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1. Introduction

As you have covered in your previous calculus class, the subject of calculus has many
applications. For example, calculus is very closely related to probability, which itself has
applications to statistics and algorithms. For example, the first generation of Google’s
search technology came from ideas from probability theory. Within physics, differential
equations often arise. In economics, optimization is often used to e.g. maximize profit
margins. Also, the ideas of single variable calculus are developed and generalized within
financial mathematics to e.g. stochastic calculus. Biology uses many ideas from calculus.
Signal processing and Fourier analysis provide some nice applications within many areas
of science. For example, our cell phones use Fourier analysis to compress voice signals.

In this course, we will begin with the exponential function, one of the most important
functions in mathematics, due to its appearance in many applications. We will then discuss
various methods of integration that were not covered in your previous course. We will then
conclude the course with a thorough treatment of Taylor series, which is a way of writing a
function as an infinite sum of monomials. Taylor series is quite useful, since it allows a nice
understanding of potentially complicated functions.

2. Brief Review of Calculus 1

2.0.1. Limits.

• A limit may or may not exist. limx→0 x = 0, limx→0 1/x DNE.
• If f is continuous, then limx→a f(x) = f(a).
• If f is a polynomial, then limx→a f(x) = f(a).
• If limx→a f(x) and limx→a g(x) exist, then

lim
x→a

(f(x) + g(x)) = (lim
x→a

f(x)) + (lim
x→a

g(x))

• (Intermediate Value Theorem) If f : [a, b]→ R is continuous, then f takes every
value between f(a) and f(b).

2.0.2. Derivatives.

• f ′(x) = limh→0
f(x+h)−f(x)

h
. If f is position, then f ′ is velocity, f ′′ is acceleration.

• (Product Rule) d
dx

(f(x)g(x)) = f ′(x)g(x) + g′(x)f(x).

• (Quotient Rule) d
dx

f(x)
g(x)

= g(x)f ′(x)−f(x)g′(x)
(g(x))2

.

• (Chain Rule) d
dx
f(g(x)) = f ′(g(x))g′(x).

• Extreme Value Theorem (allows us to do optimization)
• Linear Approximation.
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Example. Approximate (16.32)1/4 using a linear approximation of f(x) = x1/4 near a = 16.
f ′(x) = (1/4)x−3/4, f ′(16) = (1/4)2−3 = 1/32. So f(x) ≈ f(16) + (x− 16)f ′(16) = 2 + (x−
16)(1/32). So f(16.32) ≈ 2 + (.32)/32 = 2.01.

Is this number larger or smaller than (16.32)1/4? f ′′(x) = −(3/16)x−7/4, so f is concave
down, so the tangent line at x = 16 lies above the function f . So, (16.32)1/4 < 2.01.

2.0.3. Graph Sketching.

• (Critical Point) x where f ′(x) = 0, or f ′(x) does not exist.
• (First Derivative Test) f ′(x) > 0 means f is increasing, f ′(x) < 0 means f is

decreasing.
• (Second Derivative Test) f ′′(x) > 0 means f is concave up, f ′′(x) < 0 means f is

concave down.
• (Mean Value Theorem) f ′(c) = f(b)−f(a)

b−a for some c between a and b, if f ′ exists
and is continuous.
• (Rolle’s Theorem) If f(a) = f(b), MVT reduces to: f ′(c) = 0 for some c between
a and b, if f ′ exists and is continuous.
• (Extreme Value Theorem) If f : [a, b] → R is continuous, then the max and min

of f exist on [a, b].
• Exponential growth, compound interest

Example. Fix a > 1. Find the minimum distance from the point (0, a) in the plane to the
parabola y = x2.

We are asked to minimize f(x) =
√
x2 + (y − a)

2
on the parabola y = x2. That is, we

are asked to minimize f(x) =
√
x2 + (x2 − a)

2
over all x ∈ R. Equivalently, we need to

minimize F (x) = x2 + (x2 − a)2 over all x ∈ R. We solve F ′(x) = 2x + 4x(x2 − a) = 0
so that critical points occur when x = 0 or x2 − a = −1/2. Note that F (0) = a2 and

F (
√
a− 1/2) = F (−

√
a− 1/2) = (a − 1/2) + (1/2)2 = a − 1/4. Since a > 1, a2 > a, so

a2 > a− 1/4. So, the minimum distance occurs when x2 = a− 1/2. That is, the minimum

distance is
√
a− 1/2 + (−1/2)2 =

√
a− 1/4.

2.0.4. Integration.

• (Fundamental Theorem of Calculus)
∫ b
a

d
dx
f(x) = f(b) − f(a), d

dx

∫ x
a
f(t)dt =

f(x). (Exercise. Compute d
dx

∫ x4
x3

cos(t5)dt)
• Integrating exponential and logarithm functions.
• Inverse derivative formula. f(f−1(x)) = x, so f ′(f−1(x))(d/dx)f−1(x) = 1.
• Integration by substitution

Some examples of integration, using e.g. substitution.∫ 5

2
exee

x
dx. Substitute u = ex, so du = exdx, get

∫ 5

2
exee

x
dx =

∫ u(5)
u(2)

eudu =
∫ e5
e2
eudu =

ee
5 − ee2 .∫ 3

−3
x

10−x2dx. Substitute u = 10−x2, so du = −2xdx, get
∫ 3

−3
x

10−x2dx =
∫ u(3)
u(−3)(−1/2)u−1/2du =∫ 1

1
u−1/2du = 0.∫ 1

−1 x
√

1 + xdx. Substitute u = 1+x, so du = dx, get
∫ 1

−1 x
√

1 + xdx =
∫ 2

0
(u−1)u1/2du =∫ 2

0
u3/2 − u1/2du = · · · .
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∫ 1

0
xex

2
dx. Substitute u = x2, so du = 2xdx, get

∫ 1

0
xex

2
dx =

∫ u(1)
u(0)

(1/2)eudu = (1/2)
∫ 1

0
eudu =

(1/2)[eu]u=1
u=0 = (1/2)[e1 − e0] = (1/2)(e− 1).∫ 1

−1
x3

ex+e−xdx = 0 since the integrand is an odd function integrated over an interval that is
symmetric about x = 0.∫ 1

0
d
dx

(e4x ln((x + 2)/(x + 1)))dx = e · ln(3/2) − ln(2), by the Fundamental Theorem of
Calculus∫ 1

−1 |x| dx =
∫ 1

0
xdx+

∫ 0

−1(−x)dx =
∫ 1

0
xdx−

∫ 0

−1(x)dx = 1/2− (−1/2) = 1.

2.0.5. Limits at Infinity.

Theorem 2.1 (Squeeze Theorem). Let f, g, h : R→ R. Suppose f(x) ≤ g(x) ≤ h(x) and
limx→a f(x) = limx→a h(x) = L. Then limx→a g(x) exists and limx→a g(x) = L.

Example 2.2. We show that limx→0 x cos(x) = 0. Since −1 ≤ cos(x) ≤ 1, we have − |x| ≤
x cosx ≤ |x|. Since limx→0(− |x|) = limx→0 |x| = 0, we conclude that limx→0 x cosx = 0.

x

y

1 2 3

1

2

3

f(x) = −|x|

h(x) = |x|

g(x) = x cos(x)

3. Inverse Functions

x

y

1 2 3

1

2

3

f(x) = x3

f−1(x) = x1/3

Let f be a real valued function on the real
line. An inverse function for f does not al-
ways exist. If an inverse function for f ex-
ists, it will un-do the effect of f . For exam-
ple, the function f(x) = x3 has an inverse
f−1(x) = x1/3. Note that

f(f−1(x)) = (x1/3)3 = x,

f−1(f(x)) = (x3)1/3 = x.

The function f(x) = x3 is a bit special, in
that it actually has an inverse function. To
see what makes this function special, let’s
consider an example that does not have an
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inverse. Consider the function f(x) = x2

on the whole real line. Note that f(2) =
f(−2) = 4. This implies that f does not have an inverse. If we could find a function f−1

that un-does the effect of f , then when we apply f−1 to the equality f(2) = f(−2), we
would get 2 = −2, which is clearly false. Let’s therefore take this obstruction to creating an
inverse, and turn it into a definition.

Definition 3.1. Let f be a function with domain D and range R. We say that f is one-
to-one if and only if, for every c ∈ R, there exists exactly one x ∈ D such that f(x) = c.

Definition 3.2. Let f be a function with domain D and range R. If there is a function g
with domain R and range D such that

g(f(x)) = x for all x ∈ D and f(g(x)) = x for all x ∈ R,
then f is said to be invertible. The function g is called the inverse of f , and we denote it
by g = f−1.

Remark 3.3. If f is a one-to-one function with domain D and range R, then f is invertible.
If f is not one-to-one, then f is not invertible.

Example 3.4. The function f(x) = x3 with domain (−∞,∞) and range (−∞,∞) is one-
to-one, since any real number c has exactly one cube root x with x3 = c. So, f is invertible.
As we showed above, f−1(x) = x1/3.

Example 3.5. The function f(x) = x2 with domain (−∞,∞) and range [0,∞) is not one-
to-one, since, as we saw above, the number 4 has two distinct numbers 2 and −2 such that
f(2) = f(−2) = 4. So, f is not invertible when it has the domain (−∞,∞). However, if we
restrict the domain of f , so that we consider f(x) = x2 with domain [0,∞) and range [0,∞),
then f is one-to-one. Every nonnegative number c has exactly one nonnegative square root
x such that x2 = c. So, f is invertible when it has the domain [0,∞). In this case, f−1

is the square root function, which we write as f−1(x) =
√
x. (Note that the square root

function
√
x is distinct from the concept of “the square roots of x.” In particular,

√
x is only

defined when x ≥ 0, and it holds that
√
x2 = |x| for any real number x. So, if x is negative,√

x2 6= x. Moreover, the answer to “What are the square roots of 9” is 3 and −3.)

Remark 3.6 (Horizontal Line Test). Let f be a function with domain D and range R.
Suppose we look at the graph of f over the domain D. Then f is one-to-one if and only if
every horizontal line passes through the graph of f in at most one point.

Remark 3.7. The function f(x) = x3 with domain (−∞,∞) satisfies the horizontal line
test. The function f(x) = x2 with domain (−∞,∞) does not satisfy the horizontal line test.

Proposition 3.8. Let f be a strictly increasing function. That is, if x < y, then f(x) < f(y).
Then f is one-to-one.

Remark 3.9. Recall that a continuously differentiable function with domain (−∞,∞) such
that f ′(x) > 0 is increasing. This follows from the Mean Value Theorem (Theorem ??
below). If we had x < y with f(x) ≥ f(y), then there would be some c with x < c < y such
that f ′(c) = (f(y)− f(x))/(y−x) ≤ 0. But f ′(c) > 0, so we must have f(x) < f(y), so that
f is strictly increasing.
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Remark 3.10. Since (d/dx)ex = ex > 0, the function ex is increasing on (−∞,∞). So, this
proposition implies that the exponential function is one-to-one, so that it has an inverse.
Similarly, if b > 1, then (d/dx)bx = m(b)bx, and m(b) > 0, so bx is increasing and invertible.
And if b < 1, then (d/dx)bx = m(b)bx and m(b) < 0, so −bx is increasing and invertible.

To better understand the inverse of the exponential function, let’s consider the graph of
the inverse of the exponential function.

Remark 3.11. Suppose y = f(x) is an invertible function. Then (x, y) = (x, f(x)) is a
point in the graph of f . Since f is invertible, we can apply f−1 to both sides of y = f(x) to
get f−1(y) = x. So, the point (y, x) = (y, f−1(y)) is in the graph of f−1. So, whenever the
graph of f contains (x, y), the graph of f−1 contains (y, x). Note that (y, x) is the reflection
of the point (x, y) across the line y = x. Graphically, this means that if we plot the function
y = f(x), then the graph of the inverse function f−1 is the reflection of the graph of f across
the line y = x.

Example 3.12. Let’s plot the function f(x) = ex. Note that f(0) = 1, and ex > x for all
x. This follows since e0 > 0, and since f ′(x) = ex > 1 for all x > 0, while (d/dx)x = 1. To
find the graph of the inverse function f−1, we then just reflect the graph of f across the line
y = x.

x

y

1 2 3

1

2

3

f(x) = ex

f−1(x) = ln(x)

A function and its inverse are not only re-
lated with respect to their graphs, but also with
respect to their derivatives, as we now show.

Theorem 3.13 (Inverse Differentiation).
Let f be a function of a real variable with in-
verse g = f−1. If x is in the domain of g, and
if f ′(g(x)) 6= 0, then g′(x) exists, and

g′(x) =
1

f ′(g(x))
.

Remark 3.14. The proof of this identity fol-
lows from the Chain Rule. If we additionally
assume that g is differentiable at x, then the
Chain rule applied to f(g(x)) = x says that

f ′(g(x)) · g′(x) =
d

dx
f(g(x)) =

d

dx
x = 1.

That is, g′(x) = 1/(f ′(g(x))).

Remark 3.15. This Theorem is another tool that will allow us to understand the inverse
of the exponential function. In particular, it will allow us to compute the derivative of the
inverse of the exponential function.

Example 3.16. Let’s consider again the function f(x) = x3 on (−∞,∞), where f−1(x) =
x1/3. Then f ′(x) = 3x2, so

(f−1)′(x) = [f ′(f−1(x))]−1 = [3(f−1(x))2]−1 = x−2/3/3.

However, we already “knew” that (f−1)′(x) = (1/3)x−2/3, by our usual differentiation rules.
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Remark 3.17. You should not confuse the notation f−1, which denotes the inverse function
of f , with a number to the −1 power. That is, it is typically true that f−1(x) 6= (f(x))−1.

3.1. Trigonometric Functions.

Corollary 3.18.

lim
x→0

sinx

x
= 1, lim

x→0

1− cosx

x
= 0.

Proof. If x is small, then the right triangle with vertices (0, 0), (cosx, 0) and (cos x, sinx)
is inscribed in the unit circle. The height of the triangle is larger than the arc of the circle
between (cosx, sinx) and (1, 0). This arc has length x. So, sin(x) ≤ x. On the other hand,
the sector formed by this arc of the circle has area (1/2)x. And this sector is contained in
the right triangle with one edge formed by (0, 0) and (1, 0) and the other edge with slope
tanx. This triangle has area (1/2) sin(x)/ cos(x). So, (1/2)x ≤ (1/2) sin(x)/ cos(x), i.e.
cos(x) ≤ sin(x)/x. In summary,

cos(x) ≤ sinx

x
≤ 1.

Since limx→0 cos(x) = cos(0) = 1, and limx→0 1 = 1, the Squeeze Theorem implies that
limx→0(sinx)/x = 1. Lastly,

lim
x→0

1− cosx

x
= lim

x→0

1− cosx

x

1 + cos x

1 + cos x
= lim

x→0

1− cos2 x

x(1 + cos x)

= lim
x→0

sin2 x

x(1 + cos x)
=

(
lim
x→0

sinx

x

)(
lim
x→0

sinx

1 + cos x

)
= 1 · 0 = 0.

�

• d
dx

(sin(x)) = cos(x), d
dx

(cos(x)) = − sin(x)

• d
dx

(tan(x)) = (sec(x))2, d
dx

(sec(x)) = sec(x) tan(x)

• d
dx

(csc(x)) = − csc(x) cot(x), d
dx

(cot(x)) = −(csc(x))2.

Proof. We first recall that limh→0
sin(h)
h

= 1 and limh→0
cos(h)−1

h
= 0. Recall also that sin(x+

h) = sin(x) cos(h) + cos(x) sin(h). So, applying our limit law for addition, we get

lim
h→0

sin(x+ h)− sin(x)

h
= lim

h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= sin(x)

(
lim
h→0

(cos(h)− 1)

h

)
+ cos(x)

(
lim
h→0

sin(h)

h

)
= (sin(x)) · 0 + (cos(x)) · 1 = cos(x).

So, (d/dx) sinx = cos(x). Then, since cos(x) = sin(x + π/2), we have (d/dx) cos(x) =
(d/dx) sin(x+π/2) = cos(x+π/2) = − sin(x). The remaining identities follow from the first
two. �

Example 3.19.

d

dx
tan(x) =

d

dx

(
sinx

cosx

)
=

cosx(sinx)′ − sinx(cosx)′

cos2 x

=
cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x.
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x

y

x

y

f(x) = tan(x)

x

y

f(x) = sin(x)

1

1

x

y
f(x) = sin−1(x)

1

1
π/2

π/2

1

π/2 π

f(x) = cos(x)

x

y

−1

π/2

π
f(x) = cos−1(x)

1

π/2
x

y

f(x) = tan−1(x)
π/2

3.2. Inverse Trigonometric Func-
tions. In order to broaden our vo-
cabulary of functions, we will now
discuss some of the inverses of
trigonometric functions. The func-
tions sin, cos and tan all fail the
horizontal line test, so we need
to restrict their domains to define
their inverses. Here are the stan-
dard ways of doing so

Definition 3.20. We restrict sin θ
to the domain [−π/2, π/2]. Then
sin is invertible with range [−1, 1],
so we define sin−1 to be this inverse
function. Note that sin−1 has do-
main [−1, 1] and range [−π/2, π/2].

Example 3.21. Since sin(π/2) =
1, sin(0) = 0, sin(π/4) =

√
2/2, we

have
sin−1(1) = π/2, sin−1(0) = 0, sin−1(

√
2/2) = π/4.

Definition 3.22. We restrict cos θ to the domain [0, π]. Then cos is invertible with range
[−1, 1], so we define cos−1 to be this inverse function. Note that cos−1 has domain [−1, 1]
and range [0, π].

