Recall our example of an idealized trajectory. Suppose you throw a baseball
vertically in the air, with initial upward velocity v0 and initial position r0 (and we neglect
air friction). Let r(t) denote the position of the baseball (in meters) at time t (in seconds).
We know that the acceleration due to gravity is constant, so that r′′(t) = −9.8. That is,
(d/dt)r′(t) = −9.8. The function −9.8t also satisfies (d/dt)(−9.8t) = −9.8. Therefore,
r′(t) = −9.8t + C for some constant C. Since r′(0) = v0 = C, we conclude that r′(t) =
−9.8t+v0. Also, the function (−9.8/2)t2 +v0t satisfies (d/dt)[(−9.8/2)t2 +v0t] = −9.8t+v0.
So, there is some constant C1 such that r(t) = (−9.8/2)t2 + v0t+C1. Since r(0) = C1 = r0,
we have found that

r(t) = (−9.8/2)t2 + v0t+ r0.
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By examining the first and second derivatives of a
function, we can say a lot about the properties of that
function. In the previous section, we saw that the zeros
of the first derivative tell us most of the information
about the maximum and minimum values of a given
function. To see what else the derivatives tell us, see the
JAVA Applet, graph features. Below, we will describe
several tests on the first and second derivatives that
allow us to find several properties of a function, as in
this Applet.

Definition 3.25. Let f : (a, b) → R. If f(x) < f(y)
whenever x < y with x, y ∈ (a, b), we say that f is
increasing on (a, b). If f(x) > f(y) whenever x < y
with x, y ∈ (a, b), we say that f is decreasing on (a, b).
If f is increasing on (a, b), or if f is decreasing on (a, b),
we say that f is monotonic.

Proposition 3.26 (Increasing/Decreasing Test).
Let f : (a, b)→ R be differentiable.

• If f ′(x) > 0 for all x ∈ (a, b), then f is increas-
ing on (a, b).
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• If f ′(x) < 0 for all x ∈ (a, b), then f is decreas-
ing on (a, b).

Proof. We prove the first assertion by contradiction. Suppose f is not increasing but f ′ > 0
on (a, b). Then there are x, y ∈ (a, b) with x < y but f(x) ≥ f(y). That is, f(y)− f(x) ≤ 0.
By the Mean Value Theorem, there is some c ∈ (x, y) with f ′(c) = (f(y)−f(x))/(y−x) ≤ 0, a
contradiction. We conclude that f is increasing. The second assertion is proven similarly. �
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The following example applies the increas-
ing/decreasing test.

Example 3.27. Consider f(x) = x3 − 3x + 1. We
have f ′(x) = 3x2− 3 = 3(x2− 1) = 3(x+ 1)(x− 1).
So, when x < −1, f ′(x) > 0 and f is increasing;
when −1 < x < 1, f ′(x) < 0 and f is decreasing;
and when x > 1, f ′(x) > 0 and f is increasing.

Proposition 3.28 (First Derivative Test). Let
c ∈ (a, b) be a critical point for a continuous func-
tion f : (a, b) → R. Assume that f is differentiable
on (a, c) and on (c, b).

• If f ′(x) > 0 on (a, c), and if f ′(x) < 0 on (c, b), then f has a local maximum at
x = c.
• If f ′(x) < 0 on (a, c), and if f ′(x) > 0 on (c, b), then f has a local minimum at x = c.
• If f ′(x) > 0 on (a, c)∪ (c, b), or if f ′(x) < 0 on (a, c)∪ (c, b), then f does not have a

local maximum or a local minimum at x = c.

Proof. Suppose f ′(x) > 0 on (a, c) and f ′(x) < 0 on (c, b). Then f is increasing on (a, c)
and decreasing on (c, b). So, f ′(c) is a local maximum. The other assertions are proven
similarly. �

Example 3.29. Consider again f(x) = x3 − 3x + 1. Recall that when x < −1, f ′(x) > 0;
when −1 < x < 1, f ′(x) < 0; and when x > 1, f ′(x) > 0. So, x = −1 is a local maximum,
and x = 1 is a local minimum.

Example 3.30. Let f(x) = x3. Then f ′(x) = 3x2. So, f ′(0) = 0, but f ′(x) > 0 for x 6= 0.
So, 0 is not a local extremum of f .

3.4. Graph Sketching.

Definition 3.31 (Concavity). Let f : (a, b)→ R be a differentiable function.

• If f ′ is increasing on (a, b), then f is concave up. That is, if y(x) = ax+ b denotes
a tangent line to f , then f(x) ≥ y(x) for all x ∈ (a, b).
• If f ′ is decreasing on (a, b), then f is concave down. That is, if y(x) = ax + b

denotes a tangent line to f , then f(x) ≤ y(x) for all x ∈ (a, b).

Example 3.32. Let f(x) = x2. Then f ′(x) = 2x is increasing, so f is concave up.
Let f(x) = −x2. Then f ′(x) = −2x is decreasing, so f is concave down.

If f ′′ exists, and if f ′′ > 0 then f ′ is increasing, and if f ′′ < 0 then f ′ is decreasing. We
therefore get the following test.
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Proposition 3.33 (Concavity Test). Let f : (a, b) → R be a differentiable function such
that f ′′ exists on (a, b).

• If f ′′(x) > 0 on (a, b), then f is concave up on (a, b)
• If f ′′(x) < 0 on (a, b), then f is concave down on (a, b)

Definition 3.34 (Inflection Point). Let f : (a, b)→ R be a differentiable function and let
c ∈ (a, b). If f is concave up on one side of c, and if f is concave down on the other side of
c, then c is called an inflection point. If f ′′ exists on (a, b), then an inflection point occurs
when f ′′ changes sign.
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The prototypical example of an inflection point is
x = 0 for the function f(x) = x3.

Example 3.35. Let f(x) = x3. Then f ′′(x) = 6x,
so f ′′ changes sign at x = 0. That is, x = 0 is an
inflection point of f . Also, f ′′(x) < 0 when x < 0, so
f is concave down when x < 0. Similarly, f ′′(x) > 0
when x > 0 so f is concave up when x > 0.

Proposition 3.36 (Second Derivative Test). Let
f : (a, b) → R. Let c ∈ (a, b). Assume that f ′(c) and
f ′′(c) exist. Assume also that f ′(c) = 0, and that f ′′

is continuous near c.

(1) If f ′′(c) > 0, then f has a local minimum at c.
(2) If f ′′(c) < 0, then f has a local maximum at c.
(3) If f ′′(c) = 0, then f may or may not have a local extremum at c.

Example 3.37. Let f(x) = x2. Then f ′(0) = 0 and f ′′(0) = 2 > 0. So, f has a local
minimum at x = 0.

Let f(x) = −x2. Then f ′(0) = 0 and f ′′(0) = −2 < 0. So, f has a local maximum at
x = 0.

The functions f(x) = x4, f(x) = −x4 and f(x) = x3 all satisfy f ′(0) = 0 and f ′′(0) = 0,
though they have a local minimum, maximum and neither, respectively.

Proof. We only prove (1), since (2) is proven similarly. Since f ′′ is continuous near c, the
definition of continuity says that there is a small interval containing c where f ′′(x) > 0. Then
the Concavity Test, Proposition 3.33, says that f(c + h) ≥ f ′(c)h + f(c) for all sufficiently
small h. Since f ′(c) = 0, we have f(c+ h) ≥ f(c), so c is a local minimum of f . �

Example 3.38. Consider the function f(x) = x3/3 − x − 1. Identify all local maxima,
minima and inflection points. Identify where f is increasing and decreasing. Identify where
f is concave up and concave down. Then, sketch the function f .

We have f ′(x) = x2 − 1 = (x+ 1)(x− 1) and f ′′(x) = 2x. So, x = 0 is an inflection point
and x = 1,−1 are critical points. The function f is increasing when x < −1, decreasing
when −1 < x < 1 and increasing when x > 1. So, x = −1 is a local maximum and x = 1 is a
local minimum. Alternatively, f ′′(−1) < 0 and f ′′(1) > 0, which again implies that x = −1
is a local max and x = 1 is a local min. Lastly, f ′′(x) < 0 when x < 0 and f ′′(x) > 0 when
x > 0. So, f is concave down when x < 0, and f is concave up when x > 0.
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Definition 3.39 (Asymptotes). Let f be a function and let L be a constant. A horizontal
line y = L is called a horizontal asymptote of f if limx→∞ f(x) = L or if limx→−∞ f(x) =
L. A vertical line x = L is called a vertical asymptote if limx→L+ f(x) = ±∞ or if
limx→L− f(x) = ±∞.

Example 3.40. Let’s identify all asymptotes of the function f(x) = 1/x.

x

y

1 2 3

1

2

3

f(x)

We have limx→±∞ f(x) = 0. Therefore, y = 0 is a
horizontal asymptote of f . Also, limx→0+ f(x) = ∞
and limx→0− f(x) = −∞. So, x = 0 is a vertical
asymptote. At all other points, f is a bounded func-
tion, so these are the only asymptotes of f .

To sketch the graph of the function f , note that
f ′(x) = −x−2 and f ′′(x) = 2x−3. So, f is concave up
when x > 0 and concave down when x < 0.

3.5. Applied Optimization. Optimization prob-
lems occur in all applications of mathematics. Here
is a simplified example.

Example 3.41. Suppose we want to design a cylin-
drical soda can with a minimal amount of material.
The can’s volume is 1 liter (1000 cm3), and it will
be made from aluminum of a fixed thickness. What
dimensions should the can have? r

h

Suppose the can has radius r and height h where
r, h > 0. Then the volume of the can is πr2h. And
the surface area of the can is 2πr2 + 2πrh. So, we
have πr2h = 1000, or h = 1000/(πr2). And we want
to minimize the surface area

f(r) = 2πr2 + 2000/r, r > 0.

We look for critical points of f . We have f ′(r) =
4πr−2000r−2. So, f ′(r) = 0 when 4πr = 2000r−2, i.e.
when r3 = 500/π, so that r = (500/π)1/3. So, a criti-
cal point occurs with radius r = (500/π)1/3 and height
h = 1000/(πr2) = 1000/(π1/3(500)2/3) = 2(500/π)1/3.
That is, the critical soda can has a height which is twice its radius.

Note that f ′(r) < 0 when 0 < r < (500/π)1/3 and f ′(r) > 0 when r > (500/π)1/3. So, the
value r = (500/π)1/3 is an absolute minimum of f .

Note also that this optimization problem has no absolute maximum, since limr→0 f(r) =∞
and limr→∞ f(r) =∞.

An algorithm for solving optimization problems can be described as follows.

Algorithm 1.

• Introduce variables, and introduce a function f to be optimized.
• Identify the domain of the optimization. Then, apply our usual optimization proce-

dure:
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• Find critical points of f in the domain of f .
• Test the critical points of f , and check the endpoints of the domain of f .
• Choose the largest and smallest values of f from these points.

Example 3.42. Find two numbers which sum to 50 and whose product is a maximum.
Given two numbers x, y such that x+ y = 50, we want to maximize the product xy. Since

y = 50 − x, we want to maximize f(x) = xy = x(50 − x) over all of x ∈ R. We check for
critical points. We have f(x) = −x2+50x, so f ′(x) = −2x+50. And f ′(x) = 0 when x = 25.
So, the only critical points occurs when x = 25. At this point, we have y = 50−x = 25. Note
that f ′(x) > 0 when x < 25 and f ′(x) < 0 when x > 25. So, f has an absolute maximum
at x = 25, and it is unnecessary to check the endpoints of the domain. Note however that
limx→±∞ f(x) = −∞, so f has no absolute minimum.

4. The Integral

f(x)

a b

area under
the curve of f
between a and b

a

b
+

−

f(x)

signed area under
the curve of f
between a and b
is red area minus blue area

Along with the derivative, the inte-
gral is one of the two most fundamental
concepts that we find in Calculus. Un-
fortunately, the formal definition of the
integral is more complicated than that
of the derivative. However, we should
still try to understand these formal def-
initions, since the ideas that go into the
construction of the derivative and the
integral are pervasive throughout math-
ematics and the sciences. In the case of
the integral, the quantity

∫ b
a
f(x)dx in-

tuitively represents the area under the
curve y = f(x) on the interval [a, b] (if
f is positive on the interval [a, b]).

Ultimately, we want to find the area
under any given curve. The strategy is
similar in spirit to our construction of
the derivative. We would like to per-
form some process that requires infin-
itely many steps, and as noted by Zeno, doing so does not make any sense. To resolve this
issue, we approximate some infinite thing by a finite number of steps. And we hope that, as
our approximation gets “finer,” some number will approach some limit.

Using this paradigm, we first approximate the area under a given curve by a finite number
of rectangles. We know the area of a rectangle, so we therefore know the area of several
non-overlapping rectangles. We then want to make our approximation of rectangles finer
and finer, and then take some limit. If we complete this process in the right way, and if our
curve is nice enough, then this limit will exist. Unfortunately, the limit of the sum of the
areas of these rectangles may not always exist, so we have to be careful in our construction
of the integral. So, although the notation below and the details may appear pedantic or
unnecessary, these things really are necessary in order to get a sensible answer in the end.
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4.1. Summation Notation. Below, we will be using summation notation often.

Definition 4.1 (Summation Notation). Let y1, y2, . . . , yn be a set of numbers. We define
n∑
i=1

yi = y1 + y2 + · · ·+ yn−1 + yn.

Example 4.2.
∑n

i=1 i = 1 + 2 + 3 + · · ·+ (n− 1) + n = n(n+ 1)/2.

Example 4.3.
∑n

i=1 i
2 = 1 + 4 + 9 + · · ·+ (n− 1)2 + n2 = n(n+ 1)(2n+ 1)/6.

Example 4.4. If yi = (−1)i, then

n∑
i=1

yi = −1 + 1− 1 + 1− 1 + · · ·+ (−1)n−1 + (−1)n =

{
−1 , if n is odd

0 , if n is even.

Proposition 4.5 (Properties of Finite Sums). Let y1, . . . , yn be a set of numbers, and
let z1, . . . , zn be a set of numbers. Let c be a constant. Then

•
∑n

i=1(yi + zi) = (
∑n

i=1 yi) + (
∑n

i=1 zi).
•
∑n

i=1(yi − zi) = (
∑n

i=1 yi)− (
∑n

i=1 zi).
•
∑n

i=1 cyi = c
∑n

i=1 yi.
•
∑n

i=1 c = cn.

Example 4.6.
∑n

i=1(3i− i2) = 3 (
∑n

i=1 i)− (
∑n

i=1 i
2) .

4.2. The Definite Integral. Let a < b. Let f : [a, b]→ R be a positive function. We would
like to compute the area under the curve of f on the interval [a, b]. We will eventually do
this, but for now we will settle for an approximation. We will first approximate this area by
a set of rectangles.

Definition 4.7 (Riemann Sums). Let a = x0 < x1 < x2 < . . . < xn−1 < xn = b. The
Riemann sum of f on [a, b] evaluated at the right endpoints of the rectangles is the quantity

n∑
i=1

(xi − xi−1)f(xi).

The Riemann sum of f on [a, b] evaluated at the left endpoints is the quantity
n∑
i=1

(xi − xi−1)f(xi−1).

The Riemann sum of f on [a, b] evaluated at the midpoints is the quantity
n∑
i=1

(xi − xi−1)f
(
xi−1 + xi

2

)
.

In each case, we are approximating the area under the curve f by a set of rectangles. For
the Riemann sum evaluated at the right endpoints, the quantity (xi − xi−1) is the width of
the ith rectangle, and the quantity f(xi) is the height of the ith rectangle, where 1 ≤ i ≤ n.

Each of these Riemann sums provides a good approximation to the area under the curve
of f when n is large. In fact, some of these Riemann sums even have a limiting value as
n→∞, if we make the right choices for the points x0, . . . , xn.
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Example 4.8. Let f(x) = x and consider the interval [0, 1]. We know that the area under
the curve of f on [0, 1] is a triangle of area 1/2. Let’s show that the Riemann sums defined
above converge to 1/2 as n → ∞, if we choose x0 = 0, x1 = 1/n, x2 = 2/n, x3 = 3/n, . . .,
xn−1 = (n − 1)/n, xn = 1. That is, we have xi = i/n for all i ∈ {1, . . . , n}. With these
choices, we always have xi − xi−1 = i/n − (i − 1)/n = 1/n, for any i ∈ {1, . . . , n}. So, the
Riemann sum evaluated at the right endpoints is equal to

n∑
i=1

(xi − xi−1)f(xi) =
n∑
i=1

1

n
f(i/n) =

1

n

n∑
i=1

f(i/n) =
1

n

n∑
i=1

i/n =
1

n

n(n+ 1)

2n
=
n+ 1

2n
.

So,

lim
n→∞

n∑
i=1

(xi − xi−1)f(xi) = lim
n→∞

n+ 1

2n
=

1

2
.

Similarly,

lim
n→∞

n∑
i=1

(xi − xi−1)f(xi−1) =
1

2

and

lim
n→∞

n∑
i=1

(xi − xi−1)f
(
xi−1 + xi

2

)
=

1

2
.

That is, each Riemann sum approaches the area under the curve, as n→∞. More precisely,
the Riemann sum approaches the area under the curve, as the maximum spacing between
the points goes to zero. That is, as maxi=1,...,n(xi−xi−1)→ 0, the Riemann sum approaches
the area under the curve.

Example 4.9. Let f(x) = x2 and consider the interval [0, 1]. Let’s show that the Riemann
sums defined above converge as n→∞, if we choose x0 = 0, x1 = 1/n, x2 = 2/n, x3 = 3/n,
. . ., xn−1 = (n− 1)/n, xn = 1. That is, we have xi = i/n for all i ∈ {1, . . . , n}. With these
choices, we always have xi − xi−1 = i/n − (i − 1)/n = 1/n, for any i ∈ {1, . . . , n}. So, the
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Riemann sum evaluated at the right endpoints is equal to
n∑
i=1

(xi − xi−1)f(xi) =
n∑
i=1

1

n
f(i/n) =

1

n

n∑
i=1

f(i/n) =
1

n

n∑
i=1

i2/n2

=
1

n

n(n+ 1)(2n+ 1)

6n2
=

(n+ 1)(2n+ 1)

6n2
.

So,

lim
n→∞

n∑
i=1

(xi − xi−1)f(xi) = lim
n→∞

(n+ 1)(2n+ 1)

6n2
= lim

n→∞

2n2 + 3n+ 1

6n2
=

2

6
=

1

3
.

