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1. Homework 1

Exercise 1.1. Let f(x) = ex
2
. Find the equation of the tangent line to f at x0 = 1.

Solution. We have f ′(x) = 2xex
2
, so the tangent line is y = f(1)+(x−1)f ′(1) = e+(x−1)2e.

�

Exercise 1.2. Differentiate f(x) = e(x
2+3x+2)2 .

Solution. From the chain rule, f ′(x) = 2(x2 + 3x+ 2)(2x+ 3)e(x
2+3x+2)2 . �
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Exercise 1.3. Let f(x) = x2ex. Find the critical points of f . Classify these critical points
as local maxima, local minima, or neither.

Solution. We have f ′(x) = x2ex+2xex = x(x+2)ex. Since ex > 0 for all x, we have f ′(x) = 0
if and only if x = 0 or x = −2. Since f ′(x) > 0 for x < −2 and f ′(x) < 0 for −2 < x < 0,
we know that x = −2 is a local maximum. Since f ′(x) < 0 for −2 < x < 0 and f ′(x) > 0
for x > 0, we know that x = 0 is a local minimum. �

Exercise 1.4. Let j be a positive integer. Let f(x) = xjex. Find the critical points of f .
Classify these critical points as local maxima, local minima, or neither.

Solution. We have f ′(x) = xjex + jxj−1ex = xj−1(x + j)ex. Since ex > 0 for all x, we have
f ′(x) = 0 if and only if x = 0 or x = −j. We first consider the case that j is even. Since
f ′(x) > 0 for x < −j and f ′(x) < 0 for −j < x < 0, we know that x = −j is a local
maximum. Since f ′(x) < 0 for −j < x < 0 and f ′(x) > 0 for x > 0, we know that x = 0 is
a local minimum. We now consider the case that j is odd. Since f ′(x) < 0 for x < −j and
f ′(x) > 0 for −j < x < 0, we know that x = −j is a local minimum. Since f ′(x) > 0 for
−j < x < 0 and f ′(x) > 0 for x > 0, we know that x = 0 is neither a local minimum nor a
local maximum. �

Exercise 1.5. Evaluate the integral ∫ 5

0

e−10ydy.

Solution.
∫ 5

0
e−10ydy = (−1/10)e−10y|y=5

y=0 = (−1/10)(e−50 − 1) = (1/10)(1− e−50). �

Exercise 1.6. Evaluate the integral ∫ 3

1

ye3y
2

dy.

Solution. Substituting u = 3y2 so that du = 6ydy, we have
∫ 3

1
ye3y

2
dy =

∫ u=27

u=3
(1/6)eudu =

(1/6)(e27 − e3). �

Exercise 1.7. Let f(x) = x2 − 2x, where f has the domain x ≥ 1. Find a formula for f−1,
and then plot both f and f−1.

Solution. Note that f ′(x) = 2x− 2 and f ′(x) ≥ 0 when x ≥ 1. So, f has range [f(1),∞) =
[−1,∞). So, we need a function g with domain [−1,∞) such that f(g(x)) = x. That is, g
must satisfy (g(x))2 − 2g(x) = x. That is, (g(x) − 1)2 − 1 = x, so (g(x) − 1)2 = x + 1, for
all x ≥ −1. If x ≥ −1, then x + 1 ≥ 0. So, we must have g(x) − 1 =

√
x+ 1. That is,

g(x) = 1 +
√
x+ 1, where x ≥ −1. �

Exercise 1.8. Let f(x) = 5 − 4x. Graph f and f−1 together. Evaluate f ′(x) at x = 1/2,
evaluate (f−1)′(x) at x = f(1/2), and verify that 1/f ′(1/2) = (f−1)′(f(1/2)).
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Solution. To find the inverse, we need g(x) such that f(g(x)) = x. That is, g must satisfy
5 − 4g(x) = x. That is, g(x) = (1/4)(5 − x). Note that f ′(1/2) = −4, f(1/2) = 3, and
g′(f(1/2)) = g′(3) = −1/4. So, 1/f ′(1/2) = 1/(−4) = −1/4 = g′(f(1/2)).

�
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Exercise 1.9. Show that the function f(x) = (1−x)3 has an inverse on the domain (−∞,∞).
Find a formula for the derivative of this inverse.

