126 Midterm 1 Solutions¹

1. Question 1

True/False

(a) Let x be a real number. Then $\cos^{-1}(\cos(x)) = x$.

FALSE. Let $x = 3\pi/2$. Then $\cos(3\pi/2) = 0$, but $\cos^{-1}(0) = \pi/2$, so $\cos^{-1}(\cos(3\pi/2)) = \pi/2 \neq 3\pi/2$.

(b) The function $f(x) = x^2$ with domain [-1, 1] is invertible.

FALSE. f fails the horizontal line test. That is, f(1) = f(-1) = 1, so f is not invertible with domain [-1, 1].

(c) Let f be a function of a real variable with inverse g. If x is in the domain of g and if $f'(g(x)) \neq 0$, then $g'(x) = \frac{1}{f'(g(x))}$.

TRUE. Recall that f(g(x)) = x, so by the chain rule, 1 = f'(g(x))g'(x), so g'(x) = 1/f'(g(x)).

(d) Let $f(x) = e^x$ with domain $(-\infty, \infty)$. Then the inverse of f is the function $\ln(x)$ with domain $(0, \infty)$.

TRUE.

(e) Let $\sin^{-1}(x)$ denote the inverse sine of x. Let -1 < x < 1. Then $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$.

TRUE. If $\theta = \sin^{-1}(x)$, then $\sin \theta = x$, i.e. θ is the angle of a right triangle with hypotenuse 1 and side lengths x and $\sqrt{1-x^2}$. So, $\cos \sin^{-1} x = \cos \theta = \sqrt{1-x^2}/1$.

2. Question 2

Compute the following limits.

(a) $\lim_{x \to 0^+} \frac{\cos(x) - 1}{x^2}$.

Solution. Using L'Hopital's Rule twice, we have

$$\lim_{x \to 0^+} (\cos(x) - 1)/x^2 \stackrel{L'H}{=} \lim_{x \to 0^+} -\sin(x)/2x \stackrel{L'H}{=} \lim_{x \to 0^+} (-\cos x)/2 = -1/2.$$

(b) $\lim_{x\to 0} \frac{x+2}{x+1}$.

Solution. Since the function f(x) = (x+2)/(x+1) is continuous at x=0, we can simply substitute x=0 to get $\lim_{x\to 0} (x+2)/(x+1) = 2/1 = 2$.

(c) $\lim_{x \to \infty} \tan^{-1}(x)$.

Solution. Since $\lim_{x\to\pi/2^-} \tan(x) = +\infty$, we have $\lim_{x\to\infty} \tan^{-1}(x) = \pi/2$.

3. Question 3

Evaluate the following integrals.

(a) $\int x \ln x dx$.

Solution. Integrating by parts, we have $\int x \ln x = \int (\ln x) (d/dx) (x^2/2) = (x^2/2) \ln x - \int (x^2/2) (1/x) = (x^2/2) \ln x - (1/2) \int x = (x^2/2) \ln x - (x^2/4) + C$.

1

(b) $\int_{4}^{5} t^{-1} (\ln t)^{-1} dt$.

 $^{^1{\}rm September}$ 28, 2019, © 2019 Steven Heilman, All Rights Reserved.

Solution. Substituting $u = \ln t$, so that du = (1/t)dt, we have $\int_4^5 t^{-1} (\ln t)^{-1} dt = \int_{\ln 4}^{\ln 5} u^{-1} du = \int_{\ln 4}^{\ln 5} u^{-1} du$ $\ln \ln 5 - \ln \ln 4.$

4. Question 4

(a) $\int_0^{\pi/2} \cos^5(x) dx$.

Solution. $\int_0^{\pi/2} \cos^5(x) dx = \int_0^{\pi/2} (1 - \sin^2(x))^2 \cos(x) dx = \int_0^1 (1 - u^2)^2 du = \int_0^1 (1 - 2u^2 + u^4) du = 1 - (2/3) + (1/5) = 8/15.$ (b) $\int_0^{\pi/2} \frac{t}{t^2 - 3t + 2} dt$ Solution. We solve for A, B in

$$\frac{t}{t^2 - 3t + 2} = \frac{t}{(t - 2)(t - 1)} = \frac{A}{t - 2} + \frac{B}{t - 1}.$$

That is, we solve t = A(t-1) + B(t-2). When t = 1, we have B = 1/(-1) = -1. Then t = 2, we have A(1) = 2. So,

$$\frac{t}{t^2 - 3t + 2} = \frac{2}{t - 2} + \frac{-1}{t - 1}.$$

Therefore, $\int \frac{t}{t^2 - 3t + 2} dt = 2 \ln|t - 2| - \ln|t - 1| = \ln\left(\frac{(t - 2)^2}{|t - 1|}\right) + C$.

5. Question 5

$$\int_{\sqrt{2/3}}^{\sqrt{2}} x^{-4} \sqrt{2 + x^2} \, dx.$$

Solution. Let $x = \sqrt{2} \tan \theta$, so $dx = \sqrt{2}(\cos \theta)^{-2} d\theta$, and $\sqrt{2 + x^2} = \sqrt{2} \sqrt{1 + \tan^2 \theta} = \sqrt{2} \sqrt{1 + \tan^2 \theta}$ $\sqrt{2} |\cos \theta|^{-1} = \sqrt{2} (\cos \theta)^{-1}$ (we can get rid of the absolute values since $\sqrt{2/3} \le x \le \sqrt{2}$ implies that $\pi/6 \le \theta \le \pi/4$, and $\cos \theta$ is positive in this region). So, $\int_{\sqrt{2/3}}^{\sqrt{2}} x^{-4} \sqrt{2 + x^2} dx =$ $\int_{\pi/6}^{\pi/4} (1/2)(\tan \theta)^{-4}(\cos \theta)^{-3} d\theta = (1/2) \int_{\pi/6}^{\pi/4} \cos \theta (\sin \theta)^{-4} d\theta = (1/2) \int_{1/2}^{\sqrt{2}/2} u^{-4} du = (1/2) [-(1/3)u^{-3}]_{u=1/2}^{u=1/\sqrt{2}}$ $(1/6)(8-2^{3/2})=(4-\sqrt{2})/3$. Here we used the substitution $u=\sin\theta$ so that $du=\cos\theta$ and $1/2 \le u \le \sqrt{2}/2$.