That is, as maxi=1,...,n(xi−xi−1)→ 0, the Riemann sum approaches the the value 1/3, which
is presumably the area under the curve of f on the interval [0, 1].

We recommend seeing this picture in action with the help of the JAVA applet, Riemann
sums.

Definition 4.10 (Riemann Sums). A general Riemann sum of f on [a, b] is defined as
follows. Let a = x0 < x1 < x2 < . . . < xn−1 < xn = b. Let c1 ∈ [x0, x1], c2 ∈ [x1, x2], . . .,
cn ∈ [xn−1, xn]. A general Riemann sum is any sum of the form

n∑
i=1

(xi − xi−1)f(ci).

Example 4.11. Choosing ci = xi, or ci = xi−1 or ci = (xi−1+xi)/2 yields the right endpoint,
left endpoint, and midpoint Riemann sums, respectively.

Definition 4.12. Let a < b, and let a = x0 < x1 < · · · < xn−1 < xn = b. The maximum
width of the rectangles of the Riemann sum is denoted by

max
i=1,...,n

(xi − xi−1).

This number is the maximum of the numbers (x1− x0), (x2− x1), (x3− x2), . . . , (xn− xn−1).
If maxi=1,...,n(xi − xi−1) is small, then the partition is very fine. More specifically, all of our
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approximating rectangles will have small width. In order to construct the integral, we will
let maxi=1,...,n(xi − xi−1) approach zero.

We can finally define the Definite Integral.

Definition 4.13 (The Definite Integral). Let f : [a, b]→ R. If the following limit exists,
we say that f is integrable on [a, b].∫ b

a

f(x)dx = lim(
max
i=1,...,n

(xi − xi−1)
)
→ 0

n∑
i=1

(xi − xi−1)f(ci).

Remark 4.14. We now describe the limit appearing in the Definite Integral more explicitly.
For lim(

max
i=1,...,n

(xi − xi−1)
)
→ 0

∑n
i=1(xi − xi−1)f(ci) to exist and be equal to I, we mean

the following. For every ε > 0, there exists a δ = δ(ε) > 0 such that: for any choices of
a = x0 < x1 < · · · < xn = b , and for any choices of ci ∈ [xi−1, xi], as long as maxi=1,...,n(xi−
xi−1) < δ, we have ∣∣∣∣∣

n∑
i=1

(xi − xi−1)f(ci)− I

∣∣∣∣∣ < ε.

That is, for the limit lim(
max
i=1,...,n

(xi − xi−1)
)
→ 0

∑n
i=1(xi − xi−1)f(ci) to exist, we require

that any sufficiently fine partition has a Riemann sum that is close to the value I.

f(x)

a b

a

b
+

−

f(x) is red area minus blue area

∫ b
a
f(x)dx

∫ b
a
f(x)dx

The following terminology will be used
frequently below.

Remark 4.15.

• We refer to
∫ b
a
f(x)dx as the inte-

gral of f on [a, b].
• The function f inside the integral is

called the integrand.
• The numbers a, b representing the

interval [a, b] are called the limits
of integration. In the integral∫ b
a
f(x)dx, the variable x is just a

placeholder, which has no intrinsic
meaning. For example, we could just
as easily write the integral of f on

[a, b] as
∫ b
a
f(z)dz or

∫ b
a
f(s)ds.

Remark 4.16 (Geometric Interpreta-
tion of the Integral). If f : [a, b]→ R has

f(x) ≥ 0 for all x ∈ [a, b], then
∫ b
a
f(x)dx

represents the area under the curve of f . If
f : [a, b]→ R has some negative values, then∫ b
a
f(x)dx represents the signed area under the curve of f . That is,

∫ b
a
f(x)dx is the area

enclosed by f lying above the x-axis, minus the area enclosed by f lying below the x-axis.
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Example 4.17. Let f(x) = x. Then
∫ 1

−1 f(x)dx = 0, since the area of f above the x-axis is
a triangle of area 1/2, and the area of f below the x-axis is also a triangle of area 1/2, so∫ 1

−1 f(x)dx = 1/2− 1/2 = 0.

x

y

1

1

f(x) = x

For a function f : [a, b] → R, we do not
yet have a way to determine whether or not∫ b
a
f(x)dx exists. Thankfully, if f : [a, b] →

R is continuous, then
∫ b
a
f(x)dx exists, as

the following very important theorem shows.
However, there are situations where the in-
tegral of a function does not exist. We will
investigate these situations more below. If
we understand when integrals do not exist,
then our understanding of the integral is im-
proved, just as an understanding of nonex-
istence of derivatives improves our under-
standing of derivatives.

Theorem 4.18 (Continuous Functions
on Closed Intervals are Integrable). Let
a < b. Let f : [a, b] → R be continuous.

Then
∫ b
a
f(x)dx exists.

Remark 4.19. We should also mention that the closed interval condition is crucial in The-
orem 4.18. For example, f(x) = 1/x is continuous on (0, 1), but

∫ 1

0
f(x)dx does not exist.

Since a composition of continuous functions is continuous, and a product of continuous
functions is continuous, we have the following Corollary of Theorem 4.18.

Corollary 4.20. Let f, g : R → R be continuous. Then
∫ b
a
f(g(x))dx exists, and also∫ b

a
f(x)g(x)dx exists.

Proposition 4.21 (Properties of the Definite Integral). Let a, b, c, k ∈ R, a < b < c.
Let f, g : R→ R be integrable on any closed interval.

(1)
∫ b
a
f(x)dx = −

∫ a
b
f(x)dx.

(2)
∫ a
a
f(x)dx = 0.

(3)
∫ b
a
k dx = k(b− a).

(4)
∫ b
a
[f(x) + g(x)]dx =

∫ b
a
f(x)dx+

∫ b
a
g(x)dx.

(5)
∫ b
a
[f(x)− g(x)]dx =

∫ b
a
f(x)dx−

∫ b
a
g(x)dx.

(6)
∫ b
a
kf(x)dx = k

∫ b
a
f(x)dx.

(7)
∫ c
a
f(x)dx =

∫ b
a
f(x)dx+

∫ c
b
f(x)dx.

(8) If f ≥ 0, then
∫ b
a
f(x)dx ≥ 0.

(9) If f ≥ g, then
∫ b
a
f(x)dx ≥

∫ b
a
g(x)dx.

(10) If m ≤ f ≤M , then m(b− a) ≤
∫ b
a
f(x)dx ≤M(b− a).

(11) |
∫ b
a
f(x)dx| ≤

∫ b
a
|f(x)| dx.
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f(x)

a c

∫ c
a
f(x)dx

b

f(x)

a c

∫ b
a
f(x)dx

b

f(x)

a c

∫ c
b
f(x)dx

b

f(x)

a cb

f(x)

a cb

f(x)

a cb

≤ ≤m

M

(12)
∫ 1

0
f(x)dx = limn→∞

∑n
i=1

1
n
f
(
i
n

)
(13)

∫ b
a
f(x)dx = limn→∞

∑n
i=1

(
b−a
n

)
f
(
a+ i(b−a)

n

)
.

Remark 4.22. Property (12) can be used to evaluate certain infinite sums.

All of these properties can be proven in similar ways, by going back to the definition of
the integral. Let’s just prove property (4) for the sake of illustration.

Proof sketch of (4). Let a = x0 < x1 < · · · < xn−1 < xn = b and let ci ∈ [xi−1, xi] for each
i ∈ {1, . . . , n}. Then

n∑
i=1

(xi − xi−1)(f(ci) + g(ci)) =
n∑
i=1

(xi − xi−1)f(ci) +
n∑
i=1

(xi − xi−1)g(ci).

So, letting maxi=1,...,n(xi − xi−1)→ 0, and using the limit law for sums,∫ b

a

(f(x) + g(x))dx = lim(
max
i=1,...,n

(xi − xi−1)
)
→ 0

n∑
i=1

(xi − xi−1)(f(ci) + g(ci))

= lim(
max
i=1,...,n

(xi − xi−1)
)
→ 0

n∑
i=1

(xi − xi−1)f(ci) + lim(
max
i=1,...,n

(xi − xi−1)
)
→ 0

n∑
i=1

(xi − xi−1)g(ci)

=

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

�

Example 4.23. Suppose
∫ 2

0
f(x)dx = 3 and

∫ 2

0
g(x)dx = −2. Then

∫ 2

0
(f(x) + g(x))dx =

3− 2 = 1,
∫ 2

0
(2f(x)− g(x))dx = 2 · 3− (−2) = 8 and

∫ 0

2
f(x)dx = −3.

Example 4.24. Let’s use property (10) to estimate the integral
∫ 2

0

√
1 + x2dx. Since 0 ≤

x ≤ 2, we have 0 ≤ x2 ≤ 4 and 1 ≤ 1 + x2 ≤ 5. So, 0 ≤
√

1 + x2 ≤
√

5, and by property
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(10), we have

0 ≤
∫ 2

0

√
1 + x2 dx ≤

∫ 2

0

√
5dx = 2

√
5.

x

y

F (x)

F (x) + C

4.3. The Indefinite Integral. So far, we
know that a continuous function can be in-
tegrated on a closed interval. But we cannot
yet compute very many integrals. We now
head towards our goal of computing many
integrals.

Recall Corollary 3.22: if f ′(x) = g′(x) for
all x ∈ R, then there is a constant C ∈ R
such that f(x) = g(x) + C.

Definition 4.25 (Antiderivative, Indef-
inite Integral). Let f : R → R. We say
that F is an antiderivative of f if F is
differentiable, and for all x ∈ R we have
F ′(x) = f(x). We then use the notation∫

f(x)dx = F (x) + C

where C is any constant. We refer to
∫
f(x)dx as the indefinite integral of f .

Remark 4.26. The indefinite integral is not associated to any interval. Also, while the
definite integral is a number, the indefinite integral is a function. The definite and indefinite
integral are related to each other, as we will see below, but they are not quite the same.

Remark 4.27. Let F,G be antiderivatives of f , so that F ′(x) = G′(x) = f . From Corollary
3.22, there must be a constant C such that F (x) = G(x)+C. So, if we have one antiderivative
F of f , then the set of all antiderivatives of f is given by the set of all F (x) + C, C ∈ R.

Example 4.28. Let f(x) = x2. Then the set of all antiderivatives of f is given by F (x) =
(1/3)x3 + C, C ∈ R.

Example 4.29 (Idealized Trajectories). Recall our example of idealized trajectories.
Suppose I throw a ball straight up in the air at a velocity v0 m/s, with initial vertical position
s0 meters, ignoring air friction. Suppose the ball has mass m kg. The only acceleration that
acts on the ball is a constant acceleration due to gravity, of roughly a(t) = −9.8 m/s2, where
t is the time after the ball is thrown, measured in seconds. Taking the antiderivative and
using Remark 4.27, the ball must have velocity v(t) = −9.8t + C. Since v(0) = v0, we
conclude that v(t) = −9.8t + v0. Taking the antiderivative again and using Remark 4.27,
the ball must have position s(t) = −(9.8/2)t2 + v0t+C. My initial vertical position is s0, so
we conclude that the ball has position

s(t) = −4.9t2 + v0t+ s0.

For now, antiderivatives may seem a bit strange. Also, if we have a function f , how can we
know whether or not an antiderivative exists? It turns out that, if f is continuous, then you
can create an antiderivative of f by measuring the areas under the curve f . So, calculating
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areas under a curve has the “opposite” effect of taking a derivative of a curve. This statement
will be made more precise when we state the Fundamental Theorem of Calculus. For now,
we give a precise description of how to find the area under a curve, via the Riemann integral.

Theorem 4.30 (Indefinite Integral of Powers of x). Let n 6= −1. Then∫
xndx =

xn+1

n+ 1
+ C.

Proof. Recall that d
dx

(
xn+1

n+1
+ C

)
= n+1

n+1
xn = xn. �

Example 4.31.
∫
x3dx = x4/4 + C.

∫
x3/2dx = (2/5)x5/2 + C

Proposition 4.32 (Properties of the Indefinite Integral). Let c be a constant and let
f, g : R→ R.

•
∫

[f(x) + g(x)]dx =
∫
f(x)dx+

∫
g(x)dx.

•
∫

[f(x)− g(x)]dx =
∫
f(x)dx−

∫
g(x)dx.

•
∫
cf(x)dx = c

∫
f(x)dx.

Example 4.33.

•
∫
exdx = ex + C.

•
∫
ecx+ddx = 1

c
ecx+d + C, c 6= 0.

4.4. The Fundamental Theorem of Calculus. We can finally describe the precise man-
ner in which differentiation and integration “cancel each other out.” The following Theorem
will also allow us to compute many integrals.

Theorem 4.34 (Fundamental Theorem of Calculus). Let a < b.

(i) Let f : [a, b] → R be differentiable. Assume also that f ′ : [a, b] → R is continuous.
Then ∫ b

a

f ′(x)dx = f(b)− f(a).

(ii) Let f : [a, b]→ R be continuous. For x ∈ (a, b) define g(x) =
∫ x
a
f(t)dt. Then g is an

antiderivative of f , i.e.

g′(x) =
d

dx

∫ x

a

f(t)dt = f(x).

Remark 4.35. Part (i) of Theorem 4.34 can be used to evaluate many different integrals.
For example, we have the following two corollaries.

Corollary 4.36 (Integrating Powers of x). Let n ∈ R, n 6= −1, 0 < a < b. Then∫ b

a

xndx =

[
1

n+ 1
xn+1

]x=b
x=a

=
1

n+ 1
(bn+1 − an+1).

Proof. Let f(x) = (1/(n+ 1))xn+1. Note that f ′(x) = xn, and then apply the Fundamental
Theorem, Theorem 4.34(i) to get∫ b

a

xndx =

∫ b

a

f ′(x) = f(b)− f(a) =
1

n+ 1
(bn+1 − an+1).

�
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Remark 4.37. What happens if we allow a = −1, b = 1, n < 0?

Proposition 4.38. Let a < b and let c, d be real numbers with c 6= 0. Then∫
exdx = ex + C,

∫ b

a

exdx =

∫ b

a

(d/dx)exdx = eb − ea.∫
ecx+ddx = c−1ecx+d + C,

∫ b

a

ecx+ddx =

∫ b

a

(d/dx)c−1ecx+ddx = c−1(ebc+d − eac+d).

Example 4.39. ∫ 1

0

x dx = [x2/2]x=1
x=0 = 1/2− 0 = 1/2.∫ 1

0

x2 dx = [x3/3]x=1
x=0 = 1/3− 0 = 1/3.∫ 3

1

(x4 − x−2)dx = [x5/5 + x−1]x=3
x=1 = 35/5 + 3−1 − 1/5− 1.∫ 2

−1
e2xdx = [(1/2)e2x]x=2

x=−1 = (1/2)(e4 − e−2).

Example 4.40.
d

dx

∫ x

1

etdt = ex.

d

dx

∫ x

2

1

1 + t2
dt =

1

1 + x2
.

d

dx

∫ x2

1

ln(t)dt = 2x ln(x2).

For the last example, write
∫ x2
1

ln(t)dt = f(g(x)), where f(y) =
∫ y
1

ln(t)dt and g(x) = x2.
Then the Chain Rule says (d/dx)f(g(x)) = f ′(g(x))g′(x).

Remark 4.41. Since (d/dt) ln t = 1/t for t > 0 and ln(1) = 0, we have the following formula
for the natural logarithm. Let x > 0. Then from the fundamental theorem of calculus,

ln(x) = ln(x)− ln(1) =

∫ x

1

d

dt
ln(t)dt =

∫ x

1

1

t
dt.

Example 4.42. ∫ 9

3

dt

t
= ln(9)− ln(3) = ln(9/3) = ln 3.

Exercise 4.43. Evaluate ∫ −3
−9

1

t
dt.

Definition 4.44. Let r > 0 be an interest rate, let R(t) be an income stream that pays R(t)
per year continuously for T years. Then the present value of this income stream is∫ T

0

R(t)e−rtdt.
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Example 4.45. Suppose I am earning $10000 per year continuously for 5 years, and once
I get the money, I put it into an interest bearing account with interest rate r = .03. We
therefore have R(t) = 10000, and the present value of this income is∫ 5

0

10000e−.03tdt = 10000
1

−.03
[e−.03t]t=5

t=0 = 10000
1

−.03
[e−.15 − 1] ≈ 46431.

That is, it would be equivalent for me to get $46431 right now and put it into the interest
bearing account, rather than continuously putting the money into the account.

Proof of of Theorem 4.34(i). Suppose we have a partition of [a, b]. That is, we have

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Then

f(b)− f(a) = f(xn)− f(x0)

= f(xn) + [−f(xn−1) + f(xn−1)] + · · ·+ [−f(x1) + f(x1)]− f(x0)

= [f(xn)− f(xn−1)] + [f(xn−1)− f(xn−2)] + · · ·+ [f(x2)− f(x1)] + [f(x1)− f(x0)]

=
n∑
i=1

[f(xi)− f(xi−1)]

By the Mean Value Theorem, there exists ci ∈ [xi, xi−1] such that, for i = 1, . . . , n,

(xi − xi−1)f ′(ci) = f(xi)− f(xi−1).

Therefore,

f(b)− f(a) =
n∑
i=1

(xi − xi−1)f ′(ci). (∗)

The right side of (∗) is a Riemann sum for f ′. Since f ′ is continuous, we know that f ′ is
integrable. So, letting maxi=1,...,n(xi − xi−1) → 0 and applying the definition of the definite
integral, (∗) becomes our desired equality:

f(b)− f(a) =

∫ b

a

f ′(t)dt.

�

Proof sketch of Theorem 4.34(ii). We treat the difference quotient directly. Let h ∈ R. Then

g(x+ h)− g(x)

h
=

1

h

∫ x+h

x

f(t)dt.

For simplicity, assume that f is differentiable. Then, using the linear approximation of f for
values of t near the point x, we have f(t) ≈ f(x) + f ′(x)(t− x), so

g(x+ h)− g(x)

h
≈ 1

h

∫ x+h

x

[f(x) + f ′(x)(t− x)]dt =
h

h
f(x) + f ′(x)

1

h

∫ x+h

x

(t− x)dt

= f(x) + f ′(x)
1

h
[(t− x)2/2]t=x+ht=x = f(x) + f ′(x)

h2/2

h
= f(x) + hf ′(x)/2.