Solution. Note that f has range (−∞,∞). So, we try to find a function g with domain
(−∞,∞) and range (−∞,∞) such that f(g(x)) = x, that is so that (1− g(x))3 = x. That
is, g should satisfy g(x) = 1−x1/3. Indeed, we have f(g(x)) = (1−(1−x1/3))3 = (x1/3)3 = x,
and g(f(x)) = 1− ((1− x)3)1/3 = 1− (1− x) = x, so g is the inverse of g. �

Exercise 1.10. Let f(x) =
√
x2 + 6x, where f has the domain x ≤ −6. Let g be the inverse

of f . Compute g′(4).

Solution. We first solve for
√
x2 + 6x = 4. We get x2 + 6x = 16, so that (x+ 8)(x− 2) = 0,

so that x = 2 or x = −8. Since x ≤ −6, we must choose x = −8. Then f(−8) = 4, so
g(4) = g(f(−8)) = −8. So, g′(4) = 1/f ′(g(4)). Since f ′(x) = (1/2)(x2 + 6x)−1/2(2x+ 6), we
have f ′(g(4)) = f ′(−8) = (−5)(64− 48)−1/2 = −5/4, so g′(4) = −4/5. �

2. Homework 2

Exercise 2.1. Find

lim
x→∞

ee
x

ex
.

Solution. limx→∞
ee

x

ex
L′H
= limx→∞

exee
x

ex
= limx→∞ e

ex =∞. �

Exercise 2.2. Using the Pythagorean Theorem, derive the following formula.

cos(sin−1(x)) =
√

1− x2.

Solution. The right triangle with angle sin−1(x) and hypotenuse 1 has height x. So, this
triangle has base

√
1− x2 by the Pythagorean theorem. So, cos(sin−1(x)) =

√
1− x2/1 =√

1− x2. �

Exercise 2.3 (The shape of hanging cables and chains). Suppose we have a cable
hanging between two poles of equal height. We will derive the shape of the hanging cable.
That is, we will find a function y = f(x), with x = 0 the midpoint of the cable, such that
the cable follows the curve y = f(x). At the outset, we assume that the function y = f(x)
is differentiable.

Consider a segment of the cable from x = 0 to x = b > 0. We consider this segment of cable
as a single body. Then there are three distinct forces acting on this segment of cable. At
x = 0, we assume that the curve y = f(x) has a horizontal tangent. First, there is a tension
force T0 pulling the cable in the negative x direction at x = 0, so that this force is tangent
to the curve at x = 0. Second, there is a tension force T pulling the cable at x = b, and
this force is also tangent to the curve at x = b. Third, the force of gravity of the segment of
chain from x = 0 to x = b pulls straight down. This third force is denoted −ρgs(b), where
g is the force of gravity, ρ is a constant, and s(b) is the length of the chain from x = 0 to
x = b.
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Adding all three forces together, we must get zero, since the cable is hanging in equilibrium.
Suppose at x = b that the tangent line to y = f(x) makes an angle θ with the x-axis.
Then the sum of forces in the x-direction is −T0 + T cos(θ), and the sum of forces in the y-
direction is −ρgs(b) + T sin(θ). So, T0 = T cos(θ) and ρgs(b) = T sin(θ). Since (df/dx)(b) =
sin(θ)/ cos(θ), we have

df

dx
(b) =

ρgs(b)

T0
. (∗)

Now, s(b) is the length of f(x) from x = 0 to x = b. Let h > 0, and assume that s
is differentiable. From the linear approximation of the derivative, we have f(b + h) ≈
f(b) + hf ′(b). Consider the right triangle with vertices (b, f(b)), (b + h, f(b + h)), and
(b + h, f(b)). The length of the hypotenuse of this triangle is approximately s(b + h) −
s(b). Also, from the Pythagorean Theorem, the length of the hypoteuse of this triangle is√
h2 + (f(b+ h)− f(b))2. Combining these facts,

s(b+ h)− s(b) ≈
√
h2 + (f(b+ h)− f(b))2 ≈

√
h2 + h2(f ′(b))2.