Example 3.23. Since cos(0) = 1, cos(π/2) = 0, cos(π) = −1, we have

cos−1(1) = 0, cos−1(0) = π/2, cos−1(−1) = π.

Definition 3.24. We restrict tan θ to the domain (−π/2, π/2). Then tan is invertible with
range (−∞,∞), so we define tan−1 to be this inverse function. Note that tan−1 has domain
(−∞,∞) and range (−π/2, π/2).

Example 3.25. Since tan(0) = 0, tan(π/4) = 1, limx→π/2− tan(x) =∞, we have

tan−1(0) = 0, tan−1(1) = π/4, lim
x→∞

tan−1(x) = π/2.

tan−1(x)

x

1

√ 1 +
x
2

The inverse derivative formula also allows us to
compute the derivatives of inverse trigonometric func-
tions.

Example 3.26. Consider f(x) = tan(x) =
sin(x)/ cos(x). Recall that f ′(x) = 1/ cos2(x). Let
x be a real number. If x = f(y) = tan(y), then
f−1(x) = y. Recall that the tangent function has in-
put y which is an angle of a right triangle, and it has
output the ratio of edges of a right triangle. So, the
inverse tangent has input the ratio of edges of a right triangle and output the angle of the
triangle. So, if a right triangle has height x and width 1, then tan−1(x) is the angle of the
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triangle (which has hypotenuse
√

1 + x2, by the Pythagorean Theorem.) Then, the cosine
of the angle tan−1(x) is 1/

√
1 + x2. That is, cos(tan−1(x)) = 1/

√
1 + x2. Finally, applying

our differentiation formula,

(tan−1(x))′ = [f ′(f−1(x))]−1 = cos2(f−1(x)) = cos2(tan−1(x)) =
1

|1 + x2|
=

1

1 + x2
.

Similarly, we have

cos(sin−1(x)) =
√

1− x2.
sin(cos−1(x)) =

√
1− x2.

So, using the inverse derivative formula, we get

d

dx
sin−1(x) =

1

cos(sin−1(x))
=

1√
1− x2

.

d

dx
cos−1(x) =

1

− sin(cos−1(x))
= − 1√

1− x2
.

Example 3.27. ∫
1√

1− x2
dx = sin−1(x) + C

Example 3.28. Note that (d/dx) tan−1(x/2) = 1/2
1+(x/2)2

, so∫ 2

0

1

4 + x2
dx =

∫ 2

0

1/4

1 + x2/4
dx =

∫ 2

0

(1/2)
1/2

1 + (x/2)2
dx

=
1

2
tan−1(x/2)|x=2

x=0 =
1

2
(tan−1(1)− tan−1(0)) =

1

2

π

4
=
π

8
.

3.3. Hyperbolic Functions. The hyperbolic functions are closely related to their trigono-
metric counterparts, though we cannot explain exactly why in this course. Let’s define
hyperbolic sine and hyperbolic cosine as follows.

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2
.

The other hyperbolic functions are then defined in a similar way to trigonometric functions.

tanh(x) =
sinh(x)

cosh(x)
, sech(x) =

1

cosh(x)
, coth(x) =

1

tanh(x)
, csch(x) =

1

sinh(x)
.

We can verify directly that

sinh′(x) = cosh(x), cosh′(x) = sinh(x).

sinh2(x) = cosh2(x)− 1.

The hyperbolic functions are invertible on the domain (−∞,∞), except for cosh and sech.
We restrict the domains of cosh and sech to x ≥ 0 to define their inverses. I would only like
to derive one such inverse derivative; that of sech−1. Since sech has domain [0,∞) and range
(0, 1], we see that sech−1 has domain (0, 1] and range [0,∞). So, let 0 < x ≤ 1. Note that

d

dx
sech(x) = − cosh′(x)

cosh(x)2
= − sinh(x)

cosh(x)2
.
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sech−1(x) = cosh−1(1/x), since sech(cosh−1(1/x)) =
1

cosh(cosh−1(1/x))
= x.

cosh(sech−1(x)) = cosh(cosh−1(1/x)) = 1/x.

sinh(sech−1(x)) = sinh(cosh−1(1/x)) =

√
cosh2(cosh−1(1/x))− 1 =

√
x−2 − 1.

Therefore, from the inverse derivative formula, if 0 < x ≤ 1, we have

d

dx
sech−1(x) = −cosh(sech−1(x))2

sinh(sech−1(x))
=

−x−2√
x−2 − 1

= − 1

x
√
x2(x−2 − 1)

= − 1

x
√

1− x2
.

Example 3.29. Letting u = cosh(x), we have du = sinh(x)dx, so∫
tanh(x)dx =

∫
sinh(x)

cosh(x)
dx =

∫
1

u
du = ln(u(x)) + C = ln cosh(x) + C

4. L’Hopital’s Rule

Having satisfied our thirst for applications, we now veer back towards some more theoret-
ical results that find many uses. The first such result is L’Hopital’s rule. This rule allows
the computation of many limits of functions that we were unable to handle before.

We will first state this rule, and then give several examples of its application.

Theorem 4.1 (L’Hôpital’s Rule). Let f, g be differentiable functions on an open interval
containing a. (We allow f, g to not be differentiable at a.) Assume that g′(x) 6= 0 except
possibly at a. Assume that

f(a) = g(a) = 0.

If limx→a f
′(x)/g′(x) exists or is +∞ or is −∞, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This conclusion also holds if, instead of assuming f(a) = g(a) = 0, we assume

lim
x→a

f(x) = ±∞, and lim
x→a

g(x) = ±∞.

Remark 4.2. L’Hôpital’s Rule remains true if we replace all limits above with right-sided
limits limx→a+ . Similarly, this rule remains true if we replace all limits above with left-sided
limits limx→a− .

Example 4.3.

lim
x→0

sinx

x
L′H
= lim

x→0

cosx

1
= 1.

So, sin(x) ≈ x when x is near zero.

Example 4.4.

lim
x→0

(cosx)− 1

x2
L′H
= lim

x→0

− sinx

2x
L′H
= lim

x→0

− cosx

2
= −1/2.

So, cos(x) ≈ 1− x2/2 when x is near zero.
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Example 4.5. Sometimes we have to change our function around a bit before we can apply
L’Hôpital’s rule. For example, as x→ 0+, the function x lnx looks like 0 multiplied by −∞,
so L’Hôpital’s rule does not directly apply. We therefore write

x lnx =
lnx

1/x
.

This way, both the top and bottom go to ±∞ as x→ 0+, so we can apply L’Hôpital’s rule.

lim
x→0+

x lnx = lim
x→0+

lnx

x−1
L′H
= lim

x→0+

x−1

−x−2
= lim

x→0+
(−x) = 0.

Here are some other examples where we need to change our function around a bit before
applying L’Hôpital’s rule.

Example 4.6.
lim
x→0+

xx = lim
x→0+

ex lnx = elimx→0+ x lnx = e0 = 1.

Example 4.7.

lim
x→0

(
1

sinx
− 1

x

)
= lim

x→0

x− sinx

x sinx
L′H
= lim

x→0

1− cosx

x cosx+ sinx
L′H
= lim

x→0

sinx

−x sinx+ 2 cosx
=

0

2
= 0.

Example 4.8. We need to know that the assumptions of L’Hôpital’s rule apply before we
use this rule. For example,

lim
x→0

x+ 2

x+ 1
= 2.

However, limx→0
(d/dx)(x+2)
(d/dx)(x+1)

= 1 6= 2.

4.1. Growth of Functions. L’Hôpital’s rule also allows us to understand the growth of
functions at infinity. For example, in this section, we will explain the heuristic that expo-
nential growth is “very fast” and logarithmic growth is “very slow.”

Definition 4.9. Let f, g be positive functions. We say that f grows faster than g at∞ if

lim
x→∞

f(x)

g(x)
=∞

Or equivalently,

lim
x→∞

g(x)

f(x)
= 0.

Example 4.10. x2 grows faster than x as x→∞, since limx→∞
x2

x
= limx→∞ x =∞.

Remark 4.11. We can apply L’Hôpital’s rule for limits involving infinity. Also, we can
apply L’Hôpital’s rule if both functions go to ±∞ as x→∞.

Example 4.12. We show that ex grows faster than x3 at ∞.

lim
x→∞

ex

x3
L′H
= lim

x→∞

ex

3x2
L′H
= lim

x→∞

ex

6x
L′H
= lim

x→∞

ex

6
=∞.

More generally, ex grows faster than any polynomial at ∞.

Example 4.13. Note also that e−x decays faster than any function x−j with j > 0 at ∞.
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Example 4.14. The logarithm grows slower than xj for any j > 0 at ∞.

lim
x→∞

lnx

xj
L′H
= lim

x→∞

x−1

jxj−1
= lim

x→∞
j−1x−j = 0.

5. Methods of Integration

We now turn our attention to various methods that help to compute integrals. By the end
of the chapter, you should feel like you can integrate almost anything.

5.1. Integration by Parts. This first method of integration allows us to essentially move
a derivative from one term to another while we are inside an integral.

Theorem 5.1 (Integration by Parts). Let u, v be continuously differentiable functions on
the real line. Let a < b. Then∫ b

a

u(x)v′(x)dx = u(b)v(b)− u(a)v(a)−
∫ b

a

v(x)u′(x)dx.

This rule can be memorized by the mnemonic “integral of udv equals uv minus integral
of vdu.”

The integration by parts formula follows almost immediately from the product rule.

(uv)′ = u′v + v′u.

Integrating both sides on [a, b] and applying the Fundamental Theorem of Calculus to the
left side,

u(b)v(b)− u(a)v(a) =

∫ b

a

u′(x)v(x)dx+

∫ b

a

u(x)v′(x)dx.

Example 5.2.∫ b

a

x cosxdx =

∫ b

a

x(d/dx) sinxdx = b sin b− a sin a−
∫ b

a

sin(x)dx

= b sin b− a sin a+ cos b− cos a.

Written another way, ∫
x cosxdx = x sinx+ cosx+ C

Remark 5.3. If we instead wrote
∫ b
a
x cosxdx =

∫ b
a

cosx(d/dx)(x2/2)dx, then things would
have just become more complicated. So, we have to choose carefully how to apply integration
by parts.

Example 5.4.∫ 4

1

lnx dx =

∫ 4

1

lnx(d/dx)xdx = 4 · ln 4− 1 · ln 1−
∫ 4

1

x(1/x)dx = 4 ln 4− 1 ln 1− 3.

Written another way, ∫
lnx dx = x lnx− x+ C

12



Example 5.5.∫ b

a

cos3(x)dx =

∫ b

a

cos2(x)(d/dx)(sinx)dx = [cos2(x) sin(x)]x=bx=a +

∫ b

a

2 sin2(x) cos(x)dx

= [cos2(x) sin(x)]x=bx=a +

∫ b

a

2(1− cos2(x)) cos(x)dx

= [cos2(x) sin(x)]x=bx=a + 2

∫ b

a

cos(x)dx− 2

∫ b

a

cos3(x)dx.

So, moving the last term to the left side,

3

∫ b

a

cos3(x)dx = [cos2(x) sin(x)]x=bx=a + 2[sin(x)]x=bx=a.

That is, ∫
cos3(x)dx = (1/3) cos2(x) sin(x) + (2/3) sin(x) + C.

5.2. Trigonometric Integrals. In this section, we will see how to use integration by parts
and substitution to compute integrals of the form∫

sinm(x) cosn(x)dx, n,m nonnegative integers.

Example 5.6 (m or n is odd). Suppose for example that m is odd. We demonstrate the
case m = 5, n = 4. The idea is that we split off one factor of sin, and then write everything
else in terms of cosines.∫

sin5(x) cos4(x)dx =

∫
sin4(x) cos4(x) sin(x)dx =

∫
(1− cos2(x))2 cos4(x) sin(x)dx

= −
∫

(1− u2)2u4du = (1/5)u5 − (2/7)u7 + (1/9)u9

= (1/5) cos5(x)− (2/7) cos7(x) + (1/9) cos9(x).

The same procedure works when n is odd. In this case, we split off one factor of cos, and
then we write everything else in terms of sines, and so on.

The only remaining case occurs when both n and m are even. In this case, using sin2(x)+
cos2(x) = 1, it suffices to consider the case that m = 0 and n is even (though the case n = 0
and m even is treated similarly).

Example 5.7 (m is zero and n is even). We demonstrate this case by taking n = 6, and
showing that this reduces to the case n = 4. In general, given any even n, we can reduce to
the case n− 2.∫

cos6(x)dx =

∫
cos5(x)(d/dx) sin(x)dx = cos5(x) sin(x) + 5

∫
cos4(x) sin2(x)dx

= cos5(x) sin(x) + 5

∫
cos4(x)(1− cos2(x))dx

= cos5(x) sin(x)− 5

∫
cos6(x)dx+ 5

∫
cos4(x)dx

13



So, adding the middle term from both sides,

6

∫
cos6(x)dx = − cos5(x) sin(x) + 5

∫
cos4(x)dx.

Finally, in the case n = 2, we simply use the identity

cos2(x) = (1/2)(1 + cos(2x)), sin2(x) = (1/2)(1− cos(2x)).

Example 5.8 (n = 2, m = 0).∫
cos2(x) = (1/2)

∫
(1 + cos(2x))dx = (1/2)(x+ (1/2) sin(2x)) + C.

5.3. Trigonometric Substitution. We will now show how to use substitution of trigono-
metric expressions to evaluate some integrals involving the square root function:

√
a2 − x2,

√
x2 + a2,

√
x2 − a2.

Example 5.9. Let −1 ≤ x ≤ 1. In this example, we use the substitution x = sin θ, where
−π/2 ≤ θ ≤ π/2. In this region, cos θ ≥ 0, so we make use of the fact that

√
cos2 θ = cos θ

for such θ.∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θdθ =

∫ √
cos2 θ cos θdθ

=

∫
cos2(θ)dθ =

∫
(1/2)(1 + cos(2θ))dθ

= (1/2)[θ + (1/2) sin(2θ)] + C = (1/2)[sin−1(x) + (1/2) sin(2 sin−1(x))] + C

We can simplify this expression by noting that sin(2y) = 2 sin(y) cos(y), so

sin(2 sin−1(x)) = 2 sin(sin−1(x)) cos(sin−1(x)).

Since −1 ≤ x ≤ 1, sin(sin−1(x)) = x. We now compute cos(sin−1(x)). If y = sin−1(x), then
y is the angle of a right triangle with height x and hypotenuse 1. So, this right triangle has
base

√
1− x2, by the Pythagorean Theorem. Therefore, cos(y) =

√
1− x2. That is,

cos(sin−1(x)) =
√

1− x2.
In conclusion, ∫ √

1− x2 dx = (1/2) sin−1(x) + (1/2)x
√

1− x2 + C.

Remark 5.10. Let −1 ≤ x ≤ 1. Then sin(sin−1(x)) = 1. Now, let −π/2 ≤ y ≤ π/2.
Then sin−1(sin(y)) = y, since the domain −π/2 ≤ y ≤ π/2 is where we defined sin to be
one-to-one. However, note that for y = π, we have sin(π) = 0, and sin−1(0) = 0, so

sin−1(sin(π)) = sin−1(0) = 0 6= π.

So, it is not always true that sin−1(sin(y)) = y. We have to be careful with our domain.

Remark 5.11. To integrate
√
a2 − x2, we can use the substitution x = a sin θ. More gener-

ally, we can integrate (a2 − x2)n/2 where n is any integer, using the substitution x = a sin θ

Remark 5.12. To integrate
√
a2 + x2, we can use the substitution x = a tan θ.

Remark 5.13. To integrate
√
x2 − a2, we use the substitution x = a sec θ.
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Example 5.14. Let −∞ < x < ∞. In this example, we use the substitution x = tan θ,
where −π/2 < θ < π/2. In this region, cos θ > 0, so we make use of the fact that

√
cos2 θ =

cos θ for such θ.∫ √
1 + x2 dx =

∫ √
1 + tan2 θ sec2 θdθ =

∫ √
sec2 θ sec2 θdθ

=

∫
|sec θ| sec2 θdθ =

∫
sec3 θdθ =

∫
cos θ

cos4 θ
dθ =

∫
cos θ

(1− sin2 θ)2
dθ.

We then use the substitution u = sin θ to get∫ √
1 + x2 dx =

∫
1

(1− u2)2
du.

We now have an integral in the form of a partial fraction, to be dealt with in the next section.

5.4. Partial Fractions. This integration method is perhaps best elucidated by an example.

Example 5.15. Suppose we want to integrate 1
x2−1 = 1

(x−1)(x+1)
. It turns out that we can

express this function as a sum of the form

1

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
.

To determine A and B, multiply both sides by (x− 1)(x+ 1) to get

1 = A(x+ 1) +B(x− 1).

Plugging in x = 1, we get 1 = 2A, so that A = 1/2. Plugging in x = −1, we get 1 = B(−2),
so B = −1/2. In summary,

1

(x− 1)(x+ 1)
=

1

2(x− 1)
− 1

2(x+ 1)
.

Therefore,∫
dx

(x− 1)(x+ 1)
=

∫
1

2(x− 1)
dx−

∫
1

2(x+ 1)
dx = (1/2) ln |x− 1| − (1/2) ln |x+ 1|+ C.

More generally, if a1, . . . , an are distinct real numbers, and if P is a polynomial of degree
less than n, then we can find real numbers A1, . . . , An such that

P (x)

(x− a1) · · · (x− an)
=

A1

x− a1
+ · · ·+ An

x− an
.