So, letting h→ 0 we get limh→0
g(x+h)−g(x)

h
= f(x). �
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4.5. Integration by Substitution.

Theorem 4.46 (Change of Variables/ Substitution). Let a < b, c < d. Let g : [a, b]→
[c, d] be differentiable. Also, suppose that f : [c, d]→ R is continuous. Then∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(t)dt.

Or, in indefinite form, with u = g(x), we have∫
f(g(x))g′(x)dx =

∫
f(u)du.

Example 4.47. The following integral may appear difficult if not impossible to evaluate,
but Theorem 4.46 allows us to evaluate it. For x > 0, let f(t) = et, and let g(x) = 1/x.
Applying Theorem 4.46 and then Theorem 4.34(i),∫ 2

1

e1/x

x2
dx = −

∫ 2

1

f(g(x))g′(x)dx = −
∫ g(2)

g(1)

etdt = −
∫ 1/2

1

etdt =

∫ 1

1/2

d

dt
etdt = e−

√
e.

Example 4.48. Let f(t) = et, and let g(x) = x2. Applying Theorem 4.46 and then Theorem
4.34(i), ∫ 3

2

xex
2

dx =
1

2

∫ 3

2

f(g(x))g′(x)dx =
1

2

∫ g(3)

g(2)

f(t)dt =
1

2

∫ 9

4

etdt

=
1

2

∫ 9

4

d

dt
etdt =

1

2
(e9 − e4).

Example 4.49. Let u = x2 + 1 so that du = 2xdx, i.e. xdx = (1/2)du. Then∫
x

(x2 + 1)2
dx =

1

2

∫
u−2du = −1

2
u−1 = − 1

2(x2 + 1)
.

And indeed, we can verify that − d
dx

1
2(x2+1)

= 4x
(2(x2+1))2

= x
(x2+1)2

.

Example 4.50. Let u = x+ 1 so that du = dx. Then∫
x
√
x+ 1dx =

∫
(u− 1)u1/2du =

∫
u3/2 − u1/2du

= (2/5)u5/2 − (2/3)u3/2 = (2/5)(x+ 1)5/2 − (2/3)(x+ 1)3/2.

And we can verify that d
dx

[(2/5)(x + 1)5/2 − (2/3)(x + 1)3/2] = (x + 1)3/2 − (x + 1)1/2 =

(x+ 1− 1)
√
x+ 1 = x

√
x+ 1.

Example 4.51. Consider the function f(x) = x
x2+1

. This function is of the form (1/2)g′(x)/g(x)

where g(x) = x2 + 1. So, an antiderivative for f is (1/2) ln |x2 + 1|.
Consider also the function f(x) = tan(x) = sin(x)/ cos(x). This function is of the form
−g′(x)/g(x) where g(x) = cos(x). So, an antiderivative for f is − ln |cos(x)|.

Proof of Theorem 4.46. For a < x < b, define F (x) =
∫ x
a
f(t)dt. From the Fundamen-

tal Theorem of Calculus, Theorem 4.34(ii), F ′(x) = f(x). Also, by the Chain Rule,
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(d/dx)[F (g(x))] = F ′(g(x))g′(x) = f(g(x))g′(x). Note also that f(g(x))g′(x) is integrable
by Corollary 4.20. Putting everything together, we have∫ b

a

f(g(x))g′(x)dx =

∫ b

a

d

dx
[F (g(x))]dx = F (g(b))− F (g(a)), by Theorem 4.34(i)

=

∫ g(a)

g(b)

d

dx
F (x)dx, by Theorem 4.34(i)

=

∫ g(a)

g(b)

f(x)dx.

�

4.6. Average Value.

Definition 4.52 (Average Value). Let a < b. Let f : [a, b] → R. The average value of
f on the interval [a, b] is defined to be

1

b− a

∫ b

a

f(x)dx.

Example 4.53. The average value of f(x) = x on the interval [0, 20] is

1

20

∫ 20

0

xdx =
1

20
[x2/2]200 =

1

40
(400) = 10.

Example 4.54. The average value of f(x) = x/(x2 + 1)2 on the interval [3, 6] is (using
u = x2 + 1 so du = 2xdx, i.e. xdx = du/2)

1

6− 3

∫ 6

3

x

(x2 + 1)2
dx =

1

3

∫ 37

10

u−2

2
du =

1

6
[−u−1]u=37

u=10 =
1

6

(
− 1

37
+

1

10

)
5. Methods of Integration

We now turn our attention to various methods that help to compute integrals. By the end
of the chapter, you should feel like you can integrate almost anything.

5.1. Integration by Parts. This first method of integration allows us to essentially move
a derivative from one term to another while we are inside an integral.

Theorem 5.1 (Integration by Parts). Let u, v be continuously differentiable functions on
the real line. Let a < b. Then∫ b

a

u(x)v′(x)dx = u(b)v(b)− u(a)v(a)−
∫ b

a

v(x)u′(x)dx.

This rule can be memorized by the mnemonic “integral of udv equals uv minus integral
of vdu.”

The integration by parts formula follows almost immediately from the product rule.

(uv)′ = u′v + v′u.
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Integrating both sides on [a, b] and applying the Fundamental Theorem of Calculus to the
left side,

u(b)v(b)− u(a)v(a) =

∫ b

a

u′(x)v(x)dx+

∫ b

a

u(x)v′(x)dx.

Example 5.2. ∫ b

a

xexdx =

∫ b

a

x(d/dx)exdx = beb − aea −
∫ b

a

exdx

= beb − aea − eb + ea.

Written another way, ∫
xexdx = (x− 1)ex + C.

Remark 5.3. If we instead wrote
∫ b
a
xexdx =

∫ b
a

cos ex(d/dx)(x2/2)dx, then things would
have just become more complicated. So, we have to choose carefully how to apply integration
by parts.

Example 5.4.∫ 4

1

lnx dx =

∫ 4

1

lnx(d/dx)xdx = 4 · ln 4− 1 · ln 1−
∫ 4

1

x(1/x)dx = 4 ln 4− 1 ln 1− 4.

Written another way, ∫
lnx dx = x lnx− x+ C

5.2. Improper Integrals. It is sometimes nice to integrate a function at infinity. We can
do this via the following definition.

Definition 5.5. Fix a real number a. Suppose f is integrable on [a, b] for all b > a. The
improper integral of f on [a,∞) is defined as the following limit (if the limit exists):∫ ∞

a

f(x)dx = lim
R→∞

∫ R

a

f(x)dx.

If this limit exists and is finite, we say that the improper integral converges. If the limit
does not exist, we say that the improper integral diverges.

Remark 5.6. We similarly define∫ a

−∞
f(x)dx = lim

R→∞

∫ a

−R
f(x)dx.

∫ ∞
−∞

f(x)dx =

∫ 0

−∞
f(x)dx+

∫ ∞
0

f(x)dx.

Example 5.7. Let a > 0. Then∫ ∞
0

e−atdt = lim
R→∞

∫ R

0

e−atdt = lim
R→∞

(−1/a)[e−aR − 1] = 1/a.
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Theorem 5.8. Let a > 0. If p > 1, then∫ ∞
a

1

xp
dx = (p− 1)−1a−p+1.

If p ≤ 1, then
∫∞
a

1
xp
dx diverges.

To see this, note that for p 6= 1 we have∫ ∞
a

1

xp
dx lim

R→∞

∫ R

a

x−pdx = lim
R→∞

(−p+ 1)−1[R−p+1 − a−p+1]

If p > 1, then limR→∞R
−p+1 = 0, so∫ ∞

a

1

xp
dx = (p− 1)−1a−p+1.

If p < 1, then limR→∞R
−p+1 =∞, so

∫∞
a

1
xp
dx diverges.

In the remaining case p = 1, we have∫ ∞
a

1

x
dx lim

R→∞

∫ R

a

x−1dx = lim
R→∞

(ln |R| − ln |a|).

Since limR→∞ ln |R| =∞, we conclude that
∫∞
a

1
x
dx diverges.

It is possible to similarly integrate the discontinuities of integrals, by approaching them
in a limiting sense.

Definition 5.9. Let a < b. Suppose f is continuous on [a, b) but discontinuous at b. We
define the integral of f on [a, b] as the following limit (if the limit exists):∫ b

a

f(x)dx = lim
R→b−

∫ R

a

f(x)dx.

If this limit exists and is finite, we say that the improper integral converges. If the limit
does not exist, we say that the improper integral diverges.

Remark 5.10. Similarly, if f is continuous on (a, b] but discontinuous at a. We define the
integral of f on [a, b] as the following limit (if the limit exists):∫ b

a

f(x)dx = lim
R→a+

∫ b

R

f(x)dx.

Remark 5.11 (Integrating over a Discontinuity). If f is discontinuous only at c, if

a < c < b, and if
∫ c
a
f(x)dx and

∫ b
c
f(x)dx are finite, then we define∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Otherwise, we say that
∫ b
a
f(x)dx diverges. For example, the integral∫ 1

−1

dx

x

diverges, since
∫ 1

0
dx/x diverges.
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Example 5.12. Let a > 0. If p < 1, then∫ a

0

dx

xp
= (1− p)−1a1−p.

If p ≥ 1, then
∫ a
0
dx/xp diverges. To see this, let p 6= 1 and observe∫ a

0

dx

xp
= lim

R→0+

∫ a

R

dx

xp
= lim

R→0+
(−p+ 1)−1[a−p+1 −R−p+1].

If p < 1, then limR→0+ R
−p+1 = 0, so

∫ a
0
dx
xp

= (1− p)−1a1−p. If p > 1, then limR→0+ R
−p+1 =

∞, so
∫ a
0
dx
xp

diverges. In the remaining case p = 1, we have∫ a

0

dx

x
= lim

R→0+

∫ a

R

dx

x
= lim

R→0+
[ln |a| − ln |R|] = −∞.

So, the integral
∫ a
0
dx
x

diverges.

5.2.1. Comparing Integrals. We have reached somewhat of an end to our investigation of
methods of integration. Sometimes, it is actually impossible to get an explicit formula of an
integral. Instead, we need to know how to estimate integrals in various ways. In the next
section, we will see a few ways that a computer can estimate an integral. For now, we will
simply get some rough estimates on integrals. For example, we will just look at a way to
check whether or not an improper integral converges.

Proposition 5.13. Fix a real number a. Suppose f(x) ≥ g(x) ≥ 0 for all x ≥ a.

• If
∫∞
a
f(x)dx converges, then

∫∞
a
g(x)dx converges.

• If
∫∞
a
g(x)dx diverges, then

∫∞
a
f(x)dx diverges.

Example 5.14. We will demonstrate that
∫∞
1

dx√
x3+1

converges.

Let x ≥ 1. Then
√
x3 + 1 ≥

√
x3 = x3/2 ≥ 0. So, 0 ≤ (x3 + 1)−1/2 ≤ x−3/2. And

0 ≤
∫ ∞
1

x−3/2dx = lim
R→∞

∫ R

1

x−3/2dx = lim
R→∞

(−2)(R−1/2 − 1) = 2.

Therefore,
∫∞
1

dx√
x3+1

converges.

We can do the same test for an endpoint discontinuity as follows.

Example 5.15. We will demonstrate that
∫ 1

0
dx

x2+x8
diverges. Let 0 < x ≤ 1. Note that

x2 + x8 ≤ 2x2, so (x2 + x8)−1 ≥ (2x2)−1 ≥ 0. However, we know that
∫ 1

0
x−2dx diverges. We

therefore conclude that
∫ 1

0
dx/(x2 + x8) diverges.

6. Vectors

When we change from calculus in one dimension to calculus in two and three dimensions,
we naturally need to deal with the extra dimensions. The most convenient way to deal with
these extra dimensions is to introduce vectors. We will see that the operations of addition
and subtraction on real numbers will extend to vectors. However, we cannot multiply two
vectors like they are real numbers. And there are new things to consider for vectors that
have no analogue for real numbers. For example, two vectors have an angle between them.
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x

y

1 2 3

1

2

3

v

‖v‖

P

Q

We begin by defining vectors in the plane.

6.1. Vectors in the Plane. We denote the
plane as the set of all ordered pairs (x, y)
where x and y are both real numbers. We
use the notation R2 to denote the plane.

Definition 6.1. A two-dimensional vec-
tor v is a directed line segment. This line
segment has a beginning point P and a ter-
minal point Q, where P,Q ∈ R2. Suppose
P = (x1, y1) and if Q = (x2, y2), where
x1, x2, y1, y2 are real numbers. We define the
length or magnitude of the vector v by

‖v‖ =
√

(x1 − x2)2 + (y1 − y2)2.

That is, by the Pythagorean Theorem, ‖v‖ is the length of the hypotenuse of the right
triangle, whose side lengths are |x1 − x2| and |y1 − y2|.

Remark 6.2. Unless otherwise stated, all vectors from now on will have their beginning
point P at the origin, so that P = (0, 0). We then will write any two-dimensional vector v
in the form v = (x, y). Then

‖v‖ =
√
x2 + y2.

Let λ be a real number. (We often refer to real numbers as scalars.) Define λv = (λx, λy).
Note that

‖λv‖ =
√
λ2x2 + λ2y2 =

√
λ2(x2 + y2) = |λ| ‖v‖ .

Definition 6.3. Two vectors v, w ∈ R2 are said to be parallel if there is some scalar λ ∈ R
such that v = λw.

x

y

1 2 3

1

2

3

v

w

v + w

We can add vectors together as follows.

Definition 6.4. Suppose v = (x1, y1) and
w = (x2, y2). Define

v + w = (x1 + x2, y1 + y2).

Visually, the vector v+w is obtained by tak-
ing the vector v, placing the beginning point
of w at the endpoint of v, so that the result-
ing endpoint is that of v+w. We also define

v − w = (x1 − x2, y1 − y2).

Note that

v + (0, 0) = (0, 0) + v = v, v − v = (0, 0).

Example 6.5.

(1, 2) + 2(3, 0) = (1, 2) + (6, 0) = (7, 2).
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Proposition 6.6. For any vectors u, v, w ∈ R2 and for any scalar λ ∈ R,

v + w = w + v.

u+ (v + w) = (u+ v) + w.

λ(u+ v) = (λu) + (λv).

Definition 6.7. A vector v ∈ R2 such that ‖v‖ = 1 is called a unit vector. If v is any
nonzero vector, then the vector

v

‖v‖
is a unit vector which is parallel to v. To see that v

‖v‖ is a unit vector, we use Remark 6.2 to

get
∥∥∥ v
‖v‖

∥∥∥ = ‖v‖
‖v‖ = 1.

Example 6.8. Consider the vector v = (1, 2). Then v
‖v‖ = (1,2)√

5
= (1/

√
5, 2/
√

5) is a unit

vector, which is parallel to v.

Remark 6.9. Some textbooks use the notation ~i = (1, 0) and ~j = (0, 1), so that a vector

v = (x, y) ∈ R2 can be written as v = x~i+ y~j. However, we will not use this notation.

Theorem 6.10 (Triangle Inequality). For any vectors v, w ∈ R2, we have

‖v + w‖ ≤ ‖v‖+ ‖w‖ .

x

y
z

x

y
z

x

y
z

xz-plane yz-plane xy-plane

x

y

z

6.2. Vectors in Three Dimensions. We
denote three-dimensional space as the set of
all ordered pairs (x, y, z) where x, y and z
are all real numbers. We use the notation
R3 to denote three-dimensional space.

When drawing vectors in the plane, we
always use the convention that the x-axis is
the horizontal axis, and the y-axis is the ver-
tical axis. We will use a similar convention
when plotting vectors in three-dimensional
space R3. However, we now need to ori-
ent the axes using the right hand rule. Us-
ing your right hand, if the fingers curl from
the x-axis to the y-axis, then the z-axis
will point in the direction of your extended
thumb.
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(x, y, 0)

(x, y, z)

√
x2 + y2

√
x2 + y2 + z2

In addition to coordinate axes, we also
now have coordinate planes. The xy-plane
is the set of all (x, y, z) ∈ R3 such that z = 0.
The xz-plane is the set of all (x, y, z) ∈ R3

such that y = 0. The yz-plane is the set of
all (x, y, z) ∈ R3 such that x = 0. These are
the three coordinate planes. These planes
divide R3 into eight regions, which we call
octants. The octant where x ≥ 0, y ≥ 0
and z ≥ 0 is called the first octant.

We can now derive a distance formula be-
tween points, using the Pythagorean Theo-
rem, just as we did in the plane R2.

Theorem 6.11. The distance from the point
(x, y, z) ∈ R3 to the origin (0, 0, 0) is √

x2 + y2 + z2.

Proof. Consider the point (x, y, 0) in the xy-plane. From our distance formula in the plane,

the distance from this point to the origin is
√
x2 + y2. Consider the right triangle with

vertices (0, 0, 0), (x, y, 0) and (x, y, z). By the Pythagorean Theorem, the length of the
hypotenuse (which is also the distance from (x, y, z) to the origin) is√

(
√
x2 + y2)2 + z2 =

√
x2 + y2 + z2.

�

Remark 6.12. Consequently, the distance between any two points (x1, y1, z1) ∈ R3 and
(x2, y2, z2) ∈ R3 is √

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.
We now give a few examples of surfaces in R3.

Definition 6.13. A sphere of radius r > 0 and center (a, b, c) ∈ R3 is defined as the
set of points of distance exactly r from the point (a, b, c). So, the sphere is the set of all
(x, y, z) ∈ R3 such that √

(x− a)2 + (y − b)2 + (z − c)2 = r.

x

y

z

(a, b, c)

r

Equivalently, this sphere is described as
the set of all (x, y, z) ∈ R3 such that

(x− a)2 + (y − b)2 + (z − c)2 = r2.

Example 6.14. The set of all (x, y, z) such
that x2 + y2 + z2 ≤ r2 is the set of all points
of distance at most r from the origin. This
set is known as the solid ball of radius r.

Example 6.15. The set of all (x, y, z) such
that x2+y2+z2 = r2 and z ≥ 0 is the upper
hemisphere of the sphere of radius r.
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Remark 6.16. Note that when z = 0 and
c = 0, the equation (x− a)2 + (y − b)2 + (z − c)2 = r2 reduces to the equation for a circle of
radius R and center (a, b):

(x− a)2 + (y − b)2 = R2.

That is, when c = 0, the sphere of radius R is cut by the plane z = 0, producing a circle.