So, dividing both sides by h > 0 we have (s(b + h) − s(b))/h ≈
√

1 + (f ′(b))2. Letting
h→ 0+, and then taking a derivative of (∗), we have derived the following equation

d2f

dx2
(b) =

ρg

T0

√
1 +

(
df

dx
(b)

)2

. (∗∗)

We can now solve for f . Show that the shape of the cable is described by

y = f(x) =
T0
ρg

cosh

(
ρgx

T0

)
.

The shape of the hanging cable, known as a catenary curve, also appears in architecture,
such as the St. Louis Gateway Arch or Gaudi’s Sagrada Familia. The idea is to freeze the
hanging cable in its position, and then flip it upside down to produce an arch. Then we can
repeat the derivation above to see that the forces of the arch are all the same as in the case
of the chain (though the signs of the forces are flipped). Also, for a very small segment of
the arch, we can essentially neglect the gravitational force exerted on this segment. So, by
reviewing the above analysis, the force on any particular point in the arch will be directed
along the arch itself. Therefore, the arch is very stable.

Solution. Recall that cosh′(x) = sinh(x), sinh′(x) = cosh(x), 1 + sinh2(x) = cosh2(x), and
cosh(x) > 0 for all x, so√

1 + (f ′(x))2 =

√
1 + cosh2(ρgx/T0) = sinh(ρgx/T0) = f ′′(x)T0/(ρg).

�

Exercise 2.4 (Towing an unconstrained object). Suppose I am standing on the shore
of a straight river, and I am pulling on a rope of length 1 connected to the front of a canoe. I
am walking at a constant speed in the positive y-direction. Suppose the canoe is in the river,
and the canoe’s front is at a distance x from the river shore. Suppose the initial position of
the canoe is (1, 0). As I move in the positive y-direction, the canoe’s front is pulled along a
curve denoted by y = f(x). If the rope is taut, it will always be tangent to the curve f(x).
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y

x
(1, 0)

Consider the right triangle formed by: me on the shore, the point (x, f(x)) and the y-axis.
Then the height of this triangle in the y-direction is

√
1− x2. Therefore,

df

dx
= −
√

1− x2
x

Show that f(x) = sech−1(x)−
√

1− x2 satisfies df
dx

= −
√
1−x2
x

.

Solution. Recall that (d/dx)sech−1(x) = −1/(x
√

1− x2), so f ′(x) = − 1
x
√
1−x2 + x√

1−x2 =
−1+x2
x
√
1−x2 = −

√
1−x2
x

, using 0 < x < 1. �

Exercise 2.5. In this exercise, all velocities are measured with respect to meters per second,
and c ≈ 3× 108 meters per second is the speed of light.

Einstein’s special theory of relativity implies the following fact. Suppose that I am running
with velocity v1, where we consider the earth to be fixed. Suppose I then throw a baseball at
a velocity v2, relative to my own frame of reference. Then, relative to the earth, the baseball
does not travel with velocity v1 +v2. Relative to the earth, the baseball travels with velocity
V , where

tanh−1(V/c) = tanh−1(v1/c) + tanh−1(v2/c).

Using a calculator or other electronic aid, find the velocity V of the baseball relative to the
earth if v1 = 2× 108 and v2 = 2.5× 108.

Solution. We have tanh−1(V/c) = tanh−1(2/3) + tanh−1(5/6), so V ≈ c tanh(.8047 +
1.1989) ≈ c · .9643 ≈ 2.89× 108 meters per second. �

Exercise 2.6. Compute the following limits

lim
x→−5

x2 − 25

5− 4x− x2
.

lim
x→∞

9x− 4

4− 2x
.

lim
x→0

sin(3x)

sin(5x)
.
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Solution. limx→−5
x2−25

5−4x−x2
L′H
= limx→−5

2x
−4−2x = −10

−4+10
= −5/3.

limx→∞
9x−4
4−2x

L′H
= −9/2.

limx→0
sin(3x)
sin(5x)

L′H
= limx→0

3 cos(3x)
5 cos(3x)

= 3/5.

�

3. Homework 3

Exercise 3.1. Compute

lim
x→π/2

(x− π/2) tan(x).

Solution.

lim
x→π/2

(x− π/2) tan(x) = lim
x→π/2

x− π/2
1/ tan(x)

L′H
= lim

x→π/2

1

−(cos(x))−2/ tan2(x)
= lim

x→π/2
− sin2(x) = −1.