And this equality allows us to compute the integral of the left side.
In the case of repeated roots in the denominator, we need to add extra terms to the right

side, as in the following example.

Example 5.16.
x

(x− 1)(x+ 2)2
=

A

x− 1
+

B

(x+ 2)
+

C

(x+ 2)2

To find A,B,C we multiply both sides by (x− 1)(x+ 2)2 to get

x = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1).
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Letting x = 1, we get 1 = 9A, so A = 1/9. Letting x = −2, we get −2 = C(−3), so C = 2/3.
So, we have

x = (1/9)(x+ 2)2 +B(x− 1)(x+ 2) + (2/3)(x− 1)

= x2(1/9 +B) + x(B + 4/9 + 2/3) + 4/9− 2B − 2/3.

So, we must have B = −1/9. In conclusion,

x

(x− 1)(x+ 2)2
=

1

9(x− 1)
− 1

9(x+ 2)
+

2

3(x+ 2)2
.

Therefore,∫
x

(x− 1)(x+ 2)2
dx = (1/9) ln |x− 1| − (1/9) ln |x+ 2| − (2/3)(x+ 2)−1 + C.

Example 5.17. In the case that the degree of P is greater than or equal to the degree of
the denominator, we first divide the numerator by the denominator using Euclid’s division
algorithm, as we now demonstrate. Suppose we want to integrate the function

x3

x2 − 1
.

In general, we can perform long division on these polynomials using Euclid’s division algo-
rithm. In this case, we can just write

x3 = x(x2 − 1) + x.

Dividing both sides by x2 − 1, we have

x3

x2 − 1
= x+

x

x2 − 1
.

The final term can now be treated using the method of partial fractions.

5.5. Improper Integrals. It is sometimes nice to integrate a function at infinity. We can
do this via the following definition.

Definition 5.18. Fix a real number a. Suppose f is integrable on [a, b] for all b > a. The
improper integral of f on [a,∞) is defined as the following limit (if the limit exists):∫ ∞

a

f(x)dx = lim
R→∞

∫ R

a

f(x)dx.

If this limit exists and is finite, we say that the improper integral converges. If the limit
does not exist, we say that the improper integral diverges.

Remark 5.19. We similarly define∫ a

−∞
f(x)dx = lim

R→∞

∫ a

−R
f(x)dx.∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ ∞
0

f(x)dx.

Example 5.20. Let a > 0. Then∫ ∞
0

e−atdt = lim
R→∞

∫ R

0

e−atdt = lim
R→∞

(−1/a)[e−aR − 1] = 1/a.
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Theorem 5.21. Let a > 0. If p > 1, then∫ ∞
a

1

xp
dx = (p− 1)−1a−p+1.

If p ≤ 1, then
∫∞
a

1
xp
dx diverges.

To see this, note that for p 6= 1 we have∫ ∞
a

1

xp
dx lim

R→∞

∫ R

a

x−pdx = lim
R→∞

(−p+ 1)−1[R−p+1 − a−p+1]

If p > 1, then limR→∞R
−p+1 = 0, so∫ ∞

a

1

xp
dx = (p− 1)−1a−p+1.

If p < 1, then limR→∞R
−p+1 =∞, so

∫∞
a

1
xp
dx diverges.

In the remaining case p = 1, we have∫ ∞
a

1

x
dx lim

R→∞

∫ R

a

x−1dx = lim
R→∞

(ln |R| − ln |a|).

Since limR→∞ ln |R| =∞, we conclude that
∫∞
a

1
x
dx diverges.

It is possible to similarly integrate the discontinuities of integrals, by approaching them
in a limiting sense.

Definition 5.22. Let a < b. Suppose f is continuous on [a, b) but discontinuous at b. We
define the integral of f on [a, b] as the following limit (if the limit exists):∫ b

a

f(x)dx = lim
R→b−

∫ R

a

f(x)dx.

If this limit exists and is finite, we say that the improper integral converges. If the limit
does not exist, we say that the improper integral diverges.

Remark 5.23. Similarly, if f is continuous on (a, b] but discontinuous at a. We define the
integral of f on [a, b] as the following limit (if the limit exists):∫ b

a

f(x)dx = lim
R→a+

∫ b

R

f(x)dx.

Remark 5.24 (Integrating over a Discontinuity). If f is discontinuous only at c, if

a < c < b, and if
∫ c
a
f(x)dx and

∫ b
c
f(x)dx are finite, then we define∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Otherwise, we say that
∫ b
a
f(x)dx diverges. For example, the integral∫ 1

−1

dx

x

diverges, since
∫ 1

0
dx/x diverges. Also, the integral∫ 1

−1

dx

x2
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diverges, while “just applying the antiderivative formula” gives the incorrect answer of
[−x−1]x=1

x=−1 = −1− 1 = −2.

Example 5.25. Let a > 0. If p < 1, then∫ a

0

dx

xp
= (1− p)−1a1−p.

If p ≥ 1, then
∫ a
0
dx/xp diverges. To see this, let p 6= 1 and observe∫ a

0

dx

xp
= lim

R→0+

∫ a

R

dx

xp
= lim

R→0+
(−p+ 1)−1[a−p+1 −R−p+1].

If p < 1, then limR→0+ R
−p+1 = 0, so

∫ a
0
dx
xp

= (1− p)−1a1−p. If p > 1, then limR→0+ R
−p+1 =

∞, so
∫ a
0
dx
xp

diverges. In the remaining case p = 1, we have∫ a

0

dx

x
= lim

R→0+

∫ a

R

dx

x
= lim

R→0+
[ln |a| − ln |R|] = −∞.

So, the integral
∫ a
0
dx
x

diverges.

5.5.1. Comparing Integrals. We have reached somewhat of an end to our investigation of
methods of integration. Sometimes, it is actually impossible to get an explicit formula of an
integral. Instead, we need to know how to estimate integrals in various ways. In the next
section, we will see a few ways that a computer can estimate an integral. For now, we will
simply get some rough estimates on integrals. For example, we will just look at a way to
check whether or not an improper integral converges.

Proposition 5.26. Fix a real number a. Suppose f(x) ≥ g(x) ≥ 0 for all x ≥ a.

• If
∫∞
a
f(x)dx converges, then

∫∞
a
g(x)dx converges.

• If
∫∞
a
g(x)dx diverges, then

∫∞
a
f(x)dx diverges.

Example 5.27. We will demonstrate that
∫∞
1

dx√
x3+1

converges.

Let x ≥ 1. Then
√
x3 + 1 ≥

√
x3 = x3/2 ≥ 0. So, 0 ≤ (x3 + 1)−1/2 ≤ x−3/2. And

0 ≤
∫ ∞
1

x−3/2dx = lim
R→∞

∫ R

1

x−3/2dx = lim
R→∞

(−2)(R−1/2 − 1) = 2.

Therefore,
∫∞
1

dx√
x3+1

converges.

We can do the same test for an endpoint discontinuity as follows.

Example 5.28. We will demonstrate that
∫ 1

0
dx

x2+x8
diverges. Let 0 < x ≤ 1. Note that

x2 + x8 ≤ 2x2, so (x2 + x8)−1 ≥ (2x2)−1 ≥ 0. However, we know that
∫ 1

0
x−2dx diverges. We

therefore conclude that
∫ 1

0
dx/(x2 + x8) diverges.

5.6. Numerical Integration. As we discussed previously, some integrals simply cannot be
evaluated with exact formulas. Thankfully, there are many ways that allow us to estimate
these integrals. These methods are implemented in computers, allowing fairly precise esti-
mation of various integrals. (However, be warned that arithmetic in computers has its own
issues that need to be properly understood in order to make reliable estimates of integrals.
For a hint of these issues, note that the typical computer says that 1 + 2−53 is equal to 1.
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And a calculator or phone app probably has worse precision than this. This imprecision of
addition may seem innocuous, but if you start to subtract numbers that are close to one
another, then e.g. 2−53((1 + 2−53)− 1)−1 should evaluate to 1, but it instead evaluates to an
undefined number, since the computer attempts a division by zero.)

Example 5.29 (Trapezoidal Rule). Suppose we have N + 1 equally spaced points on
the interval [a, b]. We label these points as a = x0 < x1 < · · · < xN = b. Note that
xi − xi−1 = (b − a)/N for each 1 ≤ i ≤ N . We approximate the area under the curve
of f by a set of trapezoids. Recall that a trapezoid of with w and heights h1, h2 has area
w(h1 +h2)/2. We will particularly approximate the area under f by the trapezoids of width
xi − xi−1 and heights f(xi), f(xi−1), for each 1 ≤ i ≤ N . The total area of all of these
trapezoids is then

TN = (x1−x0)
f(x1) + f(x0)

2
+(x2−x1)

f(x2) + f(x1)

2
+ · · ·+(xN −xN−1)

f(xN) + f(xN−1)

2
.

Using xi − xi−1 = (b− a)/N for each 1 ≤ i ≤ N , the total area of the trapezoids is equal to

TN =
b− a
N

(f(x0)/2 + f(x1) + f(x2) + f(x3) + · · ·+ f(xN−1) + f(xN)/2) .

Remark 5.30. Another way of describing the trapezoidal rule is that we have approxi-
mated our function f by a piecewise linear function g, and we then use the integral of g to
approximate the integral of f .

Remark 5.31 (Midpoint Rule). If is also possible to approximate a function f by its
Riemann sums (as in the midpoint rule). In particular, the Midpoint Rule approximates a
function f by a Riemann sum of equally spaced points, where we evaluate the function f at
the midpoint of each rectangle. That is, we approximate the integral of f by

MN =
b− a
N

(
f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)
+ · · ·+ f

(
xN−1 + xN

2

))
.

Another way of describing the Midpoint Rule is that we approximate f by a piecewise
constant function g, and we then use the integral of g to approximate the integral of f .

Theorem 5.32 (Error Bounds for Trapezoid and Midpoint Rules). Let f be an
integrable function on [a, b]. Assume that f ′′ exists and is continuous. Suppose |f ′′(x)| ≤ K
for all a ≤ x ≤ b. Then ∣∣∣∣∫ b

a

f(x)dx− TN
∣∣∣∣ ≤ K(b− a)3

12N2
.∣∣∣∣∫ b

a

f(x)dx−MN

∣∣∣∣ ≤ K(b− a)3

24N2
.

Example 5.33. Let’s compute both the trapezoid and midpoint rules for a function, and
verify that these error rates are correct. We will estimate

∫ 2

1

√
xdx with N = 6. Since b = 2

and a = 1, we have (b−a)/N = 1/6. The points x0, . . . , xN are 1, 7/6, 8/6, 9/6, 10/6, 11/6, 2.
And

T6 =
1

6

(√
1/2 +

√
7/6 +

√
4/3 +

√
3/2 +

√
5/3 +

√
11/6 +

√
2/2
)
≈ 1.218612.

M6 =
1

6

(√
13/12 +

√
15/12 +

√
17/12 +

√
19/12 +

√
21/12 +

√
23/12

)
≈ 1.219121.

19



In this case, we can compute the integral exactly:∫ 2

1

√
xdx = (2/3)(23/2 − 13/2) = (2/3)(23/2 − 1) ≈ 1.218951.

For f(x) =
√
x, we have f ′(x) = (1/2)x−1/2 and f ′′(x) = (−1/4)x−3/2, so for 1 ≤ x ≤ 2, we

have |f ′′(x)| ≤ 1/4. So, we can verify our Theorem for Error Bounds as follows

.000339 ≈
∣∣∣∣∫ 2

1

√
xdx− T6

∣∣∣∣ ≤ K(b− a)3

12N2
=

(1/4)(1)

12(36)
=

1

1728
≈ .000579.

.000170 ≈
∣∣∣∣∫ 2

1

√
xdx−M6

∣∣∣∣ ≤ K(b− a)3

24N2
=

(1/4)(1)

24(36)
=

1

3456
≈ .000289.

So, in this case, our error bound is actually not too much larger than the actual error between
the integral and its approximations.

The following problem is fairly typical when we try to evaluate an integral with a computer.
We want to approximate a certain integral, and we want to guarantee that our approximation
is a certain distance from the correct answer.

Example 5.34. Find an integer N such that we can guarantee that TN approximates∫ 3

0
e−x

2
dx within an error of 10−5.

We first estimate the second derivative of f(x) = e−x
2
. Then f ′(x) = (−2x)e−x

2
and

f ′′(x) = (4x2 − 2)e−x
2
. Let 0 ≤ x ≤ 3. Then |4x2 − 2| ≤ 34 and |e−x2| ≤ 1, so |f ′′(x)| ≤ 34

for 0 ≤ x ≤ 3. Using the error bound for TN , we want to find N such that

34(b− a)3

12N2
< 10−5.

Since (b− a) = 3, we want to find N such that

N >

√
34(33)(105)

12
≈ 2765.9

Therefore, choosing N = 2766 suffices.

So far, we have seen the Midpoint Rule, which approximates f by a piecewise constant
function g and then computes the integral of g as an approximation to the integral of f .
We also saw the Trapezoid Rule, which approximates f by a piecewise linear function g and
then computes the integral of g as an approximation to the integral of f . We now take this
idea one step further. With Simpson’s Rule, we approximate f by a piecewise quadratic
function g and then compute the integral of g as an approximation to the integral of f . After
some analysis (which we omit), Simpson’s rule SN for an even N has the following formula

SN =
1

3
TN/2 +

2

3
MN/2.

Substituting the formulas for TN/2 and MN/2 into this formula, we get

SN =
(b− a)

3N
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xN−2) + 4f(xN−1) + f(xN)) .

We then get the following error bound for Simpson’s Rule
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Theorem 5.35 (Error Bound for Simpson’s Rule). Let f be an integrable function on
[a, b]. Assume that f (4) exists and is continuous. Suppose

∣∣f (4)x)
∣∣ ≤ K for all a ≤ x ≤ b.

Then ∣∣∣∣∫ b

a

f(x)dx− SN
∣∣∣∣ ≤ K(b− a)5

180N4
.

Example 5.36. We continue our above example, and this time we use Simpson’s rule. We
estimate

∫ 2

1

√
xdx with N = 6. Since b = 2 and a = 1, we have (b− a)/N = 1/6. The points

x0, . . . , xN are 1, 7/6, 8/6, 9/6, 10/6, 11/6, 2. And

S6 =
1

18

(√
1 + 4

√
7/6 + 2

√
4/3 + 4

√
3/2 + 2

√
5/3 + 4

√
11/6 +

√
2
)
≈ 1.21895013.

As before, we can compute the integral exactly∫ 2

1

√
xdx = (2/3)(23/2 − 13/2) = (2/3)(23/2 − 1) ≈ 1.21895142.

For f(x) =
√
x, we have f ′(x) = (1/2)x−1/2, f ′′(x) = (−1/4)x−3/2, f ′′′(x) = (3/8)x−5/2, and

f (4)(x) = −(15/16)x−7/2. So for 1 ≤ x ≤ 2, we have
∣∣f (4)(x)

∣∣ ≤ 15/16. So, we can verify our
Theorem for Error Bounds as follows

.00000129 ≈
∣∣∣∣∫ 2

1

√
xdx− S6

∣∣∣∣ ≤ K(b− a)5

180N4
=

(15/16)(1)

180(64)
=

1

248832
≈ .00000402.

Note that in this case, Simpson’s rule is roughly 100 times more accurate than the Midpoint
or Trapezoid rules, even though we used the same number of sample points.

6. Applications of the Integral

x

y

b

f(x)

g(x)

a

x

y

b

f(x)
g(x)

a

6.1. Areas Between Curves. We now discuss how
to find the area between two curves.

Definition 6.1. Let a < b. Suppose f, g : [a, b] → R
satisfy f(x) ≥ g(x) for all x ∈ [a, b]. We define the
area between the curves f and g on [a, b] to be∫ b

a

(f(x)− g(x))dx.

For general functions f, g, we define the area between
the curves f and g on [a, b] to be∫ b

a

|f(x)− g(x)| dx.

Example 6.2. Let f(x) = x and let g(x) = −x.
Then the area between these curves on [0, 1] is∫ 1

0

x− (−x)dx =

∫ 1

0

2xdx = [x2]x=1
x=0 = 1− 0 = 1.
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Example 6.3. Let f(x) = x and let g(x) = x2. Note
that f(x) ≥ g(x) when x ∈ [0, 1] and g(x) ≥ f(x)
when x ∈ [−2, 0]. So, the area between these curves
on [−2, 1] is∫ 1

−2

∣∣x− x2∣∣ dx =

∫ 1

0

(x− x2)dx+

∫ 0

−2
(x2 − x)dx = [x2/2− x3/3]x=1

x=0 + [x3/3− x2/2]x=0
x=−2

= (1/2)− (1/3)− (−2)3/3 + (−2)2/2 = (1/2)− (1/3) + 8/3 + 2 = 29/6.

Example 6.4. Let’s find the area between the curves x = 0 and x = y2 + 1 lying between
the lines y = 0 and y = 1. This area is given by∫ 1

0

(y2 + 1)dy = [(1/3)y3 + y]y=1
y=0 = (1/3) + 1 = 4/3.

6.2. Average Value.

Definition 6.5 (Average Value). Let a < b. Let f : [a, b]→ R. The average value of f
on the interval [a, b] is defined to be

1

b− a

∫ b

a

f(x)dx.

Example 6.6. The average value of f(x) = x on the interval [0, 20] is

1

20

∫ 20

0

xdx =
1

20
[x2/2]200 =

1

40
(400) = 10.