Definition 6.17. A cylinder of radius r > 0 with displacement (a, b, 0) ∈ R3 is defined as
the set of points (x, y, z) ∈ R3 such that

(x− a)2 + (y − b)2 = r2.

Note that the variable z is unrestricted.

x

y

z

(a, b, 0)

r

We can readily extend addition, length,
etc. to the case of three-dimensional vectors.

Definition 6.18. A three-dimensional
vector v = (x, y, z) is a directed line seg-
ment from the origin (0, 0, 0) to the point
(x, y, z). We define the length or magni-
tude of the vector v by

‖v‖ =
√
x2 + y2 + z2.

Let λ ∈ R. Define λv = (λx, λy, λz). Note
that

‖λv‖ = |λ| ‖v‖ .
Two vectors v, w ∈ R3 are said to be parallel if there is some scalar λ ∈ R such that v = λw.

We can add vectors together as follows.

Definition 6.19. Suppose v = (x1, y1, z1) and w = (x2, y2, z2). Define

v + w = (x1 + x2, y1 + y2, z1 + z2).

v − w = (x1 − x2, y1 − y2, z1 − z2).
Note that

v + (0, 0, 0) = (0, 0, 0) + v = v, v − v = (0, 0, 0).

For any vectors u, v, w ∈ R3 and for any scalar λ ∈ R,

v + w = w + v.

u+ (v + w) = (u+ v) + w.

λ(u+ v) = (λu) + (λv).

Definition 6.20. A vector v ∈ R3 such that ‖v‖ = 1 is called a unit vector. If v is any
nonzero vector, then the vector

v

‖v‖

is a unit vector which is parallel to v. To see that v
‖v‖ is a unit vector, note that

∥∥∥ v
‖v‖

∥∥∥ =
‖v‖
‖v‖ = 1.
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Example 6.21. Consider the vector v = (1, 2). Then v
‖v‖ = (1,2)√

5
= (1/

√
5, 2/
√

5) is a unit

vector, which is parallel to v.

Remark 6.22. Some textbooks use the notation ~i = (1, 0, 0), ~j = (0, 1, 0) and ~k = (0, 0, 1)

so that a vector v = (x, y, z) ∈ R3 can be written as v = x~i+ y~j + z~k. However, we will not
use this notation.

Theorem 6.23 (Triangle Inequality). For any vectors v, w ∈ R3, we have

‖v + w‖ ≤ ‖v‖+ ‖w‖ .
6.3. Dot Product. The dot product operation allows us to combine two vectors, producing
a scalar. In some sense, the dot product measures how close two vectors are. In another sense,
the dot product of two vectors measures both their length and their angle simultaneously.
For now we will just define the dot product, but later on we will give more geometric meaning
to it.

Definition 6.24 (Dot Product). Let v = (x1, y1) and let w = (x2, y2) be vectors in R2.
We define the dot product of v and w by

v · w = x1x2 + y1y2.

Definition 6.25 (Dot Product). Let v = (x1, y1, z1) and let w = (x2, y2, z2) be vectors in
R3. We define the dot product of v and w by

v · w = x1x2 + y1y2 + z1z2.

Note that
√
v · v =

√
x21 + y21 + z21 = ‖v‖.

Example 6.26.

(1, 2, 3) · (0, 5, 7) = 0 · 1 + 2 · 5 + 3 · 7 = 10 + 21 = 31.

Proposition 6.27 (Properties of the dot product). Let u, v, w ∈ R3 and let λ ∈ R.
Then

• (0, 0, 0) · v = v · (0, 0, 0) = 0.
• v · w = w · v.
• (λv) · w = v · (λw) = λ(v · w).
• u · (v + w) = (u · v) + (u · w), and (v + w) · u = (v · u) + (w · u).

Recall that if a right triangle has an angle θ with edge lengths a and h, where a is the
length of the edge adjacent to θ and h is the length of the hypotenuse, then cos θ = a/h. That
is, cos θ is the ratio of the length of the adjacent edge and the length of the hypotenuse. And
in order to define the inverse of cos, we restrict the domain of cos to [0, π]. So, cos : [0, π]→
[−1, 1] and cos−1 : [−1, 1]→ [0, π]. If π/2 < θ < π, we define cos θ to be cos(π − θ).
Definition 6.28. The angle 0 ≤ θ ≤ π between two nonzero vectors v, w is defined to be

θ = cos−1
(

v

‖v‖
· w

‖w‖

)
.

That is, the dot product of the unit vector in the direction v with the unit vector in the
direction w is the cosine of θ. Written another way,

v · w = ‖v‖ ‖w‖ cos θ, cos θ =
v

‖v‖
· w

‖w‖
.
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v

w

θ = π/2

v

w
θ < π/2

v

w
θ > π/2

v

w

In this sense, the dot product of v and w contains information about the lengths of v and
w, as well as the angle between these vectors.

Remark 6.29. Recall that the range of cos−1 is [0, π], so our definition of θ automatically
means that θ ∈ [0, π].

Definition 6.30. Two nonzero vectors v, w are said to be perpendicular or orthogonal
if the angle θ between them is π/2. In this case, we write v ⊥ w. Since cos(π/2) = 0, and
since v · w = ‖v‖ ‖w‖ cos θ = 0, we see that the vectors v, w are perpendicular if and only if
v · w = 0. (If v · w = 0, then θ = cos−1(0), so θ = π/2.)

Remark 6.31. If v · w > 0, then θ < π/2, that is, the angle between v and w is less than
π/2. If v · w < 0, then θ > π/2, that is, the angle between v and w is more than π/2. Both
assertions follow from the definition of θ.

6.4. Planes in Three Dimensions.

Definition 6.32. Let n = (a, b) ∈ R2 be fixed and nonzero, let d be a constant, and let
(x, y) ∈ R2 be a variable point. Recall that a line in the plane can be specified as the set of
all points (x, y) ∈ R2 such that

ax+ by = d.

Written another, way, a line is the set of all points (x, y) ∈ R2 such that

n · (x, y) = d.

That is, a line is the set of all vectors (x, y) which have a constant dot product with the
vector n. In the case d = 0, the line is the set of all vectors that are orthogonal to n. For
this reason, we call n a normal vector to the line. (In the case d 6= 0, the line n · (x, y) = d
is a translation of the line n · (x, y) = 0.)

Definition 6.33. Let n = (a, b, c) ∈ R3 be fixed and nonzero, let d be a constant and let
v = (x, y, z) ∈ R3 be a variable point. Then a plane is defined as the set of all points
(x, y, z) ∈ R3 such that

ax+ by + cz = d.

Written another, way, a plane is the set of all points (x, y, z) ∈ R3 such that

n · (x, y, z) = d.

That is, a plane is the set of all vectors (x, y, z) which have a constant dot product with
the vector n. In the case d = 0, the plane is the set of all vectors that are orthogonal to
n. For this reason, we call n a normal vector to the plane. (In the case d 6= 0, the plane
n · (x, y, z) = d is a translation of the plane n · (x, y, z) = 0.)
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n = (a, b)
n = (a, b, c)

Remark 6.34. A plane which passes through the point (x0, y0, z0) with normal vector n =
(a, b, c) can be written as the set of all (x, y, z) such that

n · (x− x0, y − y0, z − z0) = 0.

Example 6.35. The plane which passes through (0, 1, 2) with normal vector (3, 0, 2) is
described as the set of all (x, y, z) such that (3, 0, 2) · (x, y − 1, z − 2) = 0.

Example 6.36 (Distance from a Point to a Plane). What is the distance of the point
w ∈ R3 from the plane ax+ by + cz = 0?

The distance from w to the plane ax+ by + cz = 0 is the smallest value of ‖w − (x, y, z)‖
where (x, y, z) ranges over all points in the plane ax+ by + cz = 0. As in the case of a line,
the point (x, y, z) where ‖w − (x, y, z)‖ is smallest occurs when w− (x, y, z) is perpendicular
to the plane. We claim that ‖w − (x, y, z)‖ is smallest when w − (x, y, z) = proj(a,b,c)(w).
To see this, consider the right triangle with edges w − (x, y, z) and proj(a,b,c)(w). Since this
is a right triangle, the Pythagorean Theorem implies that the length of the hypotenuse is
greater than the lengths of the other edges. That is, ‖w − (x, y, z)‖ ≥ ‖proj(a,b,c)(w)‖. In
conclusion, the distance from w to the plane ax+ by + cz = 0 is∥∥proj(a,b,c)(w)

∥∥ .
For example, let’s find the distance of w = (1, 0, 2) to the plane x + 2y + 3z = 0. Since

(a, b, c) = (1, 2, 3), the distance is given by

|w · (a, b, c)/ ‖a, b, c‖| = |(1, 0, 2) · (1, 2, 3)| /
√

14 = 7/
√

14.

Definition 6.37. The angle between two planes is the angle between their normal vectors.
So, if the planes are ax+ by + cz = d and px+ qy + rz = s, then their angle is

cos−1
(
|(a, b, c) · (p, q, r)|
‖(a, b, c)‖ ‖(p, q, r)‖

)
.

7. Functions of Two or Three Variables

x

y

z

z = x2 + y2

In a previous course, you discussed functions
f : R → R. We could then graph these functions in
the xy-plane. In this class, we have been discussing
functions r : R → R2 and r : R → R3. We can think
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of these functions as curves. We now consider functions with larger domains as well. For
example, we will first consider functions f : R2 → R.

Example 7.1. Let (x, y) ∈ R2. Define f : R2 → R by f(x, y) = x2 + y2. We can plot this
function in three-dimensions by considering the value of f to be the z-coordinate. That is,
we identify the function f(x, y) = x2 + y2 with the surface z = f(x, y) = x2 + y2. We recall
that surface z = x2 + y2 is a paraboloid.

Example 7.2. Suppose we have a domain D in the plane, which we think of as a map of
California. Given (x, y) ∈ D, we can think of f(x, y) as the current temperature at the point
(x, y). Then f : D → R.

Example 7.3. Suppose we have a domain D in three-dimensional space R3. For example,
we can identify the unit ball x2 + y2 + z2 ≤ 1 with the earth. Given (x, y, z) ∈ D, we
can think of f(x, y, z) as the current temperature at the point (x, y, z) on the earth. Then
f : D → R.

More generally, given any positive integer n, we can consider functions f : Rn → R. We
write a general point in Rn as (x1, x2, . . . , xn) ∈ Rn. And at each such point (x1, . . . , xn) ∈
Rn, we let f(x1, . . . , xn) be some number.

Remark 7.4. Given a function f : R2 → R, we said we could identify the function f with
the surface z = f(x, y) in R3. However, visualizing functions f : R3 → R is a bit more
difficult. One way to visualize these functions is to think of f(x, y, z) as a color intensity
assigned to the point (x, y, z). For example, if f(x, y, z) is a large number, we can think of
(x, y, z) as having a light grey color. And if f(x, y, z) is a very small number, we can think of
(x, y, z) as having a dark grey color. Drawing a picture like this is perhaps impossible, but
the visualization is perhaps more tractable. For example, if f(x, y, z) is the temperature of
the earth at the point (x, y, z) with x2 + y2 + z2 ≤ 1, we could think of f(x, y, z) as a bright
red color when the point (x, y, z) is very hot, and we could think of f(x, y, z) as a dark blue
color when the point (x, y, z) is very cold.

Example 7.5 (Drawing Functions of Two Variables). Suppose we want to draw the
function f(x, y) = x2 + y2.

x

y

z

z = x2 + y2

x

y

1 2 3

1
2

3 of f(x, y) = x2 + y2

1
4

9

three level curves

So, we want to draw the surface z =
x2 + y2. It is sometimes convenient to draw
the level curves of the function f . That is,
we can maybe draw the curve x2 + y2 = 1
in the plane z = 1, and then draw the curve
x2 + y2 = 4 in the plane z = 4. Doing so re-
sults in two circles. On each individual cir-
cle, the function f is constant (i.e. the sur-
face has constant height). We can also draw
the intersection of z = x2+y2 with other hy-
perplanes. For example, in the plane x = 0,
we could draw the hyperbola z = y2; in the
plane x = 1 we could draw the hyperbola
z = 1 + y2; in the plane y = 1, we could
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draw the parabola z = x2 + 1, and so on.
Drawing the intersection of z = x2 + y2 with several hyperplanes in this way gives a good
sketch of the function.

Example 7.6 (Level Surfaces in Three Variables). Consider the function f(x, y, z) =
x2 + y2 + z2. As we discussed above, this function is perhaps difficult to draw. However, we
can still draw the level surfaces of the function.

x

y

z

level surfaces of
f(x, y, z) = x2 + y2 + z2

For example, the level surface x2 + y2 +
z2 = 1 is the unit sphere, and we can then
draw this surface. And the level surface x2+
y2 +z2 = 4 is the sphere of radius 2 centered
at the origin, which can also be drawn, and
so on. The function f is constant on any
individual level surface.

Example 7.7 (Domains). Multivariable
domains can be a bit more complicated than
single-variable domains. Suppose we have a
function f : D → R where D is a subset of
R2 defined as the set of (x, y) such that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. We can draw this domain
by intersecting the domain corresponding to each condition. For example, the set 0 ≤ x ≤ 1
is an infinite rectangle lying between the lines x = 0 and x = 1. And the set 0 ≤ y ≤ 1 is
an infinite rectangle lying between the lines y = 0 and y = 1. The intersection of these two
rectangles is the unit square.

For another example, consider the domain D in R3 defined as the set of all (x, y, z) such
that x2 + y2 ≤ 4 and such that y2 + z2 ≥ 1. The first condition gives an infinite solid
cylinder, bounded by the cylinder x2 + y2 = 4. From this solid cylinder, we remove the
cylinder y2 + z2 < 1. In summary, the domain D is an infinite solid cylinder with a hole
drilled through it along the x-axis.

7.1. Limits and Continuity. In single-variable calculus, we learned a lot about functions
by using the notions of continuity and derivatives. We can play a similar game now for
multivariable functions. However, the continuity and derivative are now a bit different.

In this section, we only consider functions f : R2 → R. Treating functions with domain
R3 can be done analogously.
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Definition 7.8 (Limit, Informal Definition). Let (a, b) ∈ R2 and let f : R2 → R. Let
L ∈ R. We say that lim(x,y)→(a,b) f(x, y) = L if, whenever (x, y) is close to (a, b), we know
that f(x, y) is close to L.

Definition 7.9 (Limit, Formal Definition). Let (a, b) ∈ R2 and let f : R2 → R. Let
L ∈ R. We say that lim(x,y)→(a,b) f(x, y) = L if, given any ε > 0, there exists δ = δ(ε) > 0
such that, if (x, y) satisfies 0 < ‖(x, y)− (a, b)‖ < δ, then |f(x, y)− L| < ε.

Example 7.10. Let f(x, y) = x + y. Let (a, b) = (1, 2). Let L = 3. Let’s verify from the
formal definition that lim(x,y)→(a,b) f(x, y) = 3. Let ε > 0. Then choose δ = ε/2. Assume
0 < ‖(x, y)− (1, 2)‖ < δ. Then |x− 1| < δ and |y − 2| < δ. So, |f(x, y)− L| = |x+ y − 3| =
|(x− 1) + (y − 2)| ≤ |x− 1|+ |y − 2| < δ + δ = ε. So, lim(x,y)→(a,b) f(x, y) = 3.

Example 7.11. Let f(x, y) = x2/(x2 + y2) We show that the following limit does not exist:
lim(x,y)→(0,0) f(x, y). Consider (xn, yn) = (0, 1/n), n ≥ 1. Then (xn, yn) → (0, 0) as n → ∞,
and f(xn, yn) = 0. However, if (cn, dn) = (1/n, 0), n ≥ 1, then (c,n , dn) → (0, 0), but
f(cn, dn) = 1. If lim(x,y)→(0,0) f(x, y) exists, then limn→∞ f(xn, yn) would have to be equal to
limn→∞ f(cn, dn). So, lim(x,y)→(0,0) f(x, y) does not exist.

Proposition 7.12 (Limit Laws). Let f, g : R2 → R. Assume that lim(x,y)→(a,b) f(x, y) exists
and that lim(x,y)→(a,b) g(x, y) exists. Then

• lim(x,y)→(a,b)[f(x, y) + g(x, y)] = (lim(x,y)→(a,b) f(x, y)) + (lim(x,y)→(a,b) g(x, y)).
• For any constant c, lim(x,y)→(a,b)[cf(x, y)] = c · lim(x,y)→(a,b) f(x, y).
• lim(x,y)→(a,b)[f(x, y)g(x, y)] = (lim(x,y)→(a,b) f(x, y))(lim(x,y)→(a,b) g(x, y)).
• If lim(x,y)→(a,b) g(x, y) 6= 0, then

lim
(x,y)→(a,b)

(f(x, y)/g(x, y)) = ( lim
(x,y)→(a,b)

f(x, y))/( lim
(x,y)→(a,b)

g(x, y)).

Definition 7.13 (Continuity). Let f : R2 → R. We say that f is continuous at the point
(a, b) if

f(a, b) = lim
(x,y)→(a,b)

f(x, y).

We say that f is continuous on a domain D if f is continuous at (a, b) for every (a, b) in D.

Example 7.14. Let f : R3 → R, so that f(x, y, z) = x3+xy2+zxy. Then f is a polynomial,
so f is continuous.

Let g(x, y, z) = x sin(z) + y. Then g is continuous, and so is the product of the continuous
functions f(x, y, z) · g(x, y, z).

Let h(x, y, z) = x4y4z2. Let F (x, y, z) = f(x, y, z)/g(x, y, z). Then F is a quotient of
continuous functions, so F is continuous at any point (x, y, z) where g(x, y, z) 6= 0.

Theorem 7.15 (A Composition of Continuous Functions is Continuous). Suppose
f : R2 → R is continuous and let g : R→ R be continuous. Then the composition g(f(x, y))
is continuous.

Example 7.16. The function ln(x2 + y2) is continuous for all (x, y) with (x, y) 6= (0, 0).
However, this function is discontinuous at (x, y) = (0, 0).
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7.2. Partial Derivatives. Now that we have discussed continuity for multivariable func-
tions, we now continue extending calculus to multivariable functions. Our next topic is now
differentiability. For a single-variable function f : R→ R, we defined

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

And we interpreted f ′(x) as the rate of change of f , as x increases.
Now, consider a function f : R2 → R. Now that there are two variables in the domain,

there are many more directions in which we can measure the rate of change of the function.
For example, how much does the function change as x increases (but y is fixed)? How much
does the function change as y increases (but x is fixed)? How much does the function change
as y increases at a rate 3.5 times larger than the rate that x increases? And so on. We will
begin by answering the first two questions, and we will save the other one for later.