�

Exercise 3.2. What is

lim
x→
√
3

tan−1(x)− π/3
x−
√

3
?

Solution. Recall that tan(π/3) =
√

3, and tan−1(
√

3) = π/3, so limx→
√
3
tan−1(x)−π/3

x−
√
3

L′H
=

limx→
√
3

1
1+x2

= 1/4. �

Exercise 3.3. Using integration by parts, compute the following integrals

•
∫
t2e4tdt.

•
∫
x sin(x/2)dx.

•
∫ 1/
√
2

0
2x sin−1(x2)dx.

•
∫ 4

2
x(lnx)2dx.

Solution.∫
t2e4tdt =

∫
t2(1/4)(d/dt)e4tdt = (1/4)t2e4t − (1/2)

∫
te4tdt

= (1/4)t2e4t − (1/8)

∫
t(d/dt)e4tdt = (1/4)t2e4t − (1/8)te4t + (1/8)

∫
e4tdt

= (1/4)t2e4t − (1/8)te4t + (1/32)e4t + C.



8 STEVEN HEILMAN∫
x sin(x/2)dx =

∫
2x(d/dx)(− cos(x/2))dx = −2x cos(x/2) +

∫
2 cos(x/2)dx

= −2x cos(x/2) + 4 sin(x/2) + C.

Recall that (d/dt) sin−1(t) = 1/
√

1− t2, so substituting u = x2, then substituting v = 1−u2,

∫ 1/
√
2

0

2x sin−1(x2)dx =

∫ 1/2

0

sin−1(u)du =

∫ 1/2

0

sin−1(u)(d/du)udu

= [u sin−1(u)]
1/2
0 −

∫ 1/2

0

u√
1− u2

du

= (1/2) sin−1(1/2) + (1/2)

∫ 3/4

1

v−1/2dv = (1/2) sin−1(1/2) + [v1/2]
3/4
1

= (1/2)(π/6) + (
√

3/2)− 1 = (π/12) + (
√

3/2)− 1

∫ 4

2

x(ln(x))2dx =

∫ 4

2

(lnx)2(d/dx)(x2/2)dx = [(lnx)2(x2/2)]42 −
∫ 4

2

x ln(x)dx

= 8(ln 4)2 − 2(ln(2))2 −
∫ 4

2

ln(x)(d/dx)(x2/2)dx

= 8(ln 4)2 − 2(ln(2))2 − [(x2/2) ln(x)]42 +

∫ 4

2

(x/2)dx

= 8(ln 4)2 − 2(ln(2))2 − 8 ln(4) + 2 ln(2) + (1/4)(16− 4).

�

Exercise 3.4. Compute the following integrals

•
∫

sin4(x) cos2(x)dx.
•
∫

cos(x) sin111(x)dx.
•
∫

tan3(x) sec2(x)dx.
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Solution.∫
sin4(x) cos2(x)dx =

∫
(1− cos2(x))2 cos2(x)dx =

∫
cos6(x)− 2 cos4(x) + cos2(x)dx

=

∫
(1/8)(cos(2x) + 1)3 − (1/2)(cos(2x) + 1)2 + (1/2)(cos(2x) + 1)dx

=

∫
(1/8)(cos3(2x) + 3 cos2(2x) + 3 cos(2x) + 1)

− (1/2)(cos2(2x) + 2 cos(2x) + 1) + (1/2)(cos(2x) + 1)dx

=

∫
(1/8) cos3(2x) + (3/8− 1/2) cos2(2x) + (3/8− 1 + 1/2) cos(2x) + 1/8− 1/2 + 1/2dx

=

∫
(1/8)(1− sin2(2x)) cos(2x)− (1/16)(1 + cos(4x))− (1/8) cos(2x) + 1/8dx

= (1/16)

∫
(1− u2)du− (1/16)(x+ (1/4) sin(4x))− (1/16) sin(2x) + x/8

= (1/16)(sin(2x)− (1/3) sin3(2x))− (1/16)(x+ (1/4) sin(4x))− (1/16) sin(2x) + x/8 + C.

We substituted u = sin(2x), so that du = 2 cos(2x)dx.

We substitute u = sin(x) so that du = cos(x)dx,∫
cos(x) sin111(x)dx =

∫
u111du = (1/112)u112 = (1/112) sin112(x) + C.