Example 6.7. The average value of f(x) = x/(x2 + 1)2 on the interval [3, 6] is (using
u = x2 + 1 so du = 2xdx, i.e. xdx = du/2)

1

6− 3

∫ 6

3

x

(x2 + 1)2
dx =

1

3

∫ 37

10

u−2

2
du =

1

6
[−u−1]u=37

u=10 =
1

6

(
− 1

37
+

1

10

)
6.3. Volumes by Revolution.

Definition 6.8. A solid of revolution is obtained by taking a region in the plane and
rotating the region about an axis.

Example 6.9. Consider the region in the plane lying above the x-axis and below the curve
y =
√

1− x2. If we rotate this region around the x-axis, we obtain the ball of radius 1.

Example 6.10. Consider the region in the plane lying above the x-axis, below the line
y = 1, and between the lines x = 0 and x = 1. If we rotate this region around the x-axis,
we obtain a circular cylinder of radius 1 and of height 1.

Proposition 6.11 (Volume of a Solid by Revolution: Disk Method). Let f : [a, b]→
R be continuous with f(x) ≥ 0 for all x ∈ [a, b]. Consider region in the plane lying above
the interval [a, b] (on the x-axis) and lying below the curve y = f(x). When this region is
rotated around the x-axis, the resulting solid of revolution has volume

π

∫ b

a

(f(x))2dx.

In this formula, we think of f(x) as the radius of a thin disk encircling the point x.
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x

y

b

a

x

y

b

f(x)

a

x

y

b

a

x

y

b

a

≈

≈

Remark 6.12. If c is a constant, and if f = c is a constant function, then the solid of
revolution is a cylinder of radius c and height b− a. So, the cylinder has volume πc2(b− a).
This formula agrees with the integral above

π

∫ b

a

(f(x))2dx = π

∫ b

a

c2dx = πc2(b− a).

For a general function f , we can think of f as being roughly constant on small intervals of
the form [x, x+ h]. If f is roughly constant, then the solid produced by revolving f around
the interval [x, x + h] is essentially a cylinder of radius f(x) and of height (x + h)− x = h.
So, the volume of this thin cylinder is π(f(x)2)h. Summing up all of the contributions of
these small cylinders then gives the integral above (if we intuitively think of h as being equal
to dx, an infinitesimally small cylinder height).

Example 6.13. Let r > 0. Consider the region in the plane lying above the x-axis and
below the curve f(x) =

√
r2 − x2, −r ≤ x ≤ r. If we rotate this region around the x-axis,

we obtain the ball of radius r, which we know to have volume (4/3)πr3. This formula can
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also be derived as follows:

π

∫ r

−r
(f(x))2dx = π

∫ r

−r
(r2−x2)dx = π[r2x−x3/3]x=rx=−r = π[r3−r3/3+r3−r3/3] = πr3(4/3).

Example 6.14. Let r1 > r2 > 0. Consider the region in the plane lying above the x-axis,
above the curve g(x) =

√
r22 − x2 and below the curve f(x) =

√
r21 − x2. If we rotate this

region around the x-axis, we obtain the ball of radius r1, with a ball of radius r2 removed.
So, the volume of this region is

(4/3)πr31 − (4/3)πr32.

Example 6.15. We can also revolve regions around the y-axis. Consider the region bounded
between the lines x = 0, y = 0, x = 1 and y = 2. Revolving this region around the y-axis
produces a solid cylinder of volume

π

∫ 2

0

(1− 0)2dy = π

∫ 2

0

dy = 2π.

x

y

ba

x

y

b

f(x)

a

x

y

ba

x

y

ba

≈

≈

6.4. Volumes by Cylindrical Shells.
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Proposition 6.16 (Volume of a Solid by Revolution: Cylindrical Shells). Let b >
a ≥ 0. Let f : [a, b] → R be continuous with f(x) ≥ 0 for all x ∈ [a, b]. Consider the region
in the plane lying above the interval [a, b] (on the x-axis) and lying below the curve y = f(x).
When this region is rotated around the y-axis, the resulting solid of revolution has volume

2π

∫ b

a

xf(x)dx.

In this formula, we think of x as the radius of a cylindrical shell, and we think of f(x) as
the height of a cylindrical shell.

Remark 6.17. If c is a constant, and if f = c is a constant function, then the solid of
revolutions is a cylinder of height c and radius b, with a cylinder of height c and radius a
removed. So, the solid has volume πc(b2 − a2). This formula agrees with the integral above

2π

∫ b

a

xf(x)dx = 2π

∫ b

a

xc dx = 2πc[x2/2]x=bx=a = πc(b2 − a2).

For a general function f , we can think of f as being roughly constant on a small intervals
of the form [x, x + h]. If f is roughly constant, then the solid produced by revolving f
on [x, x + h] around the y-axis is essentially a cylinder of radius x + h and of height f(x),
minus a cylinder of radius x and of height f(x). So, the volume of this cylindrical shell is
πf(x)((x + h)2 − x2) = πf(x)((x2 + 2xh + h2) − x2) = 2πxf(x)h + πf(x)h2. The second
term does not contribute much when h is small, so it can be ignored. Summing up all of the
contributions of these cylindrical shells then gives the integral above (if we intuitively think
of h as being equal to dx, an infinitesimally small width).

Example 6.18. Let r > 0. Consider the region in the plane lying above the x-axis and
below the curve f(x) =

√
r2 − x2, 0 ≤ x ≤ r. If we rotate this region around the x-axis, we

obtain one half of a ball of radius r, which we know to have volume (2/3)πr3. This formula
can also be derived as follows (using u = r2 − x2, −du = 2xdx):

2π

∫ r

0

xf(x)dx = 2π

∫ r

0

x
√
r2 − x2dx = −π

∫ 0

r2

√
u du = π[(2/3)u3/2]u=r

2

u=0 = (2/3)πr3.

Example 6.19. Consider the region in the plane lying above interval [0, r] on the x-axis and
below the curve y = h > 0. If we rotate this region around the y-axis, we obtain a cylinder
of radius r and height h. So, the volume of this region is

2π

∫ r

0

xf(x)dx = 2π

∫ r

0

xh dx = 2πh[x2/2]x=rx=0 = πr2h.

Example 6.20. We can also revolve regions around other axes. Consider the region bounded
by the curves y = 0 and y = 1− x2. When we revolve this region around the axis x = 1 for
points −1 ≤ x ≤ 1, the radius of the cylindrical shells will be (1− x), and their height will
be (1− x2). So, the solid has volume

2π

∫ 1

−1
(1− x)(1− x2)dx = 2π

∫ 1

−1
(1− x2 − x+ x3)dx = 2π[x− x3/3− x2/2 + x4/4]x=1

x=−1

= 2π[1− (−1)− 1/3− (−1/3)] = 8π/3.
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6.5. Arc Length. Consider a linear function on the interval [a, b]. That is, y = cx + d.
What is the length of this curve on the interval [a, b]? Consider the triangle with vertices
(a, y(a)), (b, y(b)) and (b, y(a)). The base of this right triangle has length (b − a), and its
height is y(b)− y(a) = c(b− a). So, it’s hypotenuse has length√

(b− a)2 + c2(b− a)2 = (b− a)
√

1 + c2 = (b− a)
√

1 + (y′(x))2.

In conclusion, the function y = cx + d has length
√

1 + y′(x)2 (b − a) on the interval [a, b].
Since a continuously differentiable function is locally piecewise linear, we therefore define the
arc length of a general function f(x) on the interval [a, b] by∫ b

a

√
1 + f ′(x)2dx.

Example 6.21. Consider the function f(x) = x2/2. The arc length of this function from
x = 0 to x = 1 is computed using the substitution x = tan θ as follows.∫ 1

0

√
1 + f ′(x)2dx =

∫ 1

0

√
1 + x2dx =

∫ π/4

0

√
1 + tan2 θ(cos θ)−2dθ

=

∫ π/4

0

√
1 + tan2 θ(cos θ)−2dθ =

∫ π/4

0

(cos θ)−3dθ

=

∫ π/4

0

(cos θ)−1(d/dθ) tan θdθ

= [(cos θ)−1 tan θ]
θ=π/4
θ=0 −

∫ π/4

0

tan θ(−1)(cos θ)−2(− sin θ)dθ

= 2/
√

2−
∫ π/4

0

sin2 θ(cos θ)−3dθ

= 2/
√

2−
∫ π/4

0

(cos θ)−3dθ +

∫ π/4

0

(cos θ)−1dθ.

So, using
∫

(cos θ)−1dθ = ln |sec θ + tan θ|,∫ 1

0

√
1 + f ′(x)2dx = 1/

√
2 + (1/2)[ln |sec θ + tan θ|]θ=π/4θ=0

= 1/
√

2 + (1/2)[ln(2/
√

2 + 1)] ≈ 1.1478.

As a check, note that the straight line between the points (0, 0) and (1, 1/2) has length√
1 + 1/4 ≈ 1.118, and we expect this shortest path to have slightly greater length than the

curved path f(x) = x2/2.

6.5.1. Surface Area of Revolution. Suppose we have a curve y = f(x), and we then rotate this
curve around the x-axis, producing a surface in three-dimensional Euclidean space. A short
segment of this curve near x has length approximated by the integral of

√
1 + f ′(x)2, as we

discussed above. If we rotate this segment of the curve around the x-axis, then the resulting
surface is approximately a cylinder, so it has area 2πr

√
1 + f ′(x)2, where r = f(x) is the

approximate radius of the cylinder. That is, near x, the rotated curve has approximate area
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2πf(x)
√

1 + f ′(x)2. We therefore define the surface area of the curve y = f(x) for a ≤ x ≤ b
rotated around the x-axis by

2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

Example 6.22. We compute the area of the sphere of radius R. This sphere is obtained
by rotating the curve f(x) =

√
R2 − x2 on the interval [−R,R] around the x-axis. So, the

sphere of radius R has area

2π

∫ R

−R

√
R2 − x2

√
1 +

x2

R2 − x2
dx = 2π

∫ R

−R

√
R2 − x2

√
R2

R2 − x2
dx = 2π

∫ R

−R
Rdx = 4πR2.

6.6. Fluid pressure and Force.

Definition 6.23 (Fluid Pressure). The pressure p at depth h in a fluid of mass density ρ
is

p = ρgh.

For example, h is in meters, g is the gravitational constant (approximately 9.8 meters per
second2), and ρ can be measured in kilograms per meter3.

When we are under water, we can think of the pressure of a fluid like a column of water
that is over us. Similarly, we can think of atmospheric pressure as a result of a tall column
of air that is sitting on our heads. However, this intuition is a bit deceiving, since pressure
does not act in any specific direction. Pressure is exerted on all parts of a surface. We feel
the pressure of air not just on the top of our heads.

Definition 6.24 (Fluid Force, for Constant Pressure). Suppose we have a surface of
area A. If the pressure p on S is constant, then the force of a fluid on that surface is given
by

pA.

Example 6.25. Suppose we have a flat square of cardboard measuring 4 meters by 4 meters
at a depth of 3 meters in water. We use the density of water as ρ ≈ 103 kg/m3. Then the
force on the cardboard is

ρghA = 103(9.8)(3)(42) = 470400 N (N = kg ·m/s2)
Similarly, if a different square of cardboard is at a depth of 6 meters, then there is twice

as much force on the cardboard, namely

940800 N

Now, suppose these two squares are connected by a single vertical surface. This edge has
width 4 meters and height 3 meters. A small slice of this cardboard of thickness ε at height
h has a force approximately

ρgh4ε.

So, the whole edge of the rectangle has a force which is given by the following integral

ρg

∫ h=6

h=3

4hdh = ρg(4)(1/2)(36− 9).

More generally, we have the following force calculation
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Proposition 6.26 (Fluid Force, Vertically Oriented Surface). Suppose we have a flat
surface S sitting in a fluid, where S is oriented vertically, starting at height a and ending at
height b, where a < b. Suppose also that this surface has width f(y) at height y. Then the
force exerted on this surface is given by

ρg

∫ b

a

yf(y)dy.

Example 6.27. We compute the fluid force of water on an equilateral triangle of side length
2 meters submerged vertically, so the top vertex of the triangle just touches the surface of
the water. The force is then given by

ρg

∫ √3
0

y(2y/
√

3)dy = 103(9.8)(2/
√

3)

∫ √3
0

y2dy = 103(9.8)(2/
√

3)(1/3)33/2 = 19600 N

6.7. Taylor polynomials, Taylor’s Theorem. We are now going to discuss a powerful
tool for approximating functions with many derivatives. In essence, we will take a general
function, and look at it in a very simple way.

Recall that a continuously differentiable function f can be approximated at x = a by the
following function of x:

L(x) = f(a) + (x− a)f ′(a).

This approximation is known as the first order approximation of f at a.
Suppose now that all higher derivatives of f exist on some interval I. Let a ∈ I. We

define the nth order Taylor polynomial at x = a as follows

Tn(x) = f(a) + (x− a)f ′(a) + (x− a)2
f ′′(a)

2!
+ (x− a)3

f ′′′(a)

3!
+ · · ·+ (x− a)n

f (n)(a)

n!
.

Note that Tn is an nth degree polynomial. For example,

T1(x) = f(a) + (x− a)f ′(a)

T2(x) = f(a) + (x− a)f ′(a) + (x− a)2f ′′(a)/2

T3(x) = f(a) + (x− a)f ′(a) + (x− a)2f ′′(a)/2 + (x− a)3f ′′′(a)/6.

Note that T1(x) = L(x). Also, note that f and Tn agree to order n at x = a. That is,

f(a) = Tn(a), f ′(a) = T ′n(a), f ′′(a) = T ′′n (a), · · · f (n)(a) = T (n)
n (a).

Also,

Tn(x) = Tn−1(x) + (x− a)n
f (n)(a)

n!
.

If we use the convention 0! = 1! = 1, and f (0)(a) = f(a), we can write Tn in the following
compact way.

Tn(x) =
n∑
j=0

(x− a)j
f (j)(a)

j!
.

When a = 0, Tn(x) is called the nth MacLaurin polynomial of f .
So far, we have not really discussed integrals at all, but they will enter the picture when

we discuss how closely Tn approximates f .
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Example 6.28. Consider the function f(x) = ex. We will compute the Maclaurin polyno-
mial of f , i.e. the Taylor polynomial of f at x = 0. Since f (n)(0) = e0 = 1 for all positive
integers n, we have

T1(x) = 1 + x

T2(x) = 1 + x+ x2/2

T3(x) = 1 + x+ x2/2 + x3/6

And in general,

Tn(x) =
n∑
j=0

xj

j!
.

In fact, in a sense that we will describe in the next chapter, the exponential function is equal
to the following infinite sum

ex = lim
n→∞

n∑
j=0

xj

j!
.

However, this type of identity is not true for a general function.

Example 6.29. Consider the function f(x) = − ln(1− x). We will compute the Maclaurin
polynomial of f , i.e. the Taylor polynomial of f at x = 0. Note that f(0) = 0, f ′(x) =
1/(1− x), f ′′(x) = 1/(1− x)2, f ′′′(x) = 2/(1− x)3, and in general,

f (n)(x) =
(n− 1)!

(1− x)n
. (∗)

Indeed, assuming this formula holds for a given n by induction, we compute

f (n+1)(x) = (f (n)(x))′ =
−(n− 1)!(−n)(1− x)n−1

(1− x)2n
=

n!

(1− x)n+1
.

And since f ′(x) = 1/(1−x) = 0!/(1−x), we conclude that (∗) holds for all positive integers
n. So,

f (n)(0) = (n− 1)!

And
T1(x) = x

T2(x) = x+ x2/2

T3(x) = x+ x2/2 + x3/3

And in general,

Tn(x) =
n∑
j=1

xj(j − 1)!

j!
=

n∑
j=1

xj

j
.

The meaning of the this polynomial as n → ∞ now becomes more subtle than before. As
long as |x| < 1, we have

− ln(1− x) = lim
n→∞

n∑
j=0

xj

j
.

However, this identity has no decipherable meaning when |x| ≥ 1. However, this is expected,
since − ln(1 − x) is undefined at x = 1. We will discuss these topics more in the following
chapter.
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Example 6.30. Consider the function f(x) = sin(x). We will compute the Maclaurin
polynomial of f , i.e. the Taylor polynomial of f at x = 0. Note that f ′(x) = cos(x),
f ′′(x) = − sin(x), f ′′′(x) = − cos(x) and f (4)(x) = sin(x). That is, the sequences of numbers
f (0)(0), f (1)(0), f (2)(0), . . . is a repeating sequence of the form

0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, . . .

So,

T1(x) = x

T2(x) = x

T3(x) = x− x3/6

T5(x) = x− x3/3! + x5/5!

And in general, when n is a nonnegative integer,

T2n+1(x) =
n∑
j=0

(−1)j

(2j + 1)!
x2j+1, T2n+2(x) = T2n+1(x).

Similar to the case of the exponential function, the following expression holds for all x.

sin(x) = lim
n→∞

n∑
j=0

(−1)j

(2j + 1)!
x2j+1.

Example 6.31. Consider the function f(x) = cos(x). We will compute the Maclaurin
polynomial of f , i.e. the Taylor polynomial of f at x = 0. Note that f ′(x) = − sin(x),
f ′′(x) = − cos(x), f ′′′(x) = sin(x) and f (4)(x) = cos(x). That is, the sequences of numbers
f (0)(0), f (1)(0), f (2)(0), . . . is a repeating sequence of the form

1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, . . .

So,

T1(x) = 1

T2(x) = 1− x2/2

T3(x) = 1− x2/2

T4(x) = 1− x2/2 + x4/24

And in general, when n is a positive integer,

T2n(x) =
n∑
j=0

(−1)j

(2j)!
x2j, T2n+1(x) = T2n(x).