Definition 7.17 (Partial Derivatives). Let f : R2 → R. Let (a, b) ∈ R. We define the
partial derivative of f at the point (a, b) in the x-direction by the following limit (if it exists):

∂f

∂x
(a, b) = fx(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
.

That is, the partial derivative of f in the x-direction is just the derivative of f(x, y) with
respect to x, if we consider y to be fixed.

We similarly define the partial derivative of f at the point (a, b) in the y-direction by

∂f

∂y
(a, b) = fy(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
.

Example 7.18. Let f(x, y) = x2y3 + y2 + x. Then

∂f

∂x
= 2xy3 + 1,

∂f

∂y
= 3x2y2 + 2y.

Example 7.19. Let f(x, y, z) = x2 + y2 + z2. Then

∂f

∂x
= 2x,

∂f

∂y
= 2y

∂f

∂z
= 2z.

Remark 7.20. We can interpret a partial derivative in the same way we always interpret
derivatives. For example, ∂f/∂x is the rate of change of f , as x increases (while other
variables are held fixed).

Example 7.21. Since a partial derivative is essentially a one-variable derivative, it follows
all of the usual rules such as the chain rule, product rule, quotient rule, etc.

Let f(x, y) = x(x2+1)2

y2+1
. Then

∂f

∂x
=

2x(x2 + 1)(2x) + (x2 + 1)2

y2 + 1
,

∂f

∂y
=
−x(x2 + 1)2(2y)

(y2 + 1)2
.

For single variable functions, after defining the first derivative f ′(x) of a function f : R→
R, we then defined f ′′(x) = (d/dx)f ′(x), f ′′′(x) = (d/dx)f ′′(x), and so on. We will do
something similar now for multivariable functions. However, now that we have more than
one variable, there are many more derivatives to consider.
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Definition 7.22 (Iterated Partial Derivatives). Let f : R2 → R. We define the second
order partial derivatives of f in the following way.

∂2f

∂x2
= fxx =

∂

∂x

∂f

∂x
,

∂2f

∂y2
= fyy =

∂

∂y

∂f

∂y
.

∂2f

∂x∂y
= fxy =

∂

∂x

∂f

∂y
,

∂2f

∂y∂x
= fyx =

∂

∂y

∂f

∂x
.

Example 7.23. Let’s compute some iterated partial derivatives of f(x, y, z) = xyz + x2.
We have

∂2f

∂x2
=

∂

∂x

∂f

∂x
=

∂

∂x
(yz + 2x) = 2.

∂2f

∂y2
=

∂

∂y

∂f

∂y
=

∂

∂y
(xz) = 0.

∂2f

∂y∂z
=

∂

∂y

∂f

∂z
=

∂

∂y
(xy) = x,

∂2f

∂z∂y
=

∂

∂z

∂f

∂y
=

∂

∂z
(xz) = x

In the last example, we found that fyz = fzy. That is, the order of the iterated partial
derivative does not matter. This observation is in fact generic.

Theorem 7.24 (Clairaut’s Theorem). Let f : R2 → R. Suppose fxy and fyx both exist
and are continuous. Then fxy = fyx.

x

y

z

z = x2 + y2

z = L(x, y)

7.3. Differentiability and Tangent Planes.
Suppose f : R → R. Fix a ∈ R. Recall that
the linearization of f at the point a is given
by the following function of x.

L(x) = f(a) + (x− a)f ′(a).

This function is the linearization of f since
L is a linear function of x, L(a) = f(a) and
L′(a) = f ′(a). We also refer to L(x) as the
tangent line to f at a. We can do some-
thing similar for function several variables.

Definition 7.25. Suppose f : R2 → R. Fix (a, b) ∈ R. We define the linearization of f at
the point (a, b) to be the following function of (x, y) ∈ R2.

L(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b) = f(a, b) + ((x, y)− (a, b)) · ∇f(a, b).

Here we defined the gradient of f at the point (a, b) to be the following vector in R2.

∇f(a, b) = (fx(a, b), fy(a, b)).

If f : R3 → R and if (a, b, c) ∈ R, we similarly define the gradient of f at (a, b, c) to be the
vector in R3.

∇f(a, b, c) = (fx(a, b, c), fy(a, b, c), fz(a, b, c)).

And we similarly define the linearization of f at the point (a, b, c) to be the following
function of (x, y, z) ∈ R3.

L(x, y, z) = f(a, b, c) + ((x, y, z)− (a, b, c)) · ∇f(a, b, c).
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Example 7.26. We find the linearization of the function f(x, y) = x2 + y2 at the point
(1, 3). The linearization is given by

L(x, y) = f(1, 3) + ((x, y)− (1, 3)) · ∇f(1, 3)

= 10 + ((x, y)− (1, 3)) · (2, 6) = 10 + 2(x− 1) + 6(y − 3).

Remark 7.27. Suppose f : R2 → R. The linearization L gives an equation for a plane
z = L(x, y). We say that the plane z = L(x, y) is then the tangent plane to the surface
z = f(x, y) at the point (a, b). The tangent plane at (a, b) is a linear approximation to the
surface z = f(x, y) in the same way that a single-variable function f : R → R can have a
tangent line.

Example 7.28. Continuing the previous example, the tangent plane to the paraboloid
z = x2 + y2 at (1, 3) is given by z = 10 + 2(x− 1) + 6(y − 3).

Example 7.29. Let’s find the tangent plane to the cone z2 = x2 + y2, z ≥ 0 at (3, 4).

Solving for z, we have z =
√
x2 + y2. Setting f(x, y) =

√
x2 + y2, we have ∇f(x, y) =

(x(x2 + y2)−1/2, y(x2 + y2)−1/2). So, ∇f(3, 4) = (3/5, 4/5). So, the tangent plane is given by
z = f(3, 4) + ((x, y)− (3, 4)) · ∇f(3, 4) = 5 + (x− 3)(3/5) + (y − 4)(4/5).

Note that the gradient of f is discontinuous at (x, y) = (0, 0), and there is similarly no
clear geometric meaning to the tangent plane at the tip of the cone.

Remark 7.30 (Linear Approximation). Recall that for a single-variable function f : R→
R, we have the heuristic f(x) ≈ L(x) when x is near a. We similarly have a heuristic for
functions of multiple variables. For example, if f : R2 → R, then f(x, y) ≈ L(x, y) when
(x, y) is near the point (a, b). This approximation holds since f and L agree to first order,
just as in the single-variable case. Indeed, we have

L(a, b) = f(a, b), ∇L(a, b) = (Lx(a, b), Ly(a, b)) = (fx(a, b), fy(a, b)) = ∇f(a, b).

7.4. Gradient and Directional Derivative. Let f : R→ R. Recall that if the derivative
of f is positive, then the function is increasing; if the derivative is negative, then the function
is decreasing, and if the derivative is zero, then the function has a critical point. So, the
derivative of f tells us how the function f is changing. There is an analogous thing to
say for functions of two or more variables. However, we now have many variables, so a
single derivative may not necessarily tell us what is going on. That is, we will need to look
at a few different derivatives, but then some notion of positivity or negativity is then less
straightforward.

Example 7.31. Consider the function f(x, y) = x2 − y2. If y = 0, then f(x, y) = x2. That
is, when we restrict the function to the line y = 0, we see that f(x, y) has a local minimum
at x = 0. However, if x = 0, then f(x, y) = −y2. That is, when we restrict the function
to the line x = 0, we see that f(x, y) has a local maximum at y = 0. This behavior can be
understood by looking at both derivatives of f . We have fx = 2x, so that moving x towards
zero will always decrease the value of f . And fy = −2y, so moving y towards zero will always
increase the value of f . This increasing/decreasing nature of f cannot be understood just
by looking at a single derivative of f .

Let f : R2 → R Recall that we defined the gradient of f at (a, b) by

∇f(a, b) = (fx(a, b), fy(a, b)).
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Remark 7.32. The gradient vector ∇f(a, b) points in the direction in which the function f
is increasing, at the point (a, b). If ∇f(a, b) = (0, 0), or if fx or fy is undefined, we say that
(a, b) is a critical point of the function f .

Example 7.33. Let f(x, y) = x2 − y2 as in the previous example. Then ∇f(a, b) =
(2a,−2b) = 2(a,−b). The vector (a,−b) points in the direction in which f increases, at
the point (a, b). If (a, b) = (0, 0), then ∇f(a, b) = (0, 0), so (0, 0) is a critical point of f .
However, note that this point is neither a local maximum nor a local minimum of f . We will
discuss critical points later on in the course.

Example 7.34. Let f(x, y) = x2 + y2. Then ∇f(a, b) = (2a, 2b). The vector (a, b) points in
the direction in which f increases, at the point (a, b). That is, moving away from the origin
always increases the value of f . If (a, b) = (0, 0), then ∇f(a, b) = (0, 0), so (0, 0) is a critical
point of f . In this case, the origin (0, 0) is the global minimum of the function f .
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Proposition 7.35 (Properties of the Gradient). Let f, g : R2 → R and let c ∈ R.

• ∇(f + g) = (∇f) + (∇g)
• ∇(cf) = c · (∇f).
• ∇(fg) = f · (∇g) + g · (∇f). (Product Rule)
• Let F : R→ R. Then ∇F (f(x, y)) = F ′(f(x, y)) · ∇f(x, y). (Chain Rule)

Example 7.36. Let f(x, y) = x2 + y2, let g(x, y) = 2x. Then at the point (a, b), we have
∇(f + g) = ∇f +∇g = (2a, 2b) + (2, 0) = (2a+ 2, 2b).

Let h(x, y) = (x2 + y2) and let F (t) = t3. Then at the point (a, b), we have ∇F (h(a, b)) =
3(h(a, b))2∇h(a, b) = 3(a2 + b2)2(2a, 2b).

Proposition 7.37 (Chain Rule for Vector-Valued Functions). Let f : R3 → R. Let
r : R→ R3. Then

d

dt
(f(r(t))) = (∇f(r(t))) · r′(t).
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Proof Sketch. We use the linear approximation, r(t+h) ≈ r(t)+hr′(t). Also, f((x, y, z)+v) ≈
f(x, y, z) + v · ∇f(x, y, z). Substituting one approximation into the other,

d

dt
f(r(t)) = lim

h→0

f(r(t+ h))− f(r(t))

h
≈ lim

h→0

f(r(t) + hr′(t))− f(r(t))

h

≈ lim
h→0

[f(r(t)) + hr′(t) · ∇f(r(t))]− f(r(t))

h
= lim

h→0

hr′(t) · ∇f(r(t))

h
= r′(t) · ∇f(r(t)).

�

Example 7.38. Let f(x, y) = x2 + y2. Let s(t) = (t, t3). Then f(s(t)) = t2 + t6. From the
Chain Rule, we have (d/dt)f(s(t)) = ∇f(s(t)) · s′(t) = (2t, 2t3) · (1, 3t2) = 2t+ 6t5.

7.5. Directional Derivatives. From the Chain Rule for vector-valued functions, we saw
that, if f : R3 → R and if r : R→ R3, then

d

dt
(f(r(t))) = lim

h→0

f(r(t) + hr′(t))− f(r(t))

h
= (∇f(r(t))) · r′(t).

We can similarly allow r′(t) to be any fixed vector v ∈ R3, and turn this limit into a definition.

Definition 7.39 (Directional Derivative). Let f : R3 → R. Let (a, b, c) ∈ R3 and let
v ∈ R3. We define the derivative Dvf(a, b, c) of f with respect to v at the point (a, b, c) by

Dvf(a, b, c) = lim
h→0

f((a, b, c) + hv)− f(a, b, c)

h
= (∇f(a, b, c)) · v.

If v is a unit vector, we call Dvf(a, b, c) the directional derivative of f in the direction v
at the point (a, b, c).

Remark 7.40. Let f : R2 → R and let v ∈ R2. The directional derivative Dvf(a, b) measures
the rate of growth of f at the point (a, b) in the direction v.

Example 7.41. Let f(x, y) = x2 + y2. Let v = (1, 2). Then Dvf(0,−1) = (∇f(0,−1)) ·
(1, 2) = (0,−2) · (1, 2) = −4.

Directional derivatives allow us to better understand the information contained in the
gradient itself. For example, suppose v ∈ R2 is a unit vector and let (a, b) ∈ R2. Then, if θ
denotes the angle between ∇f(a, b) and v, we have

Dvf = ∇f(a, b) · v = ‖∇f(a, b)‖ cos θ.

That is, Dvf is the most positive when θ = 0, and Dvf is most negative when θ = π. In the
case θ = 0, v points in the same direction as ∇f(a, b). And in the case that θ = π, v points
in the opposite direction of ∇f(a, b).

Finally, in the case θ = π/2, Dvf = 0. So, when v is perpendicular to ∇f(a, b), f is neither
increasing nor decreasing in the direction v. We summarize these observations below.

Definition 7.42 (Optimization Interpretation of Gradient and Directional Deriva-
tives). Let f : R2 → R, let v ∈ R2 be a unit vector, and let (a, b) ∈ R2. Assume
∇f(a, b) 6= (0, 0). Then

(i) ∇f(a, b) points in the direction of greatest increase of f . And −∇f(a, b) points in
the direction of greatest decrease of f .

(ii) ∇f(a, b) is orthogonal to the level curve of f at (a, b).
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In the case f : R3 → R, then ∇f(a, b, c) is normal to the level surface of f at (a, b, c).

Proof of (ii). Let r : R→ R2 be a level curve of f . That is, assume that f(r(t)) is constant
as t varies, and assume that r(0) = (a, b, c). Then using the Chain Rule,

0 =
d

dt
f(r(t)) = ∇f(r(t)) · r′(t).

That is, r′(t) is orthogonal to ∇f(r(t)) for any t (in particular for t = 0). And r′(t) is
tangent to the level curve r(t). So, ∇f(r(t)) is orthogonal to the level curve. �

8. Optimization
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We have now built up enough machinery of differential calculus to begin optimizing func-
tions of multiple variables. We have seen that the gradient of a function points in the
direction of greatest increase, and the negative of the gradient of a function points in the
direction of greatest decrease. We will exploit this and other properties of the gradient to
optimize functions. We first recall optimization for a single variable.

Suppose f : R → R. Recall that a critical point occurs at x when f ′(x) = 0 or f ′(x) is
undefined. If x is a critical point for f , then x may or may not be a local extremum of f .
For example, if f(x) = x2, then f ′(x) = 0 occurs only at x = 0. And we know that x = 0
is a global minimum for f . That is, f(x) ≥ f(0) for all x ∈ R. However, if f(x) = x3, then
f ′(x) = 0 occurs only at x = 0. But x = 0 is not a local maximum or a local minimum.
That is, no matter how close we look near x = 0, there are always points x1, x2 near zero
such that f(x1) > f(0) > f(x2). The issue here is that f ′′(x) changes sign at x = 0, so
that x = 0 is an inflection point of f . So, the first derivative can be helpful sometimes for
optimizing functions, but not always. Lastly, recall that if f ′′(x) > 0, then f has a shape
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similar to g(x) = x2 (f is concave up), and if f ′′(x) < 0, then f has a shape similar to
g(x) = −x2 (f is concave down). So, the second derivative of f can also tell us some things
about local extrema of a function. Note that f(x) = |x| has a global minimum at x = 0
even though f ′(0) is undefined. Note also that f(x) = x4 has a global minimum at x = 0,
while f ′(0) = f ′′(0) = 0, so the value of the second derivative at a single point cannot always
identify a local extremum.

Let’s recall the second derivative test in one variable.

Example 8.1. Let f : R→ R. We say that c is a local maximum for f if all points x near
c satisfy f(x) ≤ f(c). We say that c is a local minimum for f if all points x near c satisfy
f(x) ≥ f(c). We say that c is a local extremum for f if c is either a local maximum or a
local minimum of f .

(Second Derivative Test on R)

• If f ′(c) = 0 and f ′′(c) > 0 then c is a local minimum of f .
• If f ′(c) = 0 and if f ′′(c) < 0, then c is a local maximum of f .
• If f ′(c) = 0 and if f ′′(c) = 0, then this test is inconclusive. That is, c may or may

not be a local extremum of f .

We will come up with an analogous test for functions of more variables. However, the test
will be a bit more complicated than before. We begin with some definitions

Definition 8.2 (Local Extremum). Let f : R2 → R.

• We say that f has a local maximum at (a, b) if f(x, y) ≤ f(a, b) for all (x, y)
near (a, b). (Formally: there is some t > 0 such that, if ‖(a, b)− (x, y)‖ < t, then
f(x, y) ≤ f(a, b).)
• We say that f has a local minimum at (a, b) if f(x, y) ≥ f(a, b) for all (x, y)

near (a, b). (Formally: there is some t > 0 such that, if ‖(a, b)− (x, y)‖ < t, then
f(x, y) ≤ f(a, b).)

We say that f has a local extremum at (a, b) if (a, b) is either a local maximum or a local
minimum.

Example 8.3. f(x, y) = x2 + y2 has a local minimum at (0, 0), since f(x, y) ≥ 0 = f(0, 0)
for all (x, y) ∈ R2. Note that ∇f(0, 0) = (0, 0).
g(x, y) = −x2 − y2 has a local maximum at (0, 0), since g(x, y) ≤ 0 = g(0, 0) for all

(x, y) ∈ R2. Note that ∇g(0, 0) = (0, 0).
h(x, y) = x2−y2 does not have a local extremum at (0, 0). Still, we have ∇h(0, 0) = (0, 0).

Definition 8.4 (Critical Point). Let f : R2 → R and let (a, b) ∈ R2. We say that (a, b) is
a critical point of f if either:

• ∇f(a, b) = (0, 0), or
• One component of ∇f(a, b) is undefined.

x

y
z

z = 1/x

Here are some examples of critical points.

Example 8.5. The point (0, 0) is the only critical point
of f(x, y) = x2 + y2, of g(x, y) = −x2 − y2, and of
h(x, y) = x2 − y2. The point (0, 0) is a critical point of
f(x, y) = 1/x.
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Example 8.6. Let f(x, y) = |x|+ |y|. Then (a, b) is a critical point of f whenever a = 0 or
b = 0. The global minimum of f occurs at (0, 0).
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z = |x|+ |y|

x

y

z

z = x2 − y2

Note that ∇f(0, 0) is undefined.