We substitute u = tan(x), so that du = sec2(x)dx, and∫
tan3(x) sec2(x)dx =

∫
u3du = (1/4)u4 = (1/4) tan4(x) + C.

�

4. Homework 4

Exercise 4.1. Using trigonometric substitution, compute∫
x2√

9− x2
dx.

Solution. We substitute x = 3 sin θ, so that dx = 3 cos θdθ, and
√

9− x2 = 3
√

1− sin2 θ =
|cos θ|, du = cos θ. Assuming −3 ≤ x ≤ 3, we have −π/2 ≤ θ ≤ π/2, so cos θ ≥ 0 and
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|cos θ| = cos θ, so∫
x2√

9− x2
dx =

∫
9 sin2 θ cos θ |cos θ|−1 dθ

∫
9 sin2 θdθ

=

∫
(9/2)(1− cos(2θ))dθ = (9/2)(θ − (1/2) sin(2θ))

= (9/2) sin−1(x/3)− (9/4) sin(2 sin−1(x/3))

= (9/2) sin−1(x/3)− (9/2) sin(sin−1(x/3)) cos(sin−1(x/3))

= (9/2) sin−1(x/3)− (9/2)(x/3)
√

1− x2/9

= (9/2) sin−1(x/3)− (x/2)
√

9− x2 + C.

�

Exercise 4.2. Using trigonometric substitution, compute∫
dx√

25x2 − 4
.

Solution. Substituting x = (2/5)(1/ cos θ), so that dx = (2/5) sin θ/(cos2 θ)dθ, and√
25x2 − 4 =

√
4(cos θ)−2 − 4 = 2 |tan θ|. Assuming |tan θ| = tan θ, we get∫

dx√
25x2 − 4

=

∫
(1/5) sin θ(cos θ)−2 |tan θ|−1 dθ

=

∫
(1/5)(cos θ)−1dθ = (1/5) ln |sec θ + tan θ|

= (1/5) ln
∣∣∣5x/2 +

√
(25/4)x2 − 1

∣∣∣ = (1/5) ln
∣∣∣5x/2 +

√
(25/4)x2 − 1

∣∣∣+ C.

We used sec θ = 5x/2, so cos(θ) = 2/(5x), so sin θ = sin(cos−1(2/(5x))) =
√

1− 4/(25x2),

so tan θ = (5x/2)
√

1− 4/(25x2) =
√

(25/4)x2 − 1, assuming x ≥ 0. �

Exercise 4.3. Evaluate the following integrals using the method of partial fractions.∫
dx

x2 + 2x
.

∫ 1

1/2

y + 4

y2 + y
dy.

∫
4x2 − 21x

(x− 3)2(2x+ 3)
dx.

Solution. We have 1/(x2 + 2x) = A/x+ B/(x+ 2), so 1 = A(x+ 2) + Bx, so setting x = 0
gives A = 1/2, and setting x = −2 gives B = −1/2. So,∫

dx

x2 + 2x
=

∫
1

2x
− 1

2(x+ 2)
dx = (1/2) ln |x| − (1/2) ln |x+ 2|+ C.
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We have (y + 4)/(y2 + y) = A/y + B/(y + 1), so y + 4 = A(y + 1) + By, so setting y = 0
gives A = 4, and setting y = −1 gives B = −3. So,∫ 1

1/2

y + 4

y2 + y
dy =

∫ 1

1/2

4

y
− 3

y + 1
dy = [4 ln |y| − 3 ln |y + 1|]y=1

y=1/2

= −3 ln(2)− 4 ln(1/2) + 3 ln(3/2) = ln(16 · 27/82) = ln(27/4).

We have
4x2 − 21x

(x− 3)2(2x+ 3)
=

A

(x− 3)
+

B

(x− 3)2
+

C

2x+ 3
.

So,

4x2 − 21x = A(x− 3)(2x+ 3) +B(2x+ 3) + C(x− 3)2.

Setting x = 3, we have 36 − 63 = −27 = B(9), so B = −3. Setting x = −3/2, we have
C(9/2)2 = 9 + 63/2, so C = 2. Equating the x2 terms on both sides of our equality, we have
4 = 2A+ C, so that A = (4− C)/2 = 1. Therefore,∫

4x2 − 21x

(x− 3)2(2x+ 3)
dx = ln |x− 3|+ 3(x− 3)−1 + ln |2x+ 3|+ C ′.