Similar to the case of the exponential function and cos, the following expression holds for all
x.

cos(x) = lim
n→∞

n∑
j=0

(−1)j

(2j)!
x2j.

30



Remark 6.32. When your calculator or computer or other electronic device computes the
value of cosine or sine or some other function that does not have an explicit algebraic formula,
the electronic device is essentially computing a the value of a Taylor polynomial. For example,
the standard way of computing sin(x) on a computer for x ∈ [−π/2, π/2] is to instead
calculate T19(x), the 19th degree Maclaurin polynomial of sine. This is a sensible thing to
do, since the error between T19 and sin is very small, as we now discuss.

Theorem 6.33 (Taylor’s Theorem, Integral Remainder). Let f be a real valued func-
tion, let n be a positive integer, and let a be a real number. Suppose f has Taylor polynomial
Tn at x = a. Assume that f (n+1) exists and is continuous. Then

f(x) = Tn(x) +
1

n!

∫ x

a

(x− t)nf (n+1)(t)dt.

To prove that this formula holds, we use integration by parts to write

1

n!

∫ x

a

(x− t)nf (n+1)(t)dt =
1

n!

∫ x

a

(x− t)n(d/dt)f (n)(t)dt

= − 1

n!
(x− a)nf (n)(a)− 1

n!

∫ x

a

(d/dt)(x− t)nf (n)(t)dt

= − 1

n!
(x− a)nf (n)(a) +

1

(n− 1)!

∫ x

a

(x− t)n−1f (n)(t)dt

= − 1

n!
(x− a)nf (n)(a) +

1

(n− 1)!

∫ x

a

(x− t)n−1 d
dt
f (n−1)(t)dt

= − 1

n!
(x− a)nf (n)(a)− 1

(n− 1)!
(x− a)n−1f (n−1)(a)− 1

(n− 1)!

∫ x

a

d

dt
(x− t)n−1f (n−1)(t)dt

= − 1

n!
(x− a)nf (n)(a)− 1

(n− 1)!
(x− a)n−1f (n−1)(a) +

1

(n− 2)!

∫ x

a

(x− t)n−2f (n−1)(t)dt

= · · · .

We continue in this way, arriving at

1

n!

∫ x

a

(x− t)nf (n+1)(t)dt

= − 1

n!
(x− a)nf (n)(a)− 1

(n− 1)!
(x− a)n−1f (n−1)(a)− · · · − 1

1!
(x− a)1f ′(a) +

∫ x

a

f ′(t)dt

= − 1

n!
(x− a)nf (n)(a)− 1

(n− 1)!
(x− a)n−1f (n−1)(a)− · · · − 1

1!
(x− a)f ′(a)− f(a) + f(x)

= −Tn(x) + f(x).

where we used the Fundamental Theorem of Calculus in the penultimate step.
There are a few different ways that we can use this integral remainder term. Here is one

way to make an estimate of the error of the Taylor series.

Proposition 6.34 (An Error Bound for Taylor’s Theorem). Let f be a real valued
function, let n be a positive integer, and let a be a real number. Suppose f has Taylor
polynomial Tn at x = a. Assume that f (n+1) exists and is continuous. Let K > 0 such that
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∣∣f (n+1)(t)
∣∣ ≤ K for all t between x and a. Then

|f(x)− Tn(x)| ≤ K
|x− a|n+1

(n+ 1)!
.

To prove this bound, we use Taylor’s Theorem to get

|f(x)− Tn(x)| =
∣∣∣∣ 1

n!

∫ x

a

(x− t)nf (n+1)(t)dt

∣∣∣∣ ≤ 1

n!

∣∣∣∣∫ x

a

|x− t|n
∣∣f (n+1)(t)

∣∣ dt∣∣∣∣
≤ K

n!

∣∣∣∣∫ x

a

|x− t|n dt
∣∣∣∣ =

K

n!

∣∣∣∣∫ x

a

(x− t)ndt
∣∣∣∣

=
K

n!

1

n+ 1

∣∣(−1)(x− t)n+1|t=xt=a

∣∣ =
K

(n+ 1)!
|x− a|n+1 .

Example 6.35. Let’s see that the 20th order Taylor expansion of f(x) = sin(x) is very
accurate near x = 0, so that we can trust our computers when they compute this function.
Let Tn(x) be the Taylor expansion of f at x = 0, and then let x be a variable point in
[−π/2, π/2]. Since

∣∣f (n)(x)
∣∣ ≤ 1 for all x and for all positive integers n, we have

|f(x)− T20(x)| ≤ 1

(21!)
|x|21 ≤ 1

21!
(π/2)21 ≈ 2.5× 10−16.

Since the decimals precision of a typical computer is around 2.22 × 10−16, we see that this
Taylor polynomial was chosen to be just as accurate as any other computation. In other
words, we can pretty reliably trust this Taylor expansion.

7. Sequences and Infinite Series

7.1. Introduction. As we saw in the previous section, many functions can be well approxi-
mated by their nth degree Taylor polynomials, by taking n to be large. Perhaps surprisingly,
some functions such as the exponential, sine and cosine functions are equal to their Taylor
polynomials, if we let n go to infinity. In other words, we can begin with a presumably com-
plicated function and break it into an infinite number of simpler pieces. Specifically, note
that monomials are some of the simplest possible functions to encounter. In some sense,
we can therefore consider a Taylor expansion (as n → ∞) as breaking up functions into an
infinite number of constituent elements or atoms.

As we also discussed in the previous section, we need to be careful when dealing with
infinite sums of monomials. As we briefly mentioned in the case of − ln(1 − x), its Taylor
polynomial only makes sense for |x| < 1, when we let n→∞. We will therefore devote some
time to making careful statements about the convergence and divergence of infinite sums.
Afterwards, we will be able to discuss infinite sum representations of functions such as the
exponential, sine and cosine.

7.2. Sequences.

Definition 7.1. A sequence is a real valued function f where the domain of f is a set
of integers. The values an = f(n) are the terms of the sequence, where n is an integer
which is referred to as the index of the sequence. Informally, a sequence is a list of numbers
a1, a2, a3, . . .. We denote the sequence of numbers by {an}.
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Example 7.2. For each positive integer n, let an = 1/n. Then a1 = 1, a2 = 1/2, a3 = 1/3,
and so on.

Example 7.3. For each positive integer n, let an = (−1)n. Then a1 = −1, a2 = 1, a3 = −1,
and so on.

Example 7.4 (The Babylonian Square Root Algorithm). The following recursively
defined sequence gets closer and closer to the square root of 2.

Define a1 = 1, and for any integer n ≥ 2,

an =
1

2

(
an−1 +

2

an−1

)
.

We compute

a1 =
1

2
(1 + 2) = 1.5.

a2 =
1

2
(3/2 + 4/3) = 17/12 ≈ 1.4167

a3 =
1

2
(17/12 + 24/17) = 577/408 ≈ 1.414216

Indeed, it can be shown that an gets arbitrarily close to
√

2 as n tends to infinity. We will
make this statement more precise below.

Note that if we defined an = 1
2

(
an−1 + M

an−1

)
, then this sequence will get closer and closer

to
√
M , where M ≥ 0. This phenomenon can be explained by Newton’s Method. We

have

an = an−1 −
1

2
an−1 +

M

2an−1
= an−1 −

(a2n−1 −M)

2an−1
= an−1 −

f(an−1)

f ′(an−1)
,

where f(x) = x2−M . This iterative scheme searches for a zero of the function f . Given the
x-value an−1, the linear approximation of f at an−1 is f ′(an−1)(x− an−1) + f(an−1). And we
define an as the x-intercept of this line. That is, we define an so that

0 = f ′(an−1)(an − an−1) + f(an−1).

Solving this equation for an gives the above equality.

an = an−1 −
f(an−1)

f ′(an−1)
.

Remark 7.5. The Babylonian square root algorithm is typically used by computers when
you ask for the square root of a number. That is, the computer will compute something like
a15 for a given number M , and then return a15 as the square root of the number M .

Definition 7.6 (Limit of a Sequence). Let {an} be a sequence and let L be a real number.
We say that {an} converges to L if and only if, for every ε > 0, there exists an integer
M = M(ε) such that |an − L| < ε for all n > M . If {an} converges to L, we write

lim
n→∞

an = L, or an → L.

If no such limit L exists, we say that {an} diverges. If, for any K > 0, there exists
M = M(K) such that an > K for all n > M , we say that {an} diverges to infinity.
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Remark 7.7. If a sequence {an} converges to some real number L, then L is the unique
real number such that {an} converges to L.

Example 7.8. Let’s prove that the sequence an = 1/n converges to 0 as n→∞. Note that
0 is never a member of the sequence, but the sequence can still converge to zero.

Let ε > 0. We first find M = M(ε) such that 1/n < ε for all n > M . Let M be an integer
such that M > 1/ε. Note that M is positive and 1/M < ε. If n > M , then 1/n < 1/M < ε.
So, for all n > M , we have

|an − 0| = |1/n| = 1/n < ε.

We conclude that 0 = limn→∞ an.

Example 7.9. The sequence an = (−1)n diverges.

Example 7.10. The sequence an = n diverges to infinity.

Remark 7.11. Suppose a sequence {an} converges to some real number L. Then {an} still
converges to L if we change any finite number of terms of the sequence {an}.

Remark 7.12. Suppose C is a constant, and there is an integer M such that an = C for all
n > M . Then limn→∞ an = C.

Proposition 7.13. Let f be a function on the real line, and define an = f(n) for every
positive integer n. If limx→∞ f(x) exists, then limn→∞ an exists as well, and

lim
n→∞

an = lim
x→∞

f(x).

Example 7.14. This proposition allows us to use L’Hopital’s Rule as follows.

lim
x→∞

lnx

x2
= lim

x→∞

x−1

2x
= 0.

Therefore,

lim
n→∞

lnn

n2
= 0.

We can restate several theorems about limits of functions to theorems about limits of
sequences.

Proposition 7.15 (Limit Laws for Sequences). Let {an}, {bn} be a sequences and let
L,M be real numbers. Assume that an → L and bn → M . (This assumption is very
important in what follows.) Then

• limn→∞(an + bn) = (limn→∞ an) + (limn→∞ bn) = L+M .
• limn→∞(an − bn) = (limn→∞ an)− (limn→∞ bn) = L−M .
• limn→∞(anbn) = (limn→∞ an)(limn→∞ bn) = LM .
• If M 6= 0, then limn→∞(an/bn) = (limn→∞ an)/(limn→∞ bn) = L/M .
• limn→∞(can) = c(limn→∞ an) = cL.

Example 7.16. The sequences an = (−1)n and bn = −(−1)n both diverge, but an + bn = 0,
so an + bn → 0. So, the assumptions in this proposition are really needed.

Theorem 7.17 (Squeeze Theorem for Sequences). Let {an}, {bn}, {cn} be a sequences
and let L be a real number. Assume that

lim
n→∞

an = L, and lim
n→∞

cn = L.
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Assume also that there exists an integer M such that, for all n > M ,

an ≤ bn ≤ cn.

Then limn→∞ bn = L.

Example 7.18. Let R be a real number. We will show that

lim
n→∞

Rn

n!
= 0.

First, suppose R is any integer. Once we have n > R, then we write

Rn

n!
=
R

1

R

2
· · · R

R

R

R + 1

R

R + 2
· · · R

n
.

Write C = (R/1)(R/2) · · · (R/R), and note that the remaining terms in the product Rn/n!
are less than 1 in absolute value. So, ignoring all other terms except for the last one,∣∣∣∣Rn

n!

∣∣∣∣ ≤ |C| |R|n .

So, define an = − |CR| /n, and define cn = |CR| /n. Then limn→∞ an = limn→∞ cn = 0 and
an ≤ Rn/n! ≤ cn. So, the sequence bn = Rn/n! satisfies limn→∞ bn = 0, by the Squeeze
Theorem, as desired.

The following Theorem says that a continuous function commutes with limits of sequences.

Theorem 7.19. Suppose f is a continuous function, {an} is a sequence, and an → L for
some real number L. Then

lim
n→∞

f(an) = f( lim
n→∞

an) = f(L).

Example 7.20. We have already used this Theorem implicitly before. For example, to
compute limx→0+ x

x, we let an be any positive sequence such that an → 0. Then

lim
x→0+

xx = lim
n→∞

aann = lim
n→∞

ean ln an = elimn→∞ an ln an = e0 = 1.

That is, we used the fact that the exponential function is continuous.

Example 7.21.

lim
n→∞

sin

(
1

n+ 1

)
= sin

(
lim
n→∞

1

n+ 1

)
= sin(0) = 0.

The following proposition is sometimes useful.

Proposition 7.22 (Bounded Monotonic Sequences Converge). Let {an} be a strictly
increasing sequence. That is, an+1 > an for all positive integers n. Suppose also there exists
a real number M such that an < M for all positive integers n. Then {an} converges, and
limn→∞ an ≤M .

Let {an} be a strictly decreasing sequence. That is, an+1 < an for all positive integers n.
Suppose also there exists a real number M such that an > M for all positive integers n. Then
{an} converges, and limn→∞ an ≥M .
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Example 7.23. Let n be a positive integer. Consider the sequence an =
√
n+ 1 −

√
n. If

x > 0, then the function f(x) =
√
x+ 1−

√
x satisfies

f ′(x) =
1

2

(
1√
x+ 1

− 1√
x

)
=

1

2

√
x−
√
x+ 1√

x(x+ 1)
< 0.

Therefore, by the Fundamental Theorem of Calculus

an+1 − an = f(n+ 1)− f(n) =

∫ x=n+1

x=n

f ′(x)dx < 0.

That is, the sequence {an} is decreasing. It is also positive, since
√
n+ 1 >

√
n. We conclude

that there exists a real number L such that limn→∞ an = L. In fact,

lim
n→∞

(
√
n+ 1−

√
n) = lim

n→∞

n+ 1− n√
n+ 1 +

√
n

= lim
n→∞

1√
n+ 1 +

√
n

= 0.

7.3. Infinite Series. An infinite series is an infinite sum of the form a1 + a2 + a3 + · · · .
Sometimes these series converge to some number, and sometimes they do not. For example

(1/2) + (1/4) + (1/8) + (1/16) + · · · = 1.

We will now make this equality more precise.

Definition 7.24. Let {an} be a sequence of numbers. We define

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

And for any positive integer n, we define the Nth partial sum by

SN = a1 + · · ·+ aN =
N∑
n=1

an.

If the sequence of partial sums converges to a real number L, then we say the series converges
and that its sum is L. In this case, we then write

a1 + a2 + · · · =
∞∑
n=1

an = L.

If the sequence of partial sums does not converges, we say that the series diverges. If the
sequence of partial sums diverges to infinity, we say that the series diverges to infinity.

Example 7.25 (Geometric Series). Let r with |r| < 1. Let an = rn. We will show that

SN =
r − rN+1

1− r
.

Indeed, we have
SN = r + r2 + r3 + · · ·+ rN .

rSN = r2 + r3 + · · ·+ rN + rN+1.

Subtracting these two, we get
SN − rSN = r − rN+1.
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That is,

SN =
r − rN+1

1− r
.

Since |r| < 1, limN→∞ r
N+1 = 0. So,

r + r2 + r3 + · · · =
∞∑
n=1

rn =
r

1− r
.

In particular, using r = 1/2, we have

(1/2) + (1/4) + (1/8) + · · · = 1/2

1/2
= 1.

Example 7.26. The following infinite sum was computed by Euler, though we will probably
be unable to discuss this computation in this class.

∞∑
n=1

1

n2
=
π2

6
.

Example 7.27. The sum
∑∞

n=1(−1)n diverges. To see this, note that SN =
∑N

n=1(−1)n =
−1 if N is odd, and SN = 0 if N is even. That is, the sequence {SN} does not converge as
N →∞. So, the sum

∑∞
n=1(−1)n diverges.

Example 7.28. The sum
∑∞

n=1 1 diverges. To see this, note that SN =
∑N

n=1 1 = N . That
is, the sequence {SN} does not converge as N →∞. So, the sum

∑∞
n=1 1 diverges.

Example 7.29 (Telescoping Sum).
∞∑
n=1

1

n(n+ 1)
= 1.

To sum the series, let SN =
∑N

n=1
1

n(n+1)
. Note that

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Therefore,

SN =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

N
− 1

N + 1

)
=

1

1
+

(
−1

2
+

1

2

)
+

(
−1

3
+

1

3

)
+ · · ·+

(
− 1

N
+

1

N

)
− 1

N + 1

= 1− 1

N + 1

So, SN → 1 as N →∞, as desired.

The following rules for infinite sums follow by applying the limits laws for sequences to
the partial sum sequences {SN}.

Proposition 7.30. Suppose
∑∞

n=1 an and
∑∞

n=1 bn converge. Let c be a real number. Then

•
∑∞

n=1(an + bn) = (
∑∞

n=1 an) + (
∑∞

n=1 bn).
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•
∑∞

n=1(an − bn) = (
∑∞

n=1 an)− (
∑∞

n=1 bn).
•
∑∞

n=1(can) = c(
∑∞

n=1).

Example 7.31. Slightly generalizing our argument for the summation of the geometric
series with |r| < 1, we have

∞∑
n=M

crn =
crM

1− r
.

If |r| ≥ 1, then this series diverges.

Example 7.32.
∞∑
n=0

7−n =
1

1− (1/7)
=

7

6
.

∞∑
n=3

2(−5)−n =
2(−1/5)3

1− (−1/5)
=
−2/125

6/5
= − 1

75
.

We now begin to develop different ways of testing whether or not a particular series
converges or diverges. Such precise statements will be useful for us when we later investigate
Taylor series.