Definition 8.7 (Saddle Point). Let f : R2 → R and
let (a, b) ∈ R2. We say that (a, b) is a saddle point
of f if (a, b) is a critical point of f and if (a, b) is not
a local extremum of f . Formally: (a, b) is a saddle
point of f if (a, b) is a critical point of f , and for any
t > 0, there exist points (x1, y1) and (x2, y2) such that
‖(x1, y1)− (a, b)‖ < t, ‖(x2, y2)− (a, b)‖ < t, and such
that f(x1, y1) > f(a, b) > f(x2, y2).

Example 8.8. The point (0, 0) is a saddle point for
h(x, y) = x2 − y2. We have ∇h(0, 0) = (0, 0), and for
any n > 1, we have h(1/n, 0) > h(0, 0) > h(0, 1/n).

Theorem 8.9. Let f : R2 → R. If f has a local ex-
tremum at (a, b), then (a, b) is a critical point of f .

Proof Sketch. Assume that ∇f(a, b) exists. Using the
linear approximation of f for points (x, y) near (a, b), we have

f(x, y) ≈ f(a, b) + ((x, y)− (a, b)) · ∇f(a, b).

Let ε be a small number and choose (x, y) = (a, b) + ε∇f(a, b), so that f(x, y) ≈ f(a, b) +
ε ‖∇f(a, b)‖. If ∇f(a, b) 6= (0, 0), then we can choose ε > 0 to get f(x, y) > f(a, b). And we
can choose ε < 0 so that f(x, y) < f(a, b). Since (a, b) is a local extremum of f , we cannot
find points near (a, b) that lie above and below f(a, b). We conclude that ∇f(a, b) = (0, 0),
as desired. �

From the previous Theorem, if we want to find the local extrema of a function, it suffices
to find the critical points of f . Once we have found a critical point, we would like to identify
it as a local maximum, local minimum, or saddle point. For functions of two variables, the
following quantity allows such an identification.

Definition 8.10. Let f : R2 → R. Let (a, b) ∈ R2. Define the discriminant D(a, b) of f at
(a, b) by

D(a, b) = det

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
= fxx(a, b)fyy(a, b)− (fxy(a, b))

2.

D(a, b) is sometimes called the Hessian of f at (a, b).

Theorem 8.11 (Second Derivative Test on R2). Let f : R2 → R. Let (a, b) ∈ R2.
Assume that (a, b) is a critical point of f , and that the second derivatives fxx, fxy, fyy exist
and are continuous near (a, b). Then

• If D > 0 and if fxx(a, b) > 0, then (a, b) is a local minimum of f .
• If D > 0 and if fxx(a, b) < 0, then (a, b) is a local maximum of f .
• If D < 0, then (a, b) is a saddle point of f .
• If D = 0, then no conclusion can be drawn in general.
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Example 8.12. If f(x, y) = x2 +y2, then D(0, 0) = 4 > 0. Since fxx(0, 0) = 2 > 0, we know
that (0, 0) is a local minimum of f .

If g(x, y) = −x2− y2, then D(0, 0) = 4 > 0. Since fxx(0, 0) = −2 < 0, we know that (0, 0)
is a local maximum of g.

If h(x, y) = x2 − y2, then D(0, 0) = −4 < 0, so (0, 0) is a saddle point of h.
If p(x, y) = x4 + y4, then D(0, 0) = 0, but (0, 0) is a global minimum of p. If p(x, y) =
−x4 − y4, then D(0, 0) = 0, but (0, 0) is a global maximum of p. If p(x, y) = x4 − y4, then
D(0, 0) = 0, but (0, 0) is saddle point of p.

Proof sketch of Theorem 8.11. For simplicity, assume (a, b) = (0, 0). It turns out that there
are multivariable versions of Taylor’s Theorem. In the present case, we have the following
Taylor expansion near (0, 0). (Note the resemblance to the linear approximation of f .)

f(x, y) ≈ f(0, 0) + (x, y) · ∇f(0, 0) + x2fxx(0, 0)/2 + y2fyy(0, 0)/2 + xyfxy(0, 0) + · · ·

If ∇f(0, 0) = 0, then the first-order terms go away, so that we have

f(x, y) ≈ f(0, 0) + x2fxx(0, 0)/2 + y2fyy(0, 0)/2 + xyfxy(0, 0) + · · ·

That is, the most significant part of the function is the quadratic term

q(x, y) = x2fxx(0, 0)/2 + y2fyy(0, 0)/2 + xyfxy(0, 0).

(Note that qxx(0, 0) = fxx(0, 0), qyy(0, 0) = fyy(0, 0) and qxy(0, 0) = fxy(0, 0)). To make
things easier, we complete the square to get rid of the xy term.

q(x, y) =
1

2
fxx(0, 0)

(
x+ y

fxy(0, 0)

fxx(0, 0)

)2

+
1

2fxx(0, 0)
y2
(
fyy(0, 0)fxx(0, 0)− (fxy(0, 0))2

)
.

If D > 0 and fxx(0, 0) > 0, then q(x, y) > 0, so (0, 0) is a local minimum. The other cases
are handled similarly. �

Finding local extrema is nice, but it would be better to find the maximum or minimum
values of a function on a given domain. Doing so requires more than just looking at the
critical points of the function.

Definition 8.13. Let D be a domain in R2, and let f : D → R. The global maximum
of f on D is the largest value of f on the domain D (if such a value exists). The global
minimum of f on D is the smallest value of f on the domain D (if such a value exists).

Example 8.14. Let f(x) = x on the domain 0 ≤ x ≤ 1, so that f : [0, 1] → R. The
global maximum of f occurs at x = 1, and the global minimum of f occurs at x = 0. Note
that f ′(x) is never zero, so we cannot identify the global maximum and minimum just by
examining critical points. We also need to examine the boundary of the domain 0 ≤ x ≤ 1,
which in this case is exactly x = 0 and x = 1. Note also that if we consider f to have the
domain −∞ < x <∞, then f has no maximum or minimum value.

Example 8.15. Suppose we want to maximize f(x) = (x2 − 1)2 = x4 − 2x2 + 1, where
−∞ < x <∞. We see that f ′(x) = 4x(x2 − 1), so that f ′(x) = 0 when x = 0, 1,−1.
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Also, f ′′(x) = 12x2−4, so f ′′(0) < 0. That
is, x = 0 is a local maximum. However, f
has no global maximum on −∞ < x < ∞,
since limx→∞ f(x) =∞. Also, the other two
critical points are local minima. So, even
though there is only one local maximum,
this does not necessarily imply that a global
maximum exists. On the other hand, we can
come up with a condition on the domain of
the function f such that, if this condition is satisfied, then we can find the global maximum
or minimum of f with an algorithm.

Definition 8.16. Let D be a domain in R2. Let (a, b) ∈ R2. We say that (a, b) is a
boundary point if, given any t > 0, the open disk {(x, y) ∈ R2 : ‖(x, y)− (a, b)‖ < t}
contains at least one point in D, and it contains at least one point not in D. A domain D
is closed if it contains all of its boundary points. A domain D is called bounded if there
exists some R > 0 such that D is contained in the disk {(x, y) ∈ R2 : ‖(x, y)− (a, b)‖ < R}.

Remark 8.17. These definitions can be applied to Euclidean space of any dimension.

Example 8.18. The closed interval [0, 1] is closed. Its boundary points are 0 and 1, and
both points are contained in [0, 1].

The open interval (0, 1) is not closed. Its boundary points are 0 and 1, and both points
are not contained in (0, 1).

Both of the intervals [0, 1] and (0, 1) are bounded. However, the interval (0,∞) is not
bounded.

As we saw from the above examples, if the domain of a function is not closed, then the
global maximum may not exist. Similarly, if the domain of a function is not bounded, then
the global maximum may not exist. Fortunately, if the domain of a continuous function is
both closed and bounded, then the global maximum does exist. The following theorem is
proven is a proof-based calculus class, otherwise known as analysis. The one-dimensional
analogue of the theorem below was stated in Theorem 3.7.

Theorem 8.19 (Extreme Value Theorem). Let D be a domain in R2. Assume that D
is closed and bounded. Let f : D → R be continuous. Then

• The function f achieves both its maximum and minimum values in D.
• The extreme values of f occur either at critical points of f in D, or on the boundary

of D.

We can then turn this Theorem into an algorithm for finding the extreme values of a
function

Algorithm 2 (Finding Extreme Values). Let D be a domain in R2. Assume that D is
closed and bounded. Let f : D → R be continuous. To find the maximum and minimum
values of f , we perform the following procedure:

(i) Find all critical points of f in D.
(ii) Find the maximum and minimum of f on the boundary points of D.
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(iii) Among the points found in parts (i) and (ii), choose those points with the largest
and smallest values of f .

The maximum and minimum values of f on D must occur at the points found in Step (iii).

Remark 8.20. Step (ii) requires care when D is a domain in R3, as we demonstrate below.

Example 8.21. Consider f(x, y) = x+ y on the domain D where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
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f(x, y) = x+ y

level curves of

We have ∇f(x, y) = (1, 1), so f has no
critical points in D, and Step (i) is then
complete. We now check the boundary of
the domain. This boundary consists of four
line segments, and we need to check each
one separately. The first line segment is
when y = 0 and 0 ≤ x ≤ 1. In this case
f(x, y) = x. We know ∂f/∂x = 1 6= 0
on this line, so the extrema on this line oc-
cur on its boundary, which is x = 0 and
x = 1. So, we have added the points (0, 0)
and (1, 0) to our list of points in Step (ii).
The next line segment is when y = 1 and
0 ≤ x ≤ 1. In this case f(x, y) = x + 1.
We know ∂f/∂x = 1 6= 0 on this line, so the
extrema on this line occur on its boundary,
which is x = 0 and x = 1. So, we have added the points (0, 1) and (1, 1) to our list of points
in Step (ii). Similarly, we can check the third and fourth line segments (x = 0, 0 ≤ y ≤ 1
and x = 1, 0 ≤ y ≤ 1), which add the points (0, 0), (0, 1) and (1, 0), (1, 1) respectively to our
list of points in Step (ii). However, we already added these points to our list, so we did not
add any new points.

In conclusion, from Steps (i) and (ii), we found a list of all possible candidate extrema,
and this list is: (0, 0), (0, 1), (1, 0) and (1, 1). So, it remains to check the values of f at these
points. We have f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1 and f(1, 1) = 2. The minimum and
maximum of these values are the minimum and maximum of f on D. That is, the minimum
value of f on D is 0, and it occurs only at (0, 0). And the maximum value of f on D is 2,
and it occurs only at (1, 1).

Example 8.22. Consider f(x, y) = x2 + y2 + z2 on the domain D where −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. We have ∇f(x, y) = (2x, 2y, 2z), so f only has a critical
point at (0, 0, 0), and Step (i) is then complete. We now check the boundary of the domain.
This boundary consists of six squares, and we need to check each one separately. The first
square is x = −1, −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. In this case f(x, y, z) = 1 + y2 + z2. That
is, we are confronted with a two-variable optimization of the function g(y, z) = 1 + y2 + z2

where −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. We therefore perform Algorithm 2 on the function
g. We see that ∇g = (2y, 2z), so a critical point only occurs at (y, z) = (0, 0). We then
need to check the boundary of the square, which consists of four line segments. The first
line segment occurs when y = 1 and −1 ≤ z ≤ 1. On this line, we have g(y, z) = 2 + z2. We
have ∂g/∂z = 2z, so that z = 0 is the only critical point of g on the line. We finally add the
boundary points of the line segment to our list of points, where z = 1,−1.
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In summary, so far we have added the following points to our list of potential extreme
values: (0, 0, 0), (−1, 0, 0), (−1, 1, 0), (−1, 1, 1), (−1, 1,−1). We still have to examine the
three other sides of the square x = −1, −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. And we have to
examine the five other squares of the domain D. Once we do this procedure, we will get a
list of points consisting of all possible triples of points from the set {−1, 0, 1}.

It remains to check the values of f at these points. We have f(0, 0, 0) = 0, f(±1,±1,±1) =
3, and all other candidate extrema have value 1 or 2. So, the minimum value of f on D is
0, and it occurs only at (0, 0, 0). And the maximum value of f on D is 3, and it occurs only
at the set of eight points (±1,±1,±1).

8.1. Constrained Optimization: Lagrange Multipliers. We have now reached the
culmination of this chapter and of the course. As we have seen from the previous sec-
tion, many optimization problems naturally require us to consider constraints. For ex-
ample, when we tried to maximize the function f(x, y, z) = x2 + y2 + z2 over the box
−1 ≤ x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1, we were forced to optimize the function f on
the boundary of the box. For example, we had to optimize the function f subject to the
constraint x = −1, −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. This constraint was relatively easy to deal
with, since we could just substitute the value x = −1 into the function f , and then optimize
over y and z. However, for more general constraints, this substitution procedure may not
work, or it could make things unnecessarily complicated.

Example 8.23. Consider the function f(x, y) = x2 subject to the constraint x+y = 1. There
may not be a way to substitute the constraint x + y = 1 into the function f(x, y) = x2 to
get a single variable function, which can be optimized. However, in this case, this procedure
works: you could try to parametrize the line x + y = 1 as r(t) = (t, 1− t), t ∈ R, and then
consider f(x, y) = x2 = t2 which has a critical point only at t = 0, which corresponds to the
point (0, 1). And (0, 1) is the global minimum of f on x+ y = 1.

x

y

g constant

on the curve r

∇g(r(0))

r′(0)

∇f(r(0))

However, there is an automatic procedure
which works in any dimension, and it does
not require any parametrization.

Theorem 8.24 (Lagrange Multipliers).
Let f : R2 → R and let g : R2 → R be func-
tions such that ∇f and ∇g exist and are
continuous. Consider the problem of max-
imizing or minimizing f subject to the con-
straint g(x, y) = 0. If f has a local max-
imum or local minimum at the point (a, b)
subject to the constraint g(x, y) = 0, and if
∇g(x, y) 6= (0, 0), then there exists a real
number λ such that

∇f(a, b) = λ∇g(a, b).

Remark 8.25. The condition ∇f(a, b) = λ∇g(a, b) says that the vectors ∇f and ∇g are
parallel.

Proof Sketch. Suppose r(t) is a parametrization of the constraint curve g(x, y) = 0 where
r(0) = (a, b). Then f(r(t)) is a function of the real variable t which has a local maximum
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or minimum at t = 0. That is, (d/dt)f(r(t)) = 0 when t = 0. From the Chain Rule, this
equation says

∇f(r(0)) · r′(0) = 0.

That is, r′(0) is perpendicular to ∇f(a, b) = ∇f(r(0)). Since r′(0) is parallel to the curve
g(x, y) = 0 and ∇g(a, b) is perpendicular to the curve g(x, y) = 0, we see that r′(0) is
perpendicular to ∇g(a, b). And since r′(0) is also perpendicular to ∇f(a, b), we see that
∇f(a, b) is parallel to ∇g(a, b). �

Remark 8.26. This Theorem also holds for functions f : R3 → R and constraints g : R3 →
R.

Example 8.27. Maximize f(x, y) = x2 + y2 subject to the constraint x2 + 2y2 = 1.

x

y

z

z = x2 + y2

x

y

1

1 of f(x, y) = x2 + y2
three level curves

constraint x2 + 2y2 = 1

constraint x2 + 2y2 = 1

We use the method of Lagrange Multipli-
ers, with f(x, y) = x2 + y2 and g(x, y) =
x2 + 2y2 − 1. We need to solve for x, y and
λ in the equation

∇f(x, y) = λ∇g(x, y).

That is, we need to solve for

(2x, 2y) = λ(2x, 4y).

We have the system of three equations in
three unknowns

2x = λ(2x)

2y = λ(4y)

x2 + 2y2 = 1.

If x 6= 0, we have λ = 1, so that the sec-
ond equation implies that y = 0. The third
equation then implies that x = 1 or x = −1.
So, the points (1, 0) and (−1, 0) are candi-
date maxima for f , subject to the constraint
g(x, y) = 0.

In the remaining case that x = 0, the last
equation implies that y = 1/

√
2 or y = −1/

√
2. So, the points (0, 1/

√
2) and (0,−1/

√
2) are

candidate maxima for f .
In summary, the only possible maxima for f subject to the constraint g(x, y) = 0 are the

four points: (1, 0), (−1, 0), (0, 1/
√

2) and (0,−1/
√

2). By inspecting the values of f at these
points, we see that f(1, 0) = f(−1, 0) = 1 and f(0, 1/

√
2) = (0,−1/

√
2) = 1/2. The largest

of these values is 1.
In conclusion, subject to the constraint x2+2y2 = 1, the function f has its global maximum

of 1 at the points (1, 0) and (−1, 0). We did not ask for it, but the global minimum of f is
1/2 occurring at the points (0, 1/

√
2) and (0,−1/

√
2). (Note that ∇g(x, y) 6= (0, 0) when

x2 + 2y2 = 1, since if x = 0, then y 6= 0. So, the Lagrange Multiplier Theorem applies.)

Example 8.28. Let’s find the extreme values of the function f(x, y) = x+ 2y on the ellipse
x2 + 2y2 = 1.
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x

y

z

z = x+ 2y

x

y

1

1 f(x, y) = x+ 2y
level curves of

constraint

constraint x2 + 2y2 = 1

x2 + 2y2 = 1

We use the method of Lagrange Multipli-
ers, with f(x, y) = x + 2y and g(x, y) =
x2 + 2y2 − 1. We need to solve for x, y and
λ in the equation

∇f(x, y) = λ∇g(x, y).

That is, we need to solve for

(1, 2) = λ(2x, 4y).

We have the system of three equations in
three unknowns

1 = λ(2x)

2 = λ(4y)

x2 + 2y2 = 1.

We have 2λ(2x) = 2 = λ(4y). So, if λ 6= 0,
we have 4x = 4y. That is, x = y. Substitut-
ing this into the last equation, we have

1 = 3x2.

Solving for x, we get x = ±1/
√

3, so that
y = ±1/

√
3 as well. So, two candidate points for extreme values are (1/

√
3, 1/
√

3) and
(−1/

√
3,−1/

√
3).

