Math 126G Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due October 3, at the beginning of class.

Assignment 5

Exercise 1. Evaluate

$$\int_0^\infty x e^{-x} dx.$$

Exercise 2. Compute

$$\int_{-1}^{1} \sqrt{|x|} \, dx.$$

Exercise 3. Compute

$$\int_{-1}^{2} \frac{1}{x^2} dx$$
.

Exercise 4. Compute the following integral, or show that the integral diverges.

$$\int_0^3 \frac{dx}{(3-x)^{3/2}}.$$

Exercise 5. Compute the following integral

$$\int_{3}^{5} (9-x^2)dx.$$

Then, approximate this integral by computing the Trapezoid rule T_N , the Midpoint rule M_N , and Simpson's rule S_N for N=4. Compute also the error bounds for these three integral approximations (e.g. compute $|\int_3^5 (9-x^2)dx - T_N|$ when N=4). Which approximation is the best?

Exercise 6. Compute the following integral

$$\int_0^4 x^3 dx.$$

Then, approximate this integral by computing the Trapezoid rule T_N , the Midpoint rule M_N , and Simpson's rule S_N for N=4. Compute also the error bounds for these three integral approximations. Which approximation is the best?

Exercise 7. Compute the surface area of revolution about the x-axis over the interval [0,1] of the function

$$y = 2x + 1.$$

Exercise 8. Compute the surface area of revolution about the x-axis over the interval [1, 2] of the function

$$y = \sqrt{9 - x^2}$$