Theorem 7.33 (Divergence Test). Let {an} be a sequence that does not converge to zero.
Then

∑∞
n=1 an diverges.

Remark 7.34. The contrapositive of this test says: If
∑∞

n=1 an converges, then an → 0.
Since the contrapositive is equivalent to the original statement, we can justify this test by
demonstrating the contrapositive. If

∑∞
n=1 an converges, then the partial sums Sn converge

as n→∞. Then, using the limit law, we have

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = ( lim
n→∞

Sn)− ( lim
n→∞

Sn−1) = 0.

Example 7.35. The series
∑∞

n=1
4n+1
3n

diverges, since the sequence {(4n+1)/(3n)} converges
as n→∞ to (4/3) 6= 0.

7.4. Convergence of Series.

7.4.1. Convergence of Positive Series. In this section, we consider positive series. That is,
we consider series

∑
an where an > 0 for all n. In this case, note that SN+1 > SN , so the

partial sums are strictly increasing. Recalling that increasing sequences either converge or
diverge to infinity, we therefore have the following proposition.

Proposition 7.36 (Dichotomy for Positive Series). Let a1, a2, . . . be a positive sequence,

and let SN =
∑N

n=1 an be the N th partial sum. Then exactly one of the two following cases
holds.

• There exists K > 0 such that SN < K for all positive integers N . And in this case,∑∞
n=1 an converges.

• For any K > 0, there exists N = N(K) such that SN > K. In this case,
∑∞

n=1 an
diverges to infinity.

Remark 7.37. This Dichotomy does not hold for all series. For example,
∑∞

n=1(−1)n

diverges, but it also has bounded partial sums.
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Here is one test that allows us to determine the
convergence or divergence of positive series.

Theorem 7.38 (Integral Test). Let {an} be a pos-
itive sequence. Let f be a real valued function on the
real line such that an = f(n) for all positive integers
n. Suppose f is positive, decreasing, and continuous
on the domain x ≥ 1.

• If
∫∞
1
f(x)dx converges, then

∑∞
n=1 an con-

verges.
• If

∫∞
1
f(x)dx diverges, then

∑∞
n=1 an diverges.

To justify the Integral Test, let SN =
∑N

n=1 an be
the Nth partial sum. Since f is decreasing, we have
an+1 = f(n + 1) ≤ f(x) for all x ∈ [n, n + 1]. There-
fore,

an+1 ≤
∫ n+1

n

f(x)dx.

Summing up this inequality from n = 2 to n = N , we
have

a2 + a3 + · · ·+ aN ≤
∫ 2

1

f(x)dx+

∫ 3

2

f(x)dx+ · · ·+
∫ N

N−1
f(x)dx =

∫ N

1

f(x)dx.

Therefore,

SN − a1 ≤
∫ N

1

f(x)dx.

Since
∫ N
1
f(x)dx increases to a finite number K =

∫∞
1
f(x)dx, we know that SN ≤ a1 + K.

So, from the dichotomy for positive series,
∑∞

n=1 an converges.
The other statement is proven similarly. Since f is decreasing, we have an = f(n) ≥ f(x)

for all x ∈ [n, n+ 1]. Therefore,

an ≥
∫ n+1

n

f(x)dx.

Summing up this inequality from n = 1 to n = N , we have

a1 + a2 + · · ·+ aN ≥
∫ 2

1

f(x)dx+

∫ 3

2

f(x)dx+ · · ·+
∫ N+1

N

f(x)dx =

∫ N+1

1

f(x)dx.

Therefore,

SN ≥
∫ N+1

1

f(x)dx.

Since
∫ N+1

1
f(x)dx diverges to infinity, we know that SN also diverges to infinity.

Example 7.39 (Harmonic Series). The harmonic series
∑∞

n=1 1/n diverges to infinity.
This follows since

∫∞
1

(1/x)dx also diverges to infinity.
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Example 7.40. Let p be a real number. Then
∑∞

n=1
1
np converges if and only if p > 1.

If p > 1, then the convergence follows from our known convergence of the integral∫∞
1
x−pdx. The case p = 1 was just dealt with. If p ≤ 0, then the terms n−p do not

converge to zero, so their sum diverges by the Divergence Test. The only remaining case is
0 < p < 1. In this case, the sum diverges since the integral

∫∞
1
x−pdx also diverges.

Theorem 7.41 (Comparison Test). Assume there exists a positive integer M such that
0 ≤ an ≤ bn for all n ≥M .

• If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.
• If

∑∞
n=1 an diverges, then

∑∞
n=1 bn diverges.

This Theorem follows pretty quickly from the Dichotomy for positive series. Since the
convergence or divergence of a series is the same when we change a finite number of terms
of the series, we may assume that M = 1. In this case, the Nth partial sum of {bn} is larger
than the Nth partial sum of {an}. If

∑∞
n=1 bn converges, then there exists K > 0 such that

all partial sums of bn are bounded by K. So, all partial sums of an are bounded by K, and
therefore

∑∞
n=1 an converges, by the Dichotomy for positive series. If

∑∞
n=1 an diverges, then

its partial sums diverge to infinity (since the series is positive). So, the partial sums of bn
diverge to infinity. So, the

∑∞
n=1 bn diverges.

Example 7.42. We demonstrate that
∑∞

n=1
1

2n
√
n

converges. Note that 0 ≤ 1/(2n
√
n) ≤

1/2n for all positive integers n. And
∑∞

n=1 1/2n converges. So,
∑∞

n=1
1

2n
√
n

converges.

Example 7.43. We show that
∑∞

n=1
1

(n2+3)1/2
diverges. Note that 0 ≤ (n2 + 3)1/2 ≤

(2n2)1/2 ≤ 2n for every integer n ≥ 2. Therefore, (n2 + 3)−1/2 ≥ 1/(2n) > 0 for every
integer n ≥ 2. Since

∑∞
n=1 1/(2n) diverges, we conclude that

∑∞
n=1

1
(n2+3)1/2

diverges.

The following Convergence test follows readily from the Comparison Test.

Theorem 7.44 (Limit Comparison Test). Let {an}, {bn} be positive sequences. Assume
that the following limit exists:

L = lim
n→∞

an
bn
.

• If 0 < L <∞, then
∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges.
• If L =∞, and if

∑∞
n=1 an converges, then

∑∞
n=1 bn converges.

• If L = 0, and if
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

Proof. Assume first that L > 0. Then there exists M,R and ε such that 0 < ε ≤ an/bn < R
for all n > M . If

∑∞
n=1 an converges, then since 0 ≤ bn ≤ an/ε, the Comparison Test shows

that
∑∞

n=1 bn converges. If
∑∞

n=1 bn converges, then since 0 ≤ an ≤ bnR, the Comparison
Test shows that

∑∞
n=1 an converges.

Assume now that L = ∞. Then there exists M and ε such that 0 < ε ≤≤ an/bn for all
n > M . If

∑∞
n=1 an converges, then since 0 ≤ bn ≤ an/ε, the Comparison Test shows that∑∞

n=1 bn converges.
Assume now that L = 0. Then there exists M and R such that 0 ≤ an/bn < R for all

n > M . If
∑∞

n=1 bn converges, then since 0 ≤ an ≤ bnR, the Comparison Test shows that∑∞
n=1 an converges. �
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Example 7.45. The series
∑∞

n=1
n2

n4+3n+5
converges. To see this, let an = n2/(n4 + 3n+ 5),

and let bn = 1/n2. We know that
∑∞

n=1 bn converges to π2/6. Also, note that

lim
n→∞

an
bn

= lim
n→∞

n4

n4 + 3n+ 5
= 1.

Therefore,
∑∞

n=1 an converges, by the Limit Comparison Test.

7.4.2. Conditional Convergence.

Definition 7.46 (Absolute Convergence). We say that the series
∑∞

n=1 an converges
absolutely if and only if the series

∑∞
n=1 |an| converges.

Example 7.47. The series
∑∞

n=1(−1)n/n2 converges absolutely, since
∑∞

n=1 1/n2 converges.

Proposition 7.48. If a series converges absolutely, then it converges. That is: if
∑∞

n=1 |an|
converges, then

∑∞
n=1 an converges.

To prove this proposition, note that − |an| ≤ an ≤ |an|. So, adding |an| to both sides,

0 ≤ an + |an| ≤ 2 |an| .
We know that

∑
2 |an| converges, so by the Comparison Test,

∑
(an+ |an|) converges. Since∑

|an| converges, we can subtract these two convergent series to get another convergent
series. That is,

∑
[(an + |an|)− |an|] =

∑
an converges.

Example 7.49. The series
∑∞

n=1(−1)n/n2 converges absolutely, since
∑∞

n=1 1/n2 converges.
Therefore, we also know that the series

∑∞
n=1(−1)n/n2 converges.

Definition 7.50 (Conditional Convergence). We say that a series
∑
an converges

conditionally if and only if
∑
an converges, but

∑
|an| diverges.

Remark 7.51. If a series converges conditionally, then it does not converge absolutely.

Example 7.52. The series
∑∞

n=1(−1)n−1/n does not absolutely converge, since the harmonic
series

∑∞
n=1 1/n diverges. However,

∑∞
n=1(−1)n−1/n does converge. So,

∑∞
n=1(−1)n−1/n is

conditionally convergent. To see this, consider the Nth partial sum. When n is even,
(−1)n−1/n is negative, and when n is odd, (−1)n−1/n is positive. So,

S2N + 1/(2N + 1)− 1/(2N + 2) = S2N+2.

And since 1/(2N + 1)− 1/(2N + 2) > 0, we see that

S2N+2 > S2N .

Written another way,
S2 < S4 < S6 < · · · (∗)

Arguing similarly,
S2N+1 − 1/(2N + 2) + 1/(2N + 3) = S2N+3.

And since −1/(2N + 2) + 1/(2N + 3) < 0, we have

S2N+3 < S2N+1.

That is,
S1 > S3 > S5 > · · · (∗∗)
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Now, S2N + 1/(2N + 1) = S2N+1, so

S2N < S2N+1 (‡)
We claim that any even partial sum is bounded by every odd partial sum. To see this,

note that, for any positive integer K,

S2N

(∗)
< S2N+2 < · · · < S2(N+K)

(‡)
< S2(N+K)+1

(∗∗)
< S2(N+K)−1 < S2(N+K)−3 < · · · < S3 < S1.

Combining this observation with (∗) and (∗∗), we therefore have the following inequalities.

0 < S2 < S4 < S6 < · · · < S7 < S5 < S3 < S1.

So, the even partial sums are increasing and bounded from above, and the odd partial sums
are decreasing and bounded from below. Both of these partial sums therefore converge to
(possibly different) limits L and L′. However,

L− L′ = lim
N→∞

S2N − lim
N→∞

S2N+1 = lim
N→∞

(S2N − S2N+1) = lim
N→∞

(−1/(2N + 1)) = 0.

Therefore, L = L′. In conclusion, the series
∑∞

n=1(−1)n−1/n converges.

Actually, the argument we just provided generalizes to give the following.

Theorem 7.53 (Leibniz Test for Alternating Series). Suppose {an} is a positive de-
creasing sequence that converges to zero. That is,

a1 > a2 > a3 > · · · > 0, lim
n→∞

an = 0.

Then the following alternating series converges.

S =
∞∑
n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · ·

Moreover, for all integers N ≥ 1,

0 < S < a1, S2N < S < S2N+1, |S − SN | < aN+1.

Example 7.54. The series
∑∞

n=1(−1)n−1/
√
n converges to a number S with 0 ≤ S ≤

1. However, recall that
∑∞

n=1 1/
√
n diverges by the integral test. So,

∑∞
n=1(−1)n−1/

√
n

converges conditionally.

Remark 7.55. Conditionally convergent series are more subtle than absolutely convergent
series in the following way. If we rearrange the terms of an absolutely convergent series, then
the resulting series still converges and has the same sum. However, if we rearrange the terms
of a conditionally convergent series, then we can make the series converge to any number
or we can make the series diverge. To see this, consider the conditionally convergent series∑∞

n=1(−1)n−1/n. When n is odd, the terms are positive, and when n is even, the terms are
negative. Also, it follows from the integral test that summing only the odd terms will give
a divergent series. So, let’s first sum the odd terms until we get a sum larger than 100.

1/1 + 1/3 + 1/5 + 1/7 + · · ·+ 1/N > 100.

Now, let’s sum the first negative term. All terms are always less than 1 in absolute value, so

1/1 + 1/3 + 1/5 + · · ·+ 1/N − 1/2 > 99.
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Now, let’s sum positive terms again until we get larger than 200.

1/1 + 1/3 + 1/5 + · · ·+ 1/N − 1/2 + 1/(N + 2) + 1/(N + 4) + · · ·+ 1/(M) > 200.

Now, let’s sum the second negative term.

1/1 + 1/3 + 1/5 + · · ·+ 1/N − 1/2 + 1/(N + 2) + 1/(N + 4) + · · ·+ 1/(M)− 1/4 > 199.

And now, let’s sum positive terms again until we go larger than 300. And so on. Continuing
in this way, every term will appear, and the partial sums will grow arbitrarily large.

7.5. Root and Ratio Tests. We now investigate a few more tests that will be quite useful
in our further investigations below.

Theorem 7.56 (Ratio Test). Let {an} be a sequence. Assume that the following limit
exists:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
• If ρ < 1 then

∑∞
n=1 an converges absolutely.

• If ρ > 1, then
∑∞

n=1 an diverges.
• If ρ = 1, then the test is inconclusive. That is, the sum may converge or diverge.

Suppose ρ < 1. Then, there exists M and 0 < r < 1 such that, for all n ≥ M , |an+1| <
r |an|. So,

|aj+M | < r |aj−1+M | < r2 |aj−2+M | < · · · < rj |aM | .
Therefore, ∣∣∣∣∣

∞∑
n=M

an

∣∣∣∣∣ ≤
∞∑

n=M

|an| ≤
∞∑

n=M

rn−M |aM | = |aM |
1

1− r
<∞.

So, if ρ < 1,
∑
an converges.

Suppose ρ > 1. The argument is similar to before. There exists M and r > 1 such that,
for all n ≥M , |an+1| > r |an| > 0. So,

|aj+M | > r |aj−1+M | > r2 |aj−2+M | > · · · > rj |aM | > 0.

So, an does not converge to zero as n→∞. By the Divergence Test,
∑
an must diverge.

Finally, we present an example that shows the case ρ = 1 is inconclusive.

Example 7.57. The sum
∑∞

n=1 n diverges, but ρ = 1 in the Ratio Test, since limn→∞
∣∣n+1
n

∣∣ =
1.

The sum
∑∞

n=1 n
−2 converges, but ρ = 1 in the Ratio Test, since limn→∞

n2

(n+1)2
=

limn→∞
n2

n2+2n+1
= 1.

Example 7.58. Let x be any real number. We will show that
∑∞

n=0
xn

n!
converges. Therefore,

there is a sensible meaning to the expression

ex =
∞∑
n=0

xn

n!
.

Note that this series converges for x = 0, so let x 6= 0. Using the Ratio Test, we get

ρ = lim
n→∞

∣∣∣∣ xn+1n!

(n+ 1)!xn

∣∣∣∣ = lim
n→∞

|x|
n+ 1

= 0.
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The following test is closely related to the Ratio Test. (In fact, the proof of the Root Test
is similar to the proof of the Ratio Test.)

Theorem 7.59 (Root Test). Let {an} be a sequence. Assume that the following limit
exists:

L = lim
n→∞

|an|1/n

• If L < 1 then
∑
an converges absolutely.

• If L > 1, then
∑
an diverges.

• If L = 1, then the test is inconclusive. That is, the sum may converge or diverge.

Remark 7.60. The Ratio Test is often easier to use than the Root Test, though the Root
Test is technically the stronger statement.

Example 7.61. The sum
∑∞

n=1

(
n

2n+4

)n
converges, since L = limn→∞

|n|
|2n+4| = (1/2) < 1.

7.6. Power Series. We are finally ready to begin the discussion of infinite sums of functions,
which will be the culmination of the course. As we have discussed above, some of the
most useful functions have expression in terms of infinite sums of monomials. Also, some
presumably complicated functions can be better understood by their expression as an infinite
sum of monomials. For example, in the previous section we showed that the following power
series converges for all x.

∞∑
n=0

xn

n!
.

We will show in the next section that this power series is actually equal to ex. So, even
though near the beginning of the course, the definition of the exponential function may have
been a bit cumbersome, we now have an arguably simpler way of describing this function.
Using the Ratio Test, we can similarly conclude that, for all x the following series converges

∞∑
n=0

x2n+1(−1)n

(2n+ 1)!

This function of x turns out to be equal to sin(x). Using the Ratio Test, we can similarly
conclude that, for all x the following series converges

∞∑
n=0

x2n(−1)n

(2n)!

This function of x turns out to be equal to cos(x).
However, as we have seen from our convergence tests, not all infinite series converge. A

great example of this phenomenon is the infinite series for |x| < 1.

1

1− x
=
∞∑
n=0

xn.

• When |x| < 1, the series converges, and both sides are equal.
• When x = 1, the left side is undefined and the right side diverges.
• When x = −1, the left side is defined, but the right side still diverges.
• When |x| > 1, the left side is defined, but the right side diverges.
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So, even though we have a nice expression for the infinite series
∑∞

n=0 x
n when |x| < 1, there

may be no meaning to this infinite series when x is too large. In this case, we say that the
radius of convergence of the power series

∑∞
n=0 x

n is 1. We now make these statements more
precise.

Definition 7.62 (Power Series). Let x be a real variable, and let {an} be a sequence. A
power series with center c is an infinite series of the form

F (x) =
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · ·

Any power series behaves analogously to the power series for 1/(1− x) as follows.