Note that the case λ = 0 cannot occur, since it would say that (1, 2) = (0, 0), which is
not true. So, the extreme values can only occur at (1/

√
3, 1/
√

3) and (−1/
√

3,−1/
√

3). By
inspection, f(1/

√
3, 1/
√

3) = 3/
√

3 =
√

3, and f(−1/
√

3,−1/
√

3) = −3/
√

3 = −
√

3.
In conclusion, subject to the constraint x2 + 2y2 = 1, the function f has its global

maximum of
√

3 at the point (1/
√

3, 1/
√

3) and its global minimum of −
√

3 at the point
(−1/

√
3,−1/

√
3). (Note that ∇g(x, y) 6= (0, 0) when x2 + 2y2 = 1, since if x = 0, then

y 6= 0. So, the Lagrange Multiplier Theorem applies.)

Example 8.29. Let a, b, c > 0. Find the dimensions of the box of maximal volume, whose
edges are parallel to the coordinate axes, which can be inscribed in the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

(x, y, z)Suppose the box B has vertices at the
coordinates (±x,±y,±z) ∈ R3, where
x, y, z ≥ 0. Then the area of the box is
8xyz. Also, since the vertices intersect the
ellipsoid, we have x2/a2 + y2/b2 + z2/c2 = 1.
To find the maximum area box, we therefore
maximize the function f(x, y, z) = xyz with
the constraint g(x, y, z) = x2/a2 + y2/b2 +
z2/c2 − 1 = 0, with x, y, z,≥ 0. Let

D = {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}.
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Then

∇f =

yzxz
xy

 , ∇g =

2x/a2

2y/b2

2z/c2

 .

(Since ∇g 6= (0, 0, 0) on D, the Lagrange Multiplier Theorem applies.)
We need to solve the equation ∇f = λ∇g. This system of equations says

yz = λ2x/a2, xz = λ2y/b2, xy = λ2z/c2.

Since ∇f 6= (0, 0, 0) on D, we may assume that λ 6= 0. Substituting the first equation into
the second gives (yza2/(2λ))z = 2λy/b2, so z2 = 4λ2/(a2b2). So, z = 2 |λ| /(ab). Substituting
the second equation into the third gives (xzb2/(2λ))x = 2λz/c2, so x = 2 |λ| /(bc). Similarly,
y = 2 |λ| /(ac). Plugging these equalities for x, y, z into the condition g(x, y, z) = 0 shows
that 12λ2 = a2b2c2, so 2

√
3 |λ| = abc. So, the only critical point we have found in D is

(x, y, z) = (a/
√

3, b/
√

3, c/
√

3).

On the boundary of D, f = 0. Also, f(a/
√

3, b/
√

3, c/
√

3) = abc3−3/2 > 0. So, we have
found the unique maximum of f . The box of maximal volume with edges parallel to the
coordinate axes therefore has dimensions 2a/

√
3, 2b/

√
3, 2c/

√
3.

Example 8.30. Suppose that we have a probability distribution on the set {1, . . . , n}, i.e.
we have a set of number p1, . . . , pn ∈ [0, 1] such that

∑n
i=1 pi = 1. A fundamental quantity

for a probability distribution is its entropy

f(p1, . . . , pn) = −
n∑
i=1

pi log pi .

(We extend the function x log x to 0 by continuity, so that 0 log 0 = 0.) The entropy of
p1, . . . , pn measures the disorder or lack of information in p. This quantity is important in
statistical physics.

We will try to maximize the entropy f subject to the constraint
∑n

i=1 pi = 1. That is, we
optimize f subject to the constraint g(p1, . . . , pn) = (

∑n
i=1 pi)− 1 = 0. Note that

∇f(p1, . . . , pn) =

−1− log p1
...

−1− log pn

 , ∇g(p1, . . . , pn) =

1
...
1

 .

(Since ∇g 6= (0, . . . , 0), the Lagrange Multiplier Theorem applies.)
We need to solve the equation∇f(p1, . . . , pn) = λ∇g(p1, . . . , pn). This system of equations

says
−1− log p1 = λ, . . . ,−1− log pn = λ.

That is, p1 = p2 = · · · = pn. Since g(p1, . . . , pn) = 0 = (
∑n

i=1 pi)− 1 = np1 − 1, we conclude
that p1 = 1/n, so that p1 = · · · = pn = 1/n. That is, we have found only one candidate
extreme value of f subject to the constraint g(p1, . . . , pn) = 0.

In order to optimize f , we now need to check the boundary of the domain. The boundary
consists of p1, . . . , pn such that

∑n
i=1 pi = 1, and there is some pj which is equal to 1 or

0, so that pj log pj = 0. So, when we are on the boundary of the domain, we have n − 1
nonnegative numbers p1, . . . , pj−1, pj+1, . . . , pn that add to 1. That is, we can exactly repeat
the above calculation with n− 1 replaced by n. We then see that the only critical point we
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find occurs when the n− 1 numbers are equal to 1/(n− 1). So, our next candidate extreme
value of f occurs at such a point. We now need to check the boundary of this region, and
so on. Iterating, we see that the only candidate extreme values occur when some of the
numbers are zero, and the rest are equal to each other.

So, our candidate extreme values occur when (p1, . . . , pn) = (1/n, . . . , 1/n), (p1, . . . , pn) =
(0, 1/(n− 1), . . . , 1/(n− 1)), (p1, . . . , pn) = (0, 0, 1/(n− 2), . . . , 1/(n− 2)), and so on, along
with any permutation of these points. By inspection, we have

f(1/n, . . . , 1/n) =
n∑
i=1

−(1/n) log(1/n) = (n/n) log n = log n.

f(0, 1/(n− 1), . . . , 1/(n− 1)) =
n−1∑
i=1

− 1

n− 1
log
( 1

n− 1

)
=
n− 1

n− 1
log(n− 1) = log(n− 1).

And so on. We therefore see that the maximum entropy occurs at the point (1/n, . . . , 1/n).
(And the minimum entropy occurs at the point (0, . . . , 0, 1).)

9. Double Integrals

Let a < b be real numbers, and let f : [a, b]→ R be a continuous function. Recall that the

integral
∫ b
a
f(x)dx is approximated by Riemann sums. That is, if

a = x0 < x1 < x2 < · · · < xn = b,

then
∫ b
a
f(x)dx, i.e. the area under the curve f , is approximated by the areas under boxes

that approximate the function f . For example, if we evaluate f at the left endpoints of the
boxes, we have ∫ b

a

f(x)dx ≈
n∑
i=1

(xi − xi−1)f(xi−1).

The term on the right is the sum of areas of n boxes, where the ith box has width (xi−xi−1)
and height f(xi−1). More specifically, we have the following limiting expression for the
integral ∫ b

a

f(x)dx = lim
(maxni=1(xi−xi−1))→0

n∑
i=1

(xi − xi−1)f(xi−1). (∗)

That is, no matter how we choose the points a = x0 < x1 < · · · < xn = b, as long as the
quantity (maxni=1(xi − xi−1)) goes to zero as n → ∞, then the right side of (∗) approaches
some real number. And that real number is called the integral of f from a to b, and it is
denoted by the left side of (∗).

x

y

z

a = x0 xn = bx1 x2

c = y0

d = ym

y1

z = f(x, y)

For a two-variable function, it turns out
that we can adapt this procedure. Let a < b
and let c < d be real numbers. Let f : [a, b]×
[c, d] → R be a continuous function. We
then split up the domain [a, b] × [c, d] into
boxes. That is, let

a = x0 < x1 < · · · < xn = b,

c = y0 < y1 < · · · < ym = d.
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We will then approximate the area under the function f by boxes. If 1 ≤ i ≤ n and if
1 ≤ j ≤ m, then the box labelled (i, j) will have area (xi − xi−1)(yj − yj−1). If we choose to
evaluate f at the “lower-left” corner of each box, then this box will have height f(xi−1, yj−1).
The volumes of these boxes will then form a Riemann sum as follows.∫ y=d

y=c

∫ x=b

x=a

f(x, y)dxdy ≈
m∑
j=1

n∑
i=1

(xi − xi−1)(yj − yj−1)f(xi−1, yj−1).

More specifically, we have the following limiting expression for the integral∫ y=d

y=c

∫ x=b

x=a

f(x, y)dxdy = lim
(maxni=1(xi−xi−1))→0
(maxmj=1(yj−yj−1))→0

m∑
j=1

n∑
i=1

(xi−xi−1)(yj−yj−1)f(xi−1, yj−1). (∗)

That is, no matter how we choose the points a = x0 < x1 < · · · < xn = b and c = y0 < y1 <
· · · < ym = d, as long as the quantities (maxni=1(xi − xi−1)) and (maxmj=1(yj − yj−1)) go to
zero as n,m → ∞, then the right side of (∗) approaches some real number. And that real
number is called the integral of f on [a, b]× [c, d], and it is denoted by the left side of (∗).

Remark 9.1. The same idea holds for an integral of f(x, y) over a more general region D of
the plane, but the Riemann sum is just more difficult to write. In the case that we integrate
over a region D of the plane, we denote this integral by∫∫

D

fdA.

Remark 9.2. In practice, computing a double integral is often done by computing two
separate single-variable integrals.

Example 9.3. Let a < b and let c < d be real numbers. For any a ≤ x ≤ b and c ≤ y ≤ d,
let f(x, y) = 1. We evaluate the integral of f over [a, b]× [c, d] by first integrating in the x
variable (while considering y fixed), and then by integrating in the y variable.

x

y

z

D

f = 1

on D

∫ y=d

y=c

∫ x=b

x=a

f(x, y)dxdy =

∫ y=d

y=c

(∫ x=b

x=a

dx

)
dy =

∫ y=d

y=c

(b− a) dy = (d− c)(b− a).

So,
∫ y=d
y=c

∫ x=b
x=a

dxdy gives the area of the rec-

tangle [a, b] × [c, d]. More generally, if D is
a region in the plane, then the area of D is
given by

∫∫
D
dA.

Example 9.4. For any 0 ≤ x ≤ 1 and 0 ≤
y ≤ 1 let f(x, y) = x + y. We evaluate
the integral of f by first integrating in the
x variable (while considering y fixed), and
then by integrating in the y variable. That
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is, ∫ y=1

y=0

∫ x=1

x=0

f(x, y)dxdy =

∫ y=1

y=0

(∫ x=1

x=0

(x+ y)dx

)
dy =

∫ y=1

y=0

[
((1/2)x2 + yx)|x=1

x=0

]
dy

=

∫ y=1

y=0

((1/2) + y) dy = ((1/2)y + (1/2)y2)|y=1
y=0

= (1/2) + (1/2) = 1.

Remark 9.5. When we integrate on a rec-
tangle [a, b] × [c, d], then we can change the order of integration. We can also change the
order of integration when we integrate over general regions D, but we then need to be careful
about describing the region D correctly.

Theorem 9.6 (Change of Order of Integration). Let a < b and let c < d be real
numbers. Let f : [a, b] × [c, d] → R be a continuous function. Let D denote the domain
D = [a, b]× [c, d]. Then∫∫

D

fdA =

∫ y=d

y=c

∫ x=b

x=a

f(x, y)dxdy =

∫ x=b

x=a

∫ y=d

y=c

f(x, y)dydx.

x

y

b

c

d

a

y

b

c

d

a

x

x

y

a b

1

2

3

y = g2(x)

y = g1(x)

D

x

y

c

d

x = h1(y)

x = h2(y)

D

In order to change the order of integration
of a more general region D, we need to make
sure that the limits of the double integral
define the region correctly.

Theorem 9.7 (Integration over General
Regions D). Let D be a region in the plane
R2. Let a < b and let c < d be real numbers.

• Let g1 : [a, b]→ R and let g2 : [a, b]→
R be continuous functions. Suppose
D is defined as the set of all (x, y) in
the plane such that a ≤ x ≤ b and
such that g1(x) ≤ y ≤ g2(x). Then
we compute the integral

∫∫
D
fdA as

follows.∫∫
D

fdA =

∫ x=b

x=a

∫ y=g2(x)

y=g1(x)

f(x, y)dydx.
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• Let h1 : [c, d]→ R and let h2 : [c, d]→
R be continuous functions. Suppose
D is defined as the set of all (x, y) in
the plane such that c ≤ y ≤ d and
such that h1(y) ≤ x ≤ h2(x). Then
we compute the integral

∫∫
D
fdA as follows.∫∫

D

fdA =

∫ y=d

y=c

∫ x=h2(y)

x=h1(y)

f(x, y)dxdy.

Remark 9.8. Note that both items in this Theorem are the same, if we reverse the roles of
x and y.

x

y

1

1

x

y

1

1

Example 9.9. Consider the region D defined as the set of all (x, y) in the plane such that
−1 ≤ x ≤ 1 and such that 0 ≤ y ≤

√
1− x2. Then D is a half of a disc. We will integrate

D in two different ways, and we will get the same answer. Consider f(x, y) = 2y. Then∫∫
D

fdA =

∫ x=1

x=−1

∫ y=
√
1−x2

y=0

2ydydx =

∫ x=1

x=−1
[(y2)|y=

√
1−x2

y=0 ]dx

=

∫ x=1

x=−1
(1− x2)dx = [x− (1/3)x3]|x=1

x=−1

= 1− (1/3) + 1− (1/3) = 4/3.

We now compute this integral by first integrating with respect to x, and then with respect
to y. Note that D can be defined as the set of all (x, y) in the plane such that 0 ≤ y ≤ 1

and such that −
√

1− y2 ≤ x ≤
√

1− y2. So,∫∫
D

fdA =

∫ y=1

y=0

∫ x=
√

1−y2

x=−
√

1−y2
2ydxdy =

∫ y=1

y=0

(2y)(2
√

1− y2)dy

=

∫ u=0

u=1

(−2)
√
udu , substituting u = 1− y2

=

∫ u=1

u=0

2
√
udu = (4/3)u3/2|u=1

u=0 = 4/3.

Remark 9.10. In the above example, note that since f(x, y) ≥ 0 on D,
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x

y

z

1

z = 2y

D

∫∫
D
f(x, y)dxdy gives the volume be-

tween the surfaces z = f(x, y) and z = 0,
over the region D.

Remark 9.11 (An Important Remark
concerning the Square Root Function).
In high school, you learned that the number
9 has two square roots 3 and −3. When
we write the symbol

√
9, we mean that the

symbol
√

9 stands for the nonnegative num-
ber that, when squared, gives 9. So,

√
9 = 3.

So, do not confuse the square root func-
tion

√
x, which is a function from [0,∞) to

[0,∞), with the square roots of a num-
ber. The square root function only has one
value, and not two values.

Since the square root function applied to
a positive number always gives a positive number, the following identity holds for any real
number x √

x2 = |x| .
We used this identity in the above example. Note that, if x is negative, we have

√
x2 6= x.

Example 9.12. Sometimes we are given a double integral, and we need to change the order
of integration, since such a change may simplify the calculation of the integral. In such a
case, drawing a picture of the region is helpful. For example, suppose we have the integral∫ x=1

x=0

∫ y=x

y=x2
f(x, y)dydx.

By drawing a picture, we can see that the set of (x, y) in the plane with 0 ≤ x ≤ 1 and
with x2 ≤ y ≤ x is equal to the set of (x, y) in the plane with 0 ≤ y ≤ 1 and with x = y to
x =
√
y. That is, we have∫ x=1

x=0

∫ y=x

y=x2
f(x, y)dydx =

∫ y=1

y=0

∫ x=
√
y

x=y

f(x, y)dxdy.

The following properties are useful for computing various integrals. These properties
should be familiar from the setting of single-variable integrals.

Proposition 9.13 (Properties of Integrals). Let f and g be continuous functions in the
plane, and let D be a region in the plane.

• If c is a real number, then
∫∫

D
cfdA = c

∫∫
D
fdA.

•
∫∫

D
(f + g)dA =

∫∫
D
fdA+

∫∫
D
gdA.

•
∫∫

D
(f − g)dA =

∫∫
D
fdA−

∫∫
D
gdA.

• If f(x, y) ≥ 0 for all (x, y) in D, then
∫∫

D
fdA ≥ 0.

• If f(x, y) ≥ g(x, y) for all (x, y) in D, then
∫∫

D
fdA ≥

∫∫
D
gdA.

• If D is the union of two nonoverlapping regions D1 and D2, then∫∫
D

fdA =

∫∫
D1

fdA+

∫∫
D2

fdA.

85



10. Triple Integrals

Triple integrals are constructed in an analogous way to double integrals. We now sketch
the idea.

Let a < b and let c < d and let e < f be real numbers. Let F : [a, b] × [c, d] × [e, f ] → R
be a continuous function. We then split up the domain [a, b]× [c, d]× [e, f ] into boxes. That
is, let

a = x0 < x1 < · · · < xn = b

c = y0 < y1 < · · · < ym = d

e = z0 < z1 < · · · < z` = f.

We will then approximate the integral of f by boxes. If 1 ≤ i ≤ n, if 1 ≤ j ≤ m, and if
1 ≤ k ≤ `, then the box labelled (i, j, k) will have volume (xi−xi−1)(yj−yj−1)(zk− zk−1). If
we choose to evaluate f at the “lower-left” corner of each box, then this box will have height
f(xi−1, yj−1, zk−1). The volumes of these boxes multiplied by the value of f on the corner of
the boxes will then form a Riemann sum as follows.∫ z=f

z=e

∫ y=d

y=c

∫ x=b

x=a

F (x, y, z)dxdydz

≈
∑̀
k=1

m∑
j=1

n∑
i=1

(xi − xi−1)(yj − yj−1)(zk − zk−1)F (xi−1, yj−1, zk−1).

More specifically, we have the following limiting expression for the integral∫ z=f

z=e

∫ y=d

y=c

∫ x=b

x=a

F (x, y, z)dxdydz

= lim
(maxni=1(xi−xi−1))→0
(maxmj=1(yj−yj−1))→0

(max`k=1(zk−zk−1))→0

∑̀
k=1

m∑
j=1

n∑
i=1

(xi − xi−1)(yj − yj−1)(zk − zk−1)F (xi−1, yj−1, zk−1). (∗)

That is, no matter how we choose the points a = x0 < x1 < · · · < xn = b, c = y0 < y1 <
· · · < ym = d, and e = z0 < z1 < · · · < z` = f , as long as the quantities (maxni=1(xi − xi−1)),
(maxmj=1(yj − yj−1)) and (maxmk=1(zk − zk−1)) go to zero as n,m, `→∞, then the right side
of (∗) approaches some real number. And that real number is called the integral of F on
[a, b]× [c, d]× [e, f ], and it is denoted by the left side of (∗).