Theorem 7.63 (Radius of Convergence). Suppose we have a power series with center c:

F (x) =
∞∑
n=0

an(x− c)n.

Then there is a number R such that 0 ≤ R ≤ ∞ which is a radius of convergence for F . That
is, if R is finite, then F (x) converges absolutely whenever |x− c| < R and F (x) diverges
whenever |x− c| > R. (When |x− c| = R, convergence or divergence can occur.) If R is
infinite, then the power series converges absolutely for all real x.

To see this result for c = 0, note that if F (y) converges, then F (x) converges absolutely
for all x with |x| < |y|. To see this, note that since

∑∞
n=0 any

n converges, the quantity any
n

converges to zero (by the Divergence Test). In particular, there exists an M > 0 such that
|anyn| < M for all n. Then

|F (x)| ≤
∞∑
n=0

|an| |x|n ≤
∞∑
n=0

|an| |y|n
|x|n

|y|n
≤

∞∑
n=0

M
|x|n

|y|n
.

Since |x| < |y|, we have |x| / |y| < 1, so the final series is convergent, being a geometric
series. In conclusion F (x) is absolutely convergent. So, if F converges for any y, then F
converges absolutely for all x with |x| < |y|. So, if we let R be the largest number such that
F converges on (−R,R), then the Theorem is proven.

Example 7.64. We saw above that the power series
∑∞

n=0 x
n (with c = 0) has radius of

convergence R = 1. In this case, the series diverges when |x| = 1, and the series diverges
when |x| > 1.

Example 7.65. Recall that 1/(1− x) =
∑∞

n=0 x
n for |x| < 1. We can find the power series

of other functions by substituting monomials into this function. For example,

1

1− 2x
=
∞∑
n=0

2nxn

This power series has radius of convergence R = 1/2.

We now describe another way to find power series. Given a power series with a positive
radius of convergence, it turns out that we can differentiate the series term by term, as
follows.
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Proposition 7.66 (Term-by-Term Differentiation and Integration). Suppose we have
a power series F with center c and with radius of convergence R > 0.

F (x) =
∞∑
n=0

an(x− c)n.

If R is finite, then F is differentiable on (c−R, c+R). If R is infinite, then F is differentiable
everywhere. Moreover, for any x ∈ (c−R, c+R), we can differentiate and integrate F term-
by-term to get new power series also with radius of convergence R:

F ′(x) =
∞∑
n=0

nan(x− c)n−1.

∫
F (x)dx = A+

∞∑
n=0

an
n+ 1

(x− c)n+1.

Example 7.67. The power series 1/(1 − x) =
∑∞

n=0 x
n has radius of convergence R = 1.

By differentiating both sides, we get a new power series with radius of convergence R = 1:

1

(1− x)2
=
∞∑
n=0

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · · .

Example 7.68. The inverse tangent function satisfies (tan−1(x))′ = 1/(1 + x2). Plugging
in −x2 into the series expansion of 1/(1− x), we have

1

1 + x2
=

1

1− (−x2)
=
∞∑
n=0

(−1)nx2n.

We can check that this series has radius of convergence R = 1. So, integrating this series
term-by-term gives a power series for inverse tangent with a radius of convergence R = 1.

tan−1(x) = A+

∫
1

1 + x2
dx = A+

∞∑
n=0

∫
(−1)nx2ndx = A+

∞∑
n=0

(−1)n

2n+ 1
x2n+1.

Since tan−1(0) = 0, we have A = 0. So, we have the following power series with radius of
convergence R = 1.

tan−1(x) =
∞∑
n=0

(−1)n

2n+ 1
x2n+1.

In this case, the power series converges at the point x = 1, by the alternating series test. We
therefore get an infinite sum formula for π:

π

4
= tan−1(1) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · · .

We will soon conclude the course by discussing a general method for finding power series
expansions of various functions. For now, let’s just see a special method that allows us
to find the infinite series expansion of the exponential function. Consider the power series
expansion

F (x) =
∞∑
n=0

xn

n!
.
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From the ratio test, we saw that this series converges for all x. That is, the radius of
convergence R satisfies R = ∞. So, we can differentiate this series term by term, to get
another power series whose radius of convergence is infinite.

F ′(x) =
∞∑
n=0

nxn−1

n!
=
∞∑
n=1

xn−1

(n− 1)!
=
∞∑
n=0

xn

n!
= F (x).

That is, F ′(x) = F (x). Note also that F (0) = 1. Recall that this differential equation is
only satisfied by ex, therefore F (x) = ex. The argument is the following:

d

dx
(e−xF (x)) = e−xF ′(x)− e−xF (x) = e−x(F ′(x)− F (x)) = 0.

Therefore, e−xF (x) = C for some constant C. Since F (0) = e0 = 1, we have C = 1, so that
F (x) = ex, as desired.

7.7. Taylor Series. Now, in the culmination of the course, we will identify the power series
expansions of various special functions. We have already shown, using a differentiation
argument, that

ex =
∞∑
n=0

xn

n!
, −∞ < x <∞.

We now present a more general method for finding power series expansions. This method is
closely related to our discussion of Taylor Series.

Theorem 7.69 (Uniqueness of Taylor Series). Suppose that for all x with |x− c| < R,
we can write a function f as a convergent power series

f(x) =
∞∑
n=0

an(x− c)n.

Then the coefficients an are given by

an =
f (n)(c)

n!
.

That is, f is equal to its Taylor series for |x− c| < R. In the case c = 0, we say that f
is equal to its Maclaurin series.

To prove this Theorem, first note that f(c) = a0. Then, from the term-by-term differen-
tiation theorem, we can always differentiate the power series f(x) =

∑∞
n=0 an(x− c)n when

|x− c| < R. In particular, taking one derivative, we have

f ′(c) =
∞∑
n=0

nan(c− c)n−1 = a1.

Taking more derivatives, we have

f ′′(c) =
∞∑
n=0

n(n− 1)an(c− c)n−2 = 2!a2.

f ′′′(c) =
∞∑
n=0

n(n− 1)(n− 2)an(c− c)n−3 = 3!a3.
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And so on.
Note that in the above Theorem, it is given that f is equal to some power series expansion.

However, we would really like to start with a function, and then determine that the function
is equal to its Taylor series. Therefore, we need to find some condition on a function that
guarantees that the function is equal to its Taylor series. Note that in general, even if a
function is infinitely differentiable, it may not be equal to its Taylor series. Here is an
example.

Example 7.70. Consider the function

f(x) =

{
e−1/x

2
, if x 6= 0

0 , if x = 0
.

This function can be shown to be infinite differentiable. However, it follows from L’Hôpital’s
rule that f (n)(0) = 0 for all positive integers n. Therefore, the Taylor expansion of f is just
the zero function. However, f is a nonzero function. In fact, f is only zero when x = 0. So,
f is not equal to its Taylor series, except at the point x = 0.

Theorem 7.71 (Main Theorem of the Course). Let R > 0. Let f be an infinitely
differentiable function. Let K > 0 so that

|fn(x)| ≤ K for all n ≥ 0 and for all c−R < x < c+R.

Then for all c−R < x < c+R, we know that f is equal to its Taylor series

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n for all c−R < x < c+R.

Let Tn be the nth degree Taylor polynomial of f at x = c. To prove this Theorem, recall
that the Error Bound for Taylor Polynomials says that

|f(x)− Tn(x)| ≤ K
|x− c|n+1

(n+ 1)!

So, if |x− c| < R, then

|f(x)− Tn(x)| ≤ K
Rn+1

(n+ 1)!
→ 0 as n→∞.

(Recall that the Ratio Test implies limn→∞R
n+1/(n + 1)! = 0.) In conclusion, f(x) =

limn→∞ Tn(x), as desired.

Example 7.72. The sine and cosine functions are both infinitely differentiable, with all
derivatives bounded in absolute value by 1 for all −∞ < x < ∞. So, the above Theorem
implies that they are equal to their Maclaurin series, for all real x.

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
.

Similarly, for any fixed radius R, the exponential function ex has all derivatives bounded by
eR for −R < x < R. So, the exponential function is equal to its Maclaurin series for any
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fixed R. So, the exponential function is equal to its Maclaurin series for all real x. (Though
we knew this already by a differentiation argument.)

ex =
∞∑
n=0

xn

n!
.

Here are some other ways to find Taylor series of various functions, using what we already
know.

Example 7.73.

x2ex = x2
∞∑
n=0

xn

n!
=
∞∑
n=0

xn+2

n!
.

Example 7.74 (Multiplication).

e2x =
∞∑
n=0

(2x)n

n!
= exex = (

∞∑
n=0

xn

n!
)(
∞∑
m=0

xm

m!
)

= (1 + x+ x2/2! + · · · )(1 + x+ x2/2! + · · · )
= 1 + x(1 + 1) + x2(1 + 2/2!) + x3(2/2! + 2/3!) + x4(2/4! + 2/3! + 1/(2!)2) + · · ·
= 1 + 2x+ 2x2 + (4/3)x3 + (2/3)x4 + · · ·

Note that we have rearranged an infinite sum. So, we are using the fact that these series
converge absolutely. Recall that if a series converges only conditionally, then we cannot
rearrange the series and still get the same sum.

In general, if f(x) =
∑∞

n=0 anx
n and g(x) =

∑∞
n=0 bnx

n, and both series converge for
|x| < R, then they both converge absolutely for |x| < R. And the following series converges
absolutely for |x| < R.

f(x)g(x) =
∞∑
n=0

cnx
n.

where

cn =
n∑
j=0

ajbn−j = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0.

Example 7.75 (Integration). We can use infinite series to get Taylor series expressions
for integrals that cannot be evaluated explicitly. For example,∫ 1

0

sin(x2)dx =

∫ 1

0

∞∑
n=0

(−1)n(x2)2n+1

(2n+ 1)!
dx =

∞∑
n=0

(−1)n

(2n+ 1)!

∫ 1

0

x4n+2dx

=
∞∑
n=0

(−1)n

(2n+ 1)!

1

4n+ 3
=

1

3
− 1

42
+

1

1320
− 1

75600
+ · · · .

Example 7.76. Let a be any real number (which is not necessarily an integer). We will
prove Newton’s generalization of the binomial series formula. Define(

a

n

)
=
a(a− 1)(a− 2) · · · (a− n+ 1)

n!
.

(
a

0

)
= 1.
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Then for any |x| < 1,

(1 + x)a =
∞∑
n=0

(
a

n

)
xn = F (x).

In the case that a is a positive integer, this sum is finite. However, in all other cases, this
sum is infinite. The Ratio Test shows that (if a is not a positive integer),(

a

n+ 1

)
/

(
a

n

)
=
a(a− 1) · · · (a− n)

(n+ 1)!

n!

a(a− 1) · · · (a− n+ 1)
=
a− n
n

.

So, the radius of convergence of the Taylor series is R = 1. To see that the function (1 + x)a

is equal to its Taylor series F (x) for |x| < 1, one can show that

d

dx

∑∞
n=0

(
a
n

)
xn

(1 + x)a
= 0.

Indeed,

F ′(x) =
∞∑
n=0

n

(
a

n

)
xn−1 =

∞∑
n=1

n

(
a

n

)
xn−1 =

∞∑
n=1

(a−n+ 1)

(
a

n− 1

)
xn−1 =

∞∑
n=0

(a−n)

(
a

n

)
xn

(1 + x)F ′(x) = F ′(x) + xF ′(x) =
∞∑
n=0

(a− n)

(
a

n

)
xn +

∞∑
n=0

n

(
a

n

)
xn

=
∞∑
n=0

((a− n) + n)

(
a

n

)
xn

=
∞∑
n=0

a

(
a

n

)
xn = a

(
∞∑
n=0

(
a

n

)
xn

)
= aF (x).

d

dx

∑∞
n=0

(
a
n

)
xn

(1 + x)a
=

d

dx

F (x)

(1 + x)a
=

(1 + x)aF ′(x)− aF (x)(1 + x)a−1

(1 + x)2a

=
(1 + x)a−1[(1 + x)F ′(x)− aF (x)]

(1 + x)2a
= 0.

Combining this fact with F (0) = 1 and (1 + 0)a = 1, we get the identity

(1 + x)a =
∞∑
n=0

(
a

n

)
xn, |x| < 1.

Exercise 7.77. The following integral often arises in probability theory, in relation to dif-
fusions, Brownian motion, and so on.

F (x) =
2√
π

∫ x

0

e−t
2

dt.

Using a Taylor series for e−t
2
, find a Taylor series for F . Then, find the radius of convergence

of this series. Finally, compute F (1/
√

2) to four decimal places of accuracy. (F is also known
as a bell curve, or the error function.)
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Exercise 7.78. Let i =
√
−1. Using the Maclaurin series for sin(x), cos(x) and ex, verify

Euler’s identity

eix = cos(x) + i sin(x).

In particular, using x = π, we have

eiπ + 1 = 0.

Also, use Euler’s identity to prove the following equalities

cos(x) =
eix + e−ix

2
.

sin(x) =
eix − e−ix

2i
.

In particular, we finally see that the hyperbolic sine and cosine functions are exactly the
usual sine and cosine functions, evaluated on imaginary numbers.

cos(x) = cosh(ix).

sin(x) = sinh(ix)/i.

Exercise 7.79. Euler’s identity can be used to remember all of the multiple angle formulas
that are easy to forget. For example, note that

cos(2x)+ i sin(2x) = e2ix = (eix)2 = (cos(x)+ i sin(x))2 = cos2(x)− sin2(x)+2i sin(x) cos(x).

By equating the real and imaginary parts of this identity, we therefore get

cos(2x) = cos2(x)− sin2(x)

sin(2x) = 2 sin(x) cos(x).

Derive the triple angle identities in this same way, using e3ix = (eix)3.

8. Parametric Equations and Polar Coordinates

8.1. Parametric Curves. Let t be a real parameter. We will consider curves defined by
functions of t. Consider the following function, whose input is a real parameter, and whose
output is a vector in the plane.

s(t) = (cos(t), sin t), 0 ≤ t ≤ 2π.

The function s(t) is called a parametrization. The function s(t) defines a curve as follows.
For each t with 0 ≤ t ≤ 2π, we plot the point s(t) = (cos(t), sin(t)) in the plane. The set
of all such points is then a curve in the plane. In fact, for this function s(t), the resulting
curve is the unit circle C, or the set of points (x, y) in the plane such that x2 + y2 = 1.

We write a general parametrization in the plane in the form

s(t) = (x(t), y(t)),

where x(t) is a real-valued function of t, and y(t) is a real-valued function of t.

Remark 8.1. We make a distinction between the parametrization s and the curve C itself.
In particular, the parametrization is a function, but the curve C is a set of points. To see
the difference, note that s(t) = (cos(t), sin(t)) with 0 ≤ t ≤ 4π is a parametrization that
always lies in the unit circle C. However, s goes around the circle twice.
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Example 8.2 (Parametrizing Lines). Any line in the plane can be parametrized in the
following way

s(t) = (a+ bt, c+ dt), a, b, c, d ∈ R, −∞ < t <∞.
For example, let’s describe the line that passes through the points (0, 1) and (2, 3). We know
from single-variable calculus that this line has the equation y = x + 1. So, re-naming the
parameter x as t, we see that s(t) = (t, t + 1) gives the correct parametrization of this line,
where −∞ < t <∞

It is possible to find different parametrizations for the same line. For example, the
parametrization s1(t) = (t3, t3 + 1) also parametrizes this line, where −∞ < t < ∞. Also,
s2(t) = (t+ 1, (t+ 1) + 1) parametrizes this line.

We can also consider parametrized curves in three-dimensions. A general parametrization
in R3 in the form

s(t) = (x(t), y(t), z(t)),

where x(t) is a real-valued function of t, y(t) is a real-valued function of t, and z(t) is a
real-valued function of t.

Example 8.3. Let (x0, y0, z0) ∈ R3 and let v = (a, b, c) ∈ R3 be a vector. The line passing
through (x0, y0, z0) in the direction v can be parametrized as

s(t) = (x0, y0, z0) + tv = (x0 + ta, y0 + tb, z0 + tb), −∞ < t <∞.

Example 8.4 (Intersection of Lines). Suppose we parametrize two lines s(t) = (t, 4t, 3+t)
and r(t) = (2 + t, t, 3− t). Do these lines intersect?

If so, then we would have t1, t2 such that s(t1) = r(t2). That is, we would have

t1 = 2 + t2, 4t1 = t2, 3 + t1 = 3− t2.
The third equation says that t1 = −t2 and the second equation says t2 = 4t1. Together, they
say that t1 = −4t1, so that t1 = 0. Then t2 = −t1 = 0 as well. But then 0 = t1 6= 2 = 2 + t2,
so it cannot occur that s(t1) = r(t2). So, these lines do not intersect.

Note that two lines can either: coincide, intersect at a single point, or not intersect at all.

Example 8.5. Let (x0, y0, z0) ∈ R3 and let (x1, y1, z1) ∈ R3. The line passing through both
of these points can be parametrized by

s(t) = t(x1, y1, z1) + (1− t)(x0, y0, z0), −∞ < t <∞.
Note that s(0) = (x0, y0, z0), s(1) = (x1, y1, z1), and s(1/2) is the midpoint between (x0, y0, z0)
and (x1, y1, z1).

Example 8.6. An infinite helix can be parametrized by

s(t) = (cos(t), sin(t), t), −∞ < t <∞.

Example 8.7 (Distance from a Point to a Line). Let u, v, w be fixed vectors. Let
s(t) = u+ tv be a parametrization of a line through the origin. We define the distance of w
from the line to be the minimum value of ‖w − s(t)‖ over all t. Equivalently, the distance
of w from the line is the minimum value of ‖w − s(t)‖2 over all t. Observe

‖w − s(t)‖2 = (w − s(t)) · (w − s(t)) = (w · w)− 2(w · s(t)) + (s(t) · s(t))).

52



Taking the derivative in t, using the product rule, and setting this derivative equal to zero,

0 =
d

dt
‖w − s(t)‖2 = −2(w · s′(t)) + 2(s(t) · s′(t)) = 2(s(t)− w) · (s′(t)) = 2(s(t)− w) · v.

That is, when s(t) has minimal distance from w, we know that s(t)− w is orthogonal to v.
This fact allows us to find the minimum value of ‖s(t)− w‖

Example 8.8. Find the distance of w = (1, 0, 1) from the line s(t) = (0, 1, 1) + t(1, 0, 0).
We need to find t such that s(t)− (1, 0, 1) = (−1, 1, 0) + t(1, 0, 0) is orthogonal to (2, 1, 0).

That is, we need to solve for t when (t − 1, 1, 0) · (1, 0, 0) = 0. That is, we need to find t
such that t − 1 = 0. We therefore find that t = 1. So, when s(t) = s(1) = (1, 1, 1), the
distance ‖s(t)− w‖ is minimized. For this t, we have ‖s(t)− w‖ = ‖(0, 1, 0)‖ = 1. So, the
point w = (1, 0, 1) has distance 1 from the line.

θ

y

x

r =

√ x
2 +

y
2

8.2. Polar Coordinates. We now introduce polar
coordinates.

Definition 8.9. Let (x, y) be a point in the plane.
That is, x and y are real numbers with −∞ <
x, y < ∞. We define the polar coordinates (r, θ)
of (x, y) with 0 ≤ r < ∞, 0 ≤ θ < 2π, such that

r =
√
x2 + y2, and such that θ satisfies θ ∈ [0, 2π)

with
x = r cos θ, y = r sin θ.

(1, π/2)

(2, π)

(1, 3π/2)

(r, θ) = (0, 0)

(0, 2π)

Polar coordinates in the plane make certain expres-
sions easier to understand. For example, the circle
given by x2 + y2 = 1 can be equivalently written in
polar coordinates as r2 = 1, or just r = 1 since r ≥ 0.
Polar coordinates sometimes make integrals easier to
compute as well, as we will see below. For now, let’s
get accustomed to polar coordinates.

Example 8.10. Plot the curve where r = 1− cos θ.
We see that the following points (r, θ) are in the curve: (0, 0), (1, π/2), (2, π), (1, 3π/2).

Also, from the increasing/decreasing and symmetry properties of 1− cos θ, we see that the
curve should look like an apple, or cardioid. In this case, the Cartesian expression for the
curve is the rather complicated: x4 + y4 + 2x2y2 + 2x3 + 2xy2 − y2 = 0. To see this, note
that r2 = r − r cos θ, so (r2 + r cos θ)2 = r2, so (x2 + y2 + x)2 = x2 + y2, and so on.

Example 8.11. Plot the curve where r = 4/(2 cos θ − sin θ).
Plotting this curve is a bit tricky to do directly, but it actually becomes simpler if we

switch to Cartesian coordinates. We have 2r cos θ − r sin θ = 4, so 2x − y = 4, so we have
the equation for a straight line, y = 2x− 4.

Exercise 8.12. Plot the function r =
√

sin θ for θ ∈ (0, π). The end result should resemble
a circle.

Exercise 8.13. Plot the function r = 1 + cos θ. The end result should resemble an apple,
or a heart.
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8.3. Vectors in the Plane. We denote the plane as the set of all ordered pairs (x, y) where
x and y are both real numbers. We use the notation R2 to denote the plane.

Definition 8.14. A two-dimensional vector v is a directed line segment. This line seg-
ment has a beginning point P and a terminal point Q, where P,Q ∈ R2. Suppose P = (x1, y1)
and if Q = (x2, y2), where x1, x2, y1, y2 are real numbers. We define the length or magni-
tude of the vector v by

‖v‖ =
√

(x1 − x2)2 + (y1 − y2)2.
That is, by the Pythagorean Theorem, ‖v‖ is the length of the hypotenuse of the right
triangle, whose side lengths are |x1 − x2| and |y1 − y2|.

Remark 8.15. Unless otherwise stated, all vectors from now on will have their beginning
point P at the origin, so that P = (0, 0). We then will write any two-dimensional vector v
in the form v = (x, y). Then

‖v‖ =
√
x2 + y2.

Let λ be a real number. (We often refer to real numbers as scalars.) Define λv = (λx, λy).
Note that

‖λv‖ =
√
λ2x2 + λ2y2 =

√
λ2(x2 + y2) = |λ| ‖v‖ .

Definition 8.16. Two vectors v, w ∈ R2 are said to be parallel if there is some scalar λ ∈ R
such that v = λw.

x

y

1 2 3

1

2

3

v

w

v + w

We can add vectors together as follows.

Definition 8.17. Suppose v = (x1, y1) and
w = (x2, y2). Define

v + w = (x1 + x2, y1 + y2).

Visually, the vector v+w is obtained by tak-
ing the vector v, placing the beginning point
of w at the endpoint of v, so that the result-
ing endpoint is that of v+w. We also define

v − w = (x1 − x2, y1 − y2).

Note that

v + (0, 0) = (0, 0) + v = v, v − v = (0, 0).

Example 8.18.

(1, 2) + 2(3, 0) = (1, 2) + (6, 0) = (7, 2).

Proposition 8.19. For any vectors u, v, w ∈ R2 and for any scalar λ ∈ R,

v + w = w + v.

u+ (v + w) = (u+ v) + w.

λ(u+ v) = (λu) + (λv).
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Definition 8.20. A vector v ∈ R2 such that ‖v‖ = 1 is called a unit vector. If v is any
nonzero vector, then the vector

v

‖v‖
is a unit vector which is parallel to v. To see that v

‖v‖ is a unit vector, we use Remark 8.15

to get
∥∥∥ v
‖v‖

∥∥∥ = ‖v‖
‖v‖ = 1.

Example 8.21. Consider the vector v = (1, 2). Then v
‖v‖ = (1,2)√

5
= (1/

√
5, 2/
√

5) is a unit

vector, which is parallel to v.

Remark 8.22. Some textbooks use the notation ~i = (1, 0) and ~j = (0, 1), so that a vector

v = (x, y) ∈ R2 can be written as v = x~i+ y~j. However, we will not use this notation.

Theorem 8.23 (Triangle Inequality). For any vectors v, w ∈ R2, we have

‖v + w‖ ≤ ‖v‖+ ‖w‖ .
8.4. Calculus on Parametric Curves. We now begin to extend the notions of calculus to
the setting of vector-valued functions. As in single-variable calculus, we first discuss limits
and continuity, and we then define derivatives. So, let us begin with limits.

Definition 8.24 (Limit). Suppose s : R → R2 is a parametric curve. Let v ∈ R2, and let
t0 ∈ R. We say that s(t) approaches v as t → t0 if limt→t0 ‖s(t)− v‖ = 0. In this case, we
write

lim
t→t0

s(t) = v.

Remark 8.25. Suppose s : R → R2 is a parametric curve. Write s(t) = (x(t), y(t)). Let
v = (x, y) ∈ R2, and let t0 ∈ R. Then limt→t0 ‖r(t)− v‖ = 0 if and only if the following two
limits exist: limt→t0 x(t), limt→t0 y(t). In this case, we have

lim
t→t0

s(t) =

(
lim
t→t0

x(t), lim
t→t0

y(t)

)
.

Example 8.26. Let s(t) = (t− 1, t2). Then to compute limt→0 s(t), we use

lim
t→0

s(t) = (lim
t→0

(t− 1), lim
t→0

t2) = (−1, 0).

Definition 8.27 (Continuity). Suppose s : R → R2 is a parametric curve. We say that s
is continuous at t0 ∈ R if

s(t0) = lim
t→t0

s(t).

From Remark 8.25, if s(t) = (x(t), y(t)), then r is continuous at t0 if and only if: x(t) and
y(t) are each continuous at t0.

Definition 8.28 (Derivative). Suppose s : R → R2 is a vector-valued function. We say
that s is differentiable at t ∈ R if the following limit exists

s′(t) =
d

dt
s(t) = lim

h→0

s(t+ h)− s(t)
h

.

We refer to s′(t) as the derivative of s at t. If s is differentiable on its domain, we say that
s is differentiable. Note that since s is a parametric curve, the difference quotient is a limit
of vectors, rather than a limit of numbers. Consequently, s′ : R→ R2.
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Remark 8.29. We can then define higher order derivatives by iterating the first derivative.
For example, if s′ is differentiable, we define s′′(t) = (d/dt)s′(t). And if s′′ is differentiable,
we define s′′′(t) = (d/dt)s′′(t), and so on.

Remark 8.30. Suppose s : R → R2 is a vector-valued function, where s(t) = (x(t), y(t)).
Then s(t) is differentiable if and only if: x(t) and y(t) are differentiable. In this case, we
have

s′(t) = (x′(t), y′(t)).

Example 8.31. Let s(t) = (t, t2 − 1). Then s′(t) = (1, 2t), and s′′(t) = (0, 2).

Most of the usual rules of differentiation apply to vector-valued functions.

Proposition 8.32. Let s, r, : R→ R2, and let f : R→ R all be differentiable functions. Let
c be a constant.

• d
dt

(s(t) + r(t)) = s′(t) + r′(t). (Sum Rule)

• d
dt

(cs(t)) = cs′(t).

• d
dt

(f(t)s(t)) = f ′(t)s(t) + f(t)s′(t). (Product Rule)

• d
dt
s(f(t)) = s′(f(t))f ′(t). (Chain Rule)

Remark 8.33 (Geometric Interpretation of Derivative). When we have a real-valued
function f : R → R, we recall that f ′(t) is the slope of the tangent line to f at the point t.
This fact can be understood from the definition of the derivative itself

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
.

The difference quotient [f(t+ h)− f(t)]/h is the slope of the line which passes between the
points (t, f(t)) and (t+ h, f(t+ h)) in the plane.

There is a similar interpretation for vector-valued functions s : R→ R2. We have

s′(t) = lim
h→0

s(t+ h)− s(t)
h

.

The difference quotient is itself a line segment passing through the points (t, s(t)) and (t +
h, s(t+h)). And as h→ 0, this line segment becomes a tangent vector to the parametrized
curve r(t).

Example 8.34. Let s(t) = (t, t2). The tangent line to the parametrized curve s(t) at t = 2
is given by the following parametrized line

h(t) = s(2) + t · s′(2) = (2, 4) + t(1, 4), −∞ < t <∞.

Example 8.35. Consider the polar curve r(θ) := 1− cos θ, for all 0 ≤ θ < 2π. We can turn
this into a Cartesian parametrization by defining

s(θ) := (r(θ) cos θ, r(θ) sin θ), 0 ≤ θ < 2π.

The tangent vector at angle θ is then given by

s′(θ) =
(

(1− cos θ)(− sin θ) + cos θ sin θ, (1− cos θ) cos θ + sin2 θ
)
.

The tangent line to the parametrized curve s(θ) at θ = π/2 is then given by

h(t) = s(π/2) + t · s′(π/2) = (0, 1) + t(−1, 1), −∞ < t <∞.
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In particular, the slope of this tangent line is 1/(−1) = −1.
The tangent line to the parametrized curve s(θ) at θ = 2π/3 is given by

h(t) = s(2π/3) + t · s′(2π/3) = (−3/4, 3
√

3/4) + t(−
√

3/2, 0), −∞ < t <∞.
In particular, the slope of this tangent line is 0/(−

√
3/2) = 0.

8.5. Arc Length.

Definition 8.36 (Arc Length). Let s : R → R2. Write s(t) = (x(t), y(t)). Let a < b. We
define the arc length of s from t = a to t = b by∫ b

a

‖s′(t)‖ dt =

∫ b

a

√
(x′(t))2 + (y′(t))2 dt.

Example 8.37. Let’s compute the arc length of the parametrization s(t) = (cos(t), sin t),
0 ≤ t < 2π, which parametrizes the unit circle. The length is∫ 2π

0

‖s′(t)‖ dt =

∫ 2π

0

√
cos2 t+ sin2 t dt =

∫ 2π

0

dt = 2π.

However, note that if we use a different domain, then we could “double-count” the unit
circle’s length. For example, if we use the same parametrization with 0 ≤ t < 4π, then we
would compute a length of 4π. In this case, s(t) would traverse the circle twice, resulting in
a length of 2(2π) = 4π. So, given a parametric curve, we can not necessarily associate its
arc length with the length of the curve itself (unless s(t1) 6= s(t2) whenever t1 6= t2).

8.6. Areas and Lengths in Polar Coordinates. The arc length formula∫ b

a

‖s′(t)‖ dt =

∫ b

a

√
(x′(t))2 + (y′(t))2 dt.

easily specializes to polar coordinates. In polar coordinates, we have x(θ) = r(θ) cos θ and
y(θ) = r(θ) sin(θ), so that

x′(θ) = r(θ)(− sin θ) + r′(θ) cos θ, y′(θ) = r(θ)(cos θ) + r′(θ) sin θ.

So

(x′(θ))2 + (y′(θ))2 = (r(θ))2
(

sin2 θ + cos2 θ
)

+ (r′(θ))2
(

cos2 θ + sin2 θ
)

= (r(θ))2 + (r′(θ))2.

We therefore define the arc length of a curve s(θ) in polar coordinates to be∫ b

a

‖s′(θ)‖ dθ =

∫ b

a

√
(r(θ))2 + (r′(θ))2 dθ.

To find the area enclosed by a curve in polar coordinates we use the formula∫ b

a

1

2
(r(θ))2dθ.

To see that this formula is correct, note that if r is constant, this becomes

(1/2)(b− a)r2.

This is the area of a circular sector with angle b − a and radius r. For a general r, we
approximate it by a sequence of thin circular sectors, arriving at the integral formula, by
letting the angle of each sector go to zero.
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Example 8.38. When r > 0 is constant and 0 ≤ θ ≤ 2π, we get arc length∫ 2π

0

√
r2 + 0 dθ = 2πr

and area ∫ 2π

0

1

2
(r(θ))2dθ = πr2.

(1, π/2)

(2, π)

(1, 3π/2)

(r, θ) = (0, 0)

(0, 2π)

We return to a previous example

Example 8.39. Find the area and arc length of the
cardioid r = 1− cos θ, 0 ≤ θ ≤ 2π

The arc length is∫ b

a

√
(r(θ))2 + (r′(θ))2 dθ =

∫ 2π

0

√
(1− cos θ)2 + (sin θ)2 dθ

=

∫ 2π

0

√
2− 2 cos θ dθ

=

∫ 2π

0

2 |sin(θ/2)| dθ =

∫ π

0

4 sin(θ/2)dθ = [−8 cos(θ/2)]θ=πθ=0 = 8.

The area is∫ b

a

1

2
(r(θ))2dθ =

∫ 2π

0

1

2
(1− cos θ)2dθ =

∫ 2π

0

1

2
(1− 2 cos θ + cos2 θ)dθ

=

∫ 2π

0

1

2
(1− 2 cos θ + (1/2)(1 + cos(2θ)))dθ

=
1

2
[θ − 2 sin θ + (1/2)(θ + (1/2) sin(2θ))]θ=2π

θ=0

= (1/2)[2π + π] = 3π/2.

Example 8.40. Find the area and arc length of the polar curve r = sin(θ), 0 ≤ θ ≤ π.
The arc length is∫ b

a

√
(r(θ))2 + (r′(θ))2 dθ =

∫ π

0

√
(sin θ)2 + (cos θ)2 dθ =

∫ π

0

1 dθ = π.

The area is ∫ b

a

1

2
(r(θ))2dθ =

1

2

∫ π

0

sin2 θ dθ =
1

4

∫ π

0

(1− cos 2θ)dθ = π/4.

In fact, the curve is a circle with radius 1/2 and center (x, y) = (0, 1/2). To see this, note
that the curve x2 + (y − 1/2)2 = 1/4 is described in polar coordinates as

r2 cos2 θ + (r sin θ − 1/2)2 = 1/4.

That is,

r2 − r sin θ + 1/4 = 1/4.

That is, r2 = r sin θ, so r = sin θ (if r > 0).
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Example 8.41. Find the area enclosed by the polar curve r = sin(2θ), 0 ≤ θ ≤ 2π.
In this case, the figure consists of a flower with four “leaves,” so the total area is four

times the area of one of the leaves. That is, the area is

4

∫ π/2

0

1

2
(r(θ))2dθ = 2

∫ π/2

0

sin2(2θ)dθ =

∫ π/2

0

(1− cos(4θ))dθ = π/2.

9. Appendix: Notation

Let x be a real number. Let a > 0

R denotes the set of real numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

f : A→ B means f is a function with domain A and range B. For example,

f : [0, 1]→ R means that f is a function with domain [0, 1] and range R
ex denotes the exponential function

ln(x) denotes the natural logarithm of x > 0, i.e. the inverse of the exponenial function

loga(x) = ln(x)/ ln(a)

sin−1(x) denotes the inverse of sin : [−π/2, π/2]→ [−1, 1]

cos−1(x) denotes the inverse of cos : [0, π]→ [−1, 1]

tan−1(x) denotes the inverse of tan: [−π/2, π/2]→ (−∞,∞)

cosh(x) = (ex + e−x)/2

sinh(x) = (ex − e−x)/2

USC Mathematics, Los Angeles, CA
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