Remark 10.1. The same idea holds for an integral of F (x, y, z) over a more general region
D of Euclidean space, but the Riemann sum is just more difficult to write. In the case that
we integrate over a region D of Euclidean space, we denote this integral by∫∫∫

D

FdV.

Remark 10.2. In practice, computing a triple integral is often done by computing three
separate single-variable integrals.

Example 10.3. Let a < b and let c < d and let e < f be real numbers. For any a ≤
x ≤ b, c ≤ y ≤ d, and e ≤ z ≤ f , let F (x, y, z) = 1. We evaluate the integral of F over
[a, b] × [c, d] × [e, f ] by first integrating in the x variable (while considering y and z fixed),
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and then by integrating in the y variable (while considering z fixed), and then by integrating
in the z variable. That is,∫ z=f

z=e

∫ y=d

y=c

∫ x=b

x=a

F (x, y, z)dxdydz

=

∫ z=f

z=e

∫ y=d

y=c

(∫ x=b

x=a

dx

)
dydz =

∫ z=f

z=e

(∫ y=d

y=c

(b− a) dy

)
dz

=

∫ z=f

z=e

(d− c)(b− a)dz = (f − e)(d− c)(b− a).

So,
∫ z=f
z=e

∫ y=d
y=c

∫ x=b
x=a

dxdydz gives the volume of the box [a, b]× [c, d]× [e, f ]. More generally,

if D is a region in Euclidean space R3, then the volume of D is given by
∫∫∫

D
dV .

Remark 10.4 (Visualizing Higher Dimensions). For a function F (x, y) of two variables
x, y, we often think of F (x, y) as the height of the function F above the point (x, y). Using
this same visualization in three-dimensions doesn’t work so well, since a function value
F (x, y, z) of three variables (x, y, z) would be interpreted as a fourth-dimension. Instead
of thinking of F (x, y, z) as a height, you can think of F (x, y, z) being the color of a point
(x, y, z). For example, if F (x, y, z) is large and positive, you can think of the point (x, y, z)
as colored dark gray, and if F (x, y, z) is very negative, you can think of the point (x, y, z)
as colored light gray. So, a function on three-dimensional Euclidean space can be thought
of as a grayscale coloring of Euclidean space.

Theorem 10.5 (Integration over General Regions D). Let D be a region in the Eu-
clidean space R3. Let a < b, c < d and let e < f be real numbers. Let F be a continuous
function on R3.

x

y

a b

1

2

3
y = g2(x)

y = g1(x)

x

y

z

z = h1(x, y)

z = h2(x, y)

D

a b

Let g1 : [a, b] → R and let g2 : [a, b] → R be
continuous functions. Let h1 : [a, b]×[c, d]→
R and let h2 : [a, b]×[c, d]→ R be continuous
functions. Suppose D is defined as the set of
all (x, y, z) in R3 such that:

• a ≤ x ≤ b
• g1(x) ≤ y ≤ g2(x)
• h1(x, y) ≤ z ≤ h2(x, y)

Then we compute the integral
∫∫∫

D
FdV as

follows.∫∫∫
D

FdV

=

∫ x=b

x=a

∫ y=g2(x)

y=g1(x)

∫ z=h2(x,y)

z=h1(x,y)

F (x, y, z)dzdydx.

Remark 10.6. We can permute the roles
of x, y, z in the above theorem as needed in
applications.

Example 10.7. Find the volume V of the
region above the rectangle where 0 ≤ x ≤ 2,
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0 ≤ y ≤ 1 and z = 0, bounded by the plane
y + z = 1. Let’s find the limits of integration and apply Theorem 10.5. C is defined as the
set of points where 0 ≤ x ≤ 2, where 0 ≤ y ≤ 1, and where 0 ≤ z ≤ 1 − y. So, the volume
V of C satisfies

V =

∫ x=2

x=0

∫ y=1

y=0

∫ z=1−y

z=0

dzdydx =

∫ x=2

x=0

∫ y=1

y=0

(1− y)dydx

=

∫ x=2

x=0

(y − (1/2)y2)|y=1
y=0dx =

∫ x=2

x=0

(1/2)dx = 1.

Triple integrals satisfy the same properties as double integrals.

Proposition 10.8 (Properties of Integrals). Let f and g be continuous functions on R3,
and let D be a region in R3

• If c is a real number, then
∫∫∫

D
cfdV = c

∫∫∫
D
fdV .

•
∫∫∫

D
(f + g)dV =

∫∫∫
D
fdV +

∫∫∫
D
gdV .

•
∫∫∫

D
(f − g)dV =

∫∫∫
D
fdV −

∫∫∫
D
gdV .

• If f(x, y, z) ≥ 0 for all (x, y, z) in D, then
∫∫∫

D
fdV ≥ 0.

• If f(x, y, z) ≥ g(x, y, z) for all (x, y, z) in D, then∫∫∫
D

fdV ≥
∫∫∫

D

gdV.

• If D is the union of two nonoverlapping regions D1 and D2, then∫∫∫
D

fdV =

∫∫∫
D1

fdV +

∫∫∫
D2

fdV.

10.1. Applications of Triple Integrals.

Definition 10.9 (Average Value). Let D be a region in Euclidean space R3. Let f : R3 →
R be a function. Then the average value of f on D is defined as∫∫∫

D
fdV∫∫∫

D
dV

.

Definition 10.10 (Mass). Let D be a region in Euclidean space R3. For each point (x, y, z)
in D, let f(x, y, z) denote the density of the object D. Then the mass M of D is defined as

M =

∫∫∫
D

f(x, y, z)dxdydz.

Definition 10.11 (Center of Mass). Let D be a region in Euclidean space R3. For each
point (x, y, z) in D, let f(x, y, z) denote the density of the object D. Then the center of
mass of D is defined as the following point in Euclidean space R3.(

1

M

∫∫∫
D

xf(x, y, z)dxdydz,
1

M

∫∫∫
D

yf(x, y, z)dxdydz,
1

M

∫∫∫
D

zf(x, y, z)dxdydz

)
.

Definition 10.12 (Moment of inertia). Let D be a region in Euclidean space R3. For
each point (x, y, z) in D, let f(x, y, z) denote the density of the object D. Then the moment
of inertia of D about the z axis is defined as∫∫∫

D

(x2 + y2)f(x, y, z)dxdydz.
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The moment of inertia of D about the y axis is defined as∫∫∫
D

(x2 + z2)f(x, y, z)dxdydz.

The moment of inertia of D about the x axis is defined as∫∫∫
D

(y2 + z2)f(x, y, z)dxdydz.

The moment of inertia measures how difficult it is to rotate an object about an axis.

Exercise 10.13. Suppose I want to design a structure of bounded height and with minimal
moment of inertia. Specifically, suppose I have a region D in Euclidean space R3, and D lies
between the planes {(x, y, z) ∈ R3 : z = 0} and {(x, y, z) ∈ R3 : z = 1}. Suppose also that
D has uniform density, and the mass of D is equal to 1. I then want to find the D with the
smallest moment of inertia around the z axis. Which D should I use?

11. Review of Course

11.0.1. Limits.

• A limit may or may not exist. limx→0 x = 0, limx→0 1/x DNE.
• If f is continuous, then limx→a f(x) = f(a).
• If f is a polynomial, then limx→a f(x) = f(a).
• If limx→a f(x) and limx→a g(x) exist, then

lim
x→a

(f(x) + g(x)) = (lim
x→a

f(x)) + (lim
x→a

g(x))

• (Intermediate Value Theorem) If f : [a, b]→ R is continuous, then f takes every
value between f(a) and f(b).

11.0.2. Derivatives.

• f ′(x) = limh→0
f(x+h)−f(x)

h
. If f is position, then f ′ is velocity, f ′′ is acceleration.

• (Product Rule) d
dx

(f(x)g(x)) = f ′(x)g(x) + g′(x)f(x).

• (Quotient Rule) d
dx

f(x)
g(x)

= g(x)f ′(x)−f(x)g′(x)
(g(x))2

.

• (Chain Rule) d
dx
f(g(x)) = f ′(g(x))g′(x).

• Extreme Value Theorem (allows us to do optimization)
• Linear Approximation.

Example. Approximate (16.32)1/4 using a linear approximation of f(x) = x1/4 near a = 16.
f ′(x) = (1/4)x−3/4, f ′(16) = (1/4)2−3 = 1/32. So f(x) ≈ f(16) + (x− 16)f ′(16) = 2 + (x−
16)(1/32). So f(16.32) ≈ 2 + (.32)/32 = 2.01.

Is this number larger or smaller than (16.32)1/4? f ′′(x) = −(3/16)x−7/4, so f is concave
down, so the tangent line at x = 16 lies above the function f . So, (16.32)1/4 < 2.01.

11.0.3. Graph Sketching.

• (Critical Point) x where f ′(x) = 0, or f ′(x) does not exist.
• (First Derivative Test) f ′(x) > 0 means f is increasing, f ′(x) < 0 means f is

decreasing.
• (Second Derivative Test) f ′′(x) > 0 means f is concave up, f ′′(x) < 0 means f is

concave down.

89



• (Mean Value Theorem) f ′(c) = f(b)−f(a)
b−a for some c between a and b, if f ′ exists

and is continuous.
• (Rolle’s Theorem) If f(a) = f(b), MVT reduces to: f ′(c) = 0 for some c between
a and b, if f ′ exists and is continuous.
• (Extreme Value Theorem) If f : [a, b] → R is continuous, then the max and min

of f exist on [a, b].
• Exponential growth, compound interest

Example. Fix a > 1. Find the minimum distance from the point (0, a) in the plane to the
parabola y = x2.

We are asked to minimize f(x) =
√
x2 + (y − a)

2
on the parabola y = x2. That is, we

are asked to minimize f(x) =
√
x2 + (x2 − a)

2
over all x ∈ R. Equivalently, we need to

minimize F (x) = x2 + (x2 − a)2 over all x ∈ R. We solve F ′(x) = 2x + 4x(x2 − a) = 0
so that critical points occur when x = 0 or x2 − a = −1/2. Note that F (0) = a2 and

F (
√
a− 1/2) = F (−

√
a− 1/2) = (a − 1/2) + (1/2)2 = a − 1/4. Since a > 1, a2 > a, so

a2 > a− 1/4. So, the minimum distance occurs when x2 = a− 1/2. That is, the minimum

distance is
√
a− 1/2 + (−1/2)2 =

√
a− 1/4.

11.0.4. Integration.

• (Fundamental Theorem of Calculus)
∫ b
a

d
dx
f(x) = f(b) − f(a), d

dx

∫ x
a
f(t)dt =

f(x). (Exercise. Compute d
dx

∫ x4
x3

cos(t5)dt)
• Integrating exponential and logarithm functions.
• Inverse derivative formula. f(f−1(x)) = x, so f ′(f−1(x))(d/dx)f−1(x) = 1.
• Integration by substitution, trigonometric substitution
• Integration by parts.

∫
udv = uv −

∫
vdu

• Improper integrals, integrating 1/
√
x near x = 0, integrating e−x on [0,∞].

Some examples of integration, using e.g. substitution.∫ 5

2
exee

x
dx. Substitute u = ex, so du = exdx, get

∫ 5

2
exee

x
dx =

∫ u(5)
u(2)

eudu =
∫ e5
e2
eudu =

ee
5 − ee2 .∫ 3

−3
x

10−x2dx. Substitute u = 10−x2, so du = −2xdx, get
∫ 3

−3
x

10−x2dx =
∫ u(3)
u(−3)(−1/2)u−1/2du =∫ 1

1
u−1/2du = 0.∫ 1

−1 x
√

1 + xdx. Substitute u = 1+x, so du = dx, get
∫ 1

−1 x
√

1 + xdx =
∫ 2

0
(u−1)u1/2du =∫ 2

0
u3/2 − u1/2du = · · · .∫ 1

0
xex

2
dx. Substitute u = x2, so du = 2xdx, get

∫ 1

0
xex

2
dx =

∫ u(1)
u(0)

(1/2)eudu = (1/2)
∫ 1

0
eudu =

(1/2)[eu]u=1
u=0 = (1/2)[e1 − e0] = (1/2)(e− 1).∫ 1

−1
x3

ex+e−xdx = 0 since the integrand is an odd function integrated over an interval that is
symmetric about x = 0.∫ 1

0
d
dx

(e4x ln((x + 2)/(x + 1)))dx = e · ln(3/2) − ln(2), by the Fundamental Theorem of
Calculus∫ 1

−1 |x| dx =
∫ 1

0
xdx+

∫ 0

−1(−x)dx =
∫ 1

0
xdx−

∫ 0

−1(x)dx = 1/2− (−1/2) = 1.

11.0.5. Multivariable Calculus.

• Vectors, dot product, angle. (a, b, c)·(d, e, f) = ad+be+cf . ‖(a, b, c)‖ =
√
a2 + b2 + c2.
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• (a, b, c) · (d, e, f) = ‖(a, b, c)‖ ‖(d, e, f)‖ cos θ, where θ is the angle between the two
vectors.
• Limits and continuity (nearly the same as for one variable).

• Partial derivatives. f : R2 → R, ∂
∂x
f(a, b) = limh→0

f(a+h,b)−f(a,b)
h

, ∂
∂y
f(a, b) = limh→0

f(a,b+h)−f(a,b)
h

.

• Gradient. ∇f(a, b) = ( ∂
∂x
f(a, b), ∂

∂y
f(a, b)). Points in the direction of greatest in-

crease of f . The gradient is orthogonal to the level curves of f (curves where f is
constant).
• Directional derivative. Dvf(a, b) = ∇f(a, b) · v, v ∈ R2. The rate of change of f at

(a, b) in the direction v.

Example. f(x, y) = x2 + 2xy + 3y2. ∇f(x, y) = (2x + y, 8y + 2x). D(1,1)f(2, 0) =
∇f(2, 0) · (1, 1) = (4, 4) · (1, 1) = 8. D(1,0)f(0, 2) = ∇f(0, 2) · (1, 0) = (2, 12) · (1, 0) = 2.

Example. lim(x,y)→(0,0)
x2+xy+y2

x2+y2
DNE. (Along the line x = 0, get 1, and along the line

x = y, get 3/2.)

• Tangent planes (similar to tangent lines, just with more variables). f : R2 → R,
has an associated surface z = f(x, y). The tangent plane at (a, b) is the plane
z = L(x, y) = f(a, b) + ((x, y)− (a, b)) · ∇f(a, b).
• (Extreme Value Theorem) If f : R2 → R be a continuous function on a closed

and bounded set D. Then the max and min of f exist on D.
• Critical point. x such that ∇f(x) = 0 or one component of ∇f(x) does not exist.
• (Second Derivative Test for critical points x) Let f : R2 → R with ∇f(x) = 0.

Let

D(a, b) = det

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
= fxx(a, b)fyy(a, b)− (fxy(a, b))

2.

– If D > 0 and if fxx(a, b) > 0, then (a, b) is a local minimum of f .
– If D > 0 and if fxx(a, b) < 0, then (a, b) is a local maximum of f .
– If D < 0, then (a, b) is a saddle point of f .
– If D = 0, then no conclusion can be drawn in general.

• (Lagrange Multipliers for constraint optimization) Maximize f : R2 → R subject
to the constraint g = 0. Solve for x, y, λ: ∇f = λ∇g (and g = 0).

Example. Minimize f(x, y, z) = x2 + y2 + z2 subject to g(x, y, z) = x + y + z − 3/2 = 0.
Solve ∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) = 0. We have the system of four equations in
four unknowns 

2x = λ

2y = λ

2z = λ

x+ y + z = 3/2.

The first three equations imply x = y = z. So, the fourth equation implies that 3x = 3/2,
so x = 1/2 = y = z. So (x, y, z) = (1/2, 1/2, 1/2) is the only candidate critical point. This
critical point must be the global minimum since f becomes arbitrarily large for the point
(x,−x, 3/2) as x→∞.
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12. Appendix: Notation

Let x be a real number. Let a > 0

R denotes the set of real numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

f : A→ B means f is a function with domain A taking values in B. For example,

f : [0, 1]→ R means that f is a function with domain [0, 1] taking values in R
ex denotes the exponential function

ln(x) denotes the natural logarithm of x > 0, i.e. the inverse of the exponenial function

loga(x) = ln(x)/ ln(a)

cos−1(x) denotes the inverse of cos : [0, π]→ [−1, 1]

Let f : R→ R, and let a, b, x ∈ R with a < b. Let n be a positive integer.

lim
x→a

f(x) denotes the limit of f(x) as x approaches a

f ′(x) =
df(x)

dx
=

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
denotes

the derivative of f with respect to x

f ′′(x) =
d

dx
f ′(x) denotes the second derivative of f with respect to x

f (n)(x) denotes the nth derivative of f with respect to x∫ b

a

f(x) dx denotes the definite integral of f on the interval [a, b]∫
f(x) dx denotes the indefinite integral of f

Remark 12.1. Whenever a fraction has a radical of a number in the denominator, we prefer
to move the radical to the numerator, as in the following example:

1√
5

=
1√
5

√
5√
5

=

√
5

5

If a variable occurs in the radical, then we usually leave the radical in the denominator.

R2 = {(x1, x2) : x1 ∈ R andx2 ∈ R}
R3 = {(x1, x2, x3) : x1 ∈ R andx2 ∈ R andx3 ∈ R}

Let v = (x1, y1, z1) and let w = (x2, y2, z2) be vectors in Euclidean space R3.
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v · w = x1x2 + y1y2 + z1z2 , the dot product of v and w

‖v‖ =
√
x21 + y21 + z21 , the length of the vector v

Let f : R2 → R. Let (a, b) ∈ R2. Let v ∈ R2 be a vector.

∂f

∂x
(a, b) = fx(a, b), denotes the partial derivative of f in the x-direction

∂f

∂y
(a, b) = fy(a, b), denotes the partial derivative of f in the y-direction

∇f(a, b) = (fx(a, b), fy(a, b)), denotes the gradient vector of f at (a, b)

Dvf(a, b) = ∇f(a, b) · v, denotes the derivative of f with respect to the direction v

D(a, b) = det

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
= fxx(a, b)fyy(a, b)− (fxy(a, b))

2

denotes the discriminant, or Hessian, of f at (a, b)

Let f : R3 → R be a real valued function.

∇f =

(
∂

∂x
f,

∂

∂y
f,

∂

∂z
f

)
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