�

Exercise 4.4. Compute the following integral∫
xdx

(x2 − 1)3/2
.

Solution. Substituting u = x2−1 so that du = 2xdx, we have
∫

xdx
(x2−1)3/2 = (1/2)

∫
u−3/2du =

−u−1/2 = −(x2 − 1)−1/2. �

Exercise 4.5. Compute the following integral:∫
ln(x4 − 1)dx.

Solution. Integrating by parts,∫
ln(x4 − 1)dx =

∫
ln(x4 − 1)(d/dx)xdx = x ln(x4 − 1)−

∫
x(4x3)

x4 − 1
dx.

Now, write 4x4 = 4(x4 − 1) + 4, so that 4x4/(x4 − 1) = 4 + 4/(x4 − 1). Then∫
ln(x4 − 1)dx = x ln(x4 − 1)− 4x−

∫
4dx

x4 − 1
.

Now, we have 1/(x4 − 1) = A/(x+ 1) +B/(x− 1) + (Cx+D)/(x2 + 1), so that

1 = A(x− 1)(x2 + 1) +B(x+ 1)(x2 + 1) + (Cx+D)(x2 − 1).

Setting x = −1, we get 1 = A(−2)(2), so A = −1/4. Setting x = 1, we get 1 = B(2)(2), so
B = 1/4. Equating the x3 terms on both sides of our equality, we have 0 = A + B + C, so
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C = −A−B = 1/4− 1/4 = 0. Equating the x2 terms on both sides of our equality, we have
0 = −A+B +D, so D = A−B = −1/4− 1/4 = −1/2. In conclusion,∫

ln(x4 − 1)dx = x ln(x4 − 1)− 4x+ ln |x+ 1| − ln |x− 1|+ 2 tan−1(x) + C ′.

�

5. Homework 5

Exercise 5.1. Evaluate ∫ ∞
0

xe−xdx.

Solution. Integrating by parts for any 0 < b <∞, we have
∫ b
0
xe−xdx =

∫ b
0
x(−d/dx)e−xdx =

[−xe−x]b0 +
∫ b
0
e−xdx = −be−b − e−b + 1. Letting b → ∞, we have limb→∞ be

−b = 0 and

limb→∞ e
−b = 0, so

∫∞
0
xe−xdx = limb→∞

∫ b
0
xe−xdx = 1. �

Exercise 5.2. Compute ∫ 1

−1

√
|x| dx.

Solution.
∫ 1

−1

√
|x| dx =

∫ 1

0
x1/2dx +

∫ 0

−1(−x)1/2dx =
∫ 1

0
x1/2dx −

∫ 0

1
x1/2dx = 2

∫ 1

0
x1/2dx =

2(2/3) = 4/3, using the substitution u = −x. �

Exercise 5.3. Compute ∫ 2

−1

1

x2
dx.

Solution. This integral diverges since
∫ 2

0
1
x2
dx = limt→0+

∫ 2

t
x−2dx = limt→0+(−x−1)2t =

limt→0+(−2 + t−1) =∞. �

Exercise 5.4. Compute the following integral, or show that the integral diverges.∫ 3

0

dx

(3− x)3/2
.

Solution. This integral diverges. We have
∫ 3

0
dx

(3−x)3/2 = limt→3−
∫ t
0

dx
(3−x)3/2 = limt→3−(1/2)(3−

x)−1/2|t0 = limt→3−(1/2)(3− t)−1/2 − (1/2)3−1/2 =∞. �

Exercise 5.5. Compute the following integral∫ 5

3

(9− x2)dx.

Then, approximate this integral by computing the Trapezoid rule TN , the Midpoint rule MN ,
and Simpson’s rule SN for N = 4. Compute also the error bounds for these three integral
approximations. Which approximation is the best?
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Solution.
∫ 5

3
(9 − x2)dx = [9x − (1/3)x3]53 = 9(5 − 3) − (1/3)(125 − 27) = 18 − (1/3)(98) =

−44/3.

The Trapezoid rule for N = 4 uses the points 3, 3.5, 4, 4.5, 5, so that

T4 =
5− 3

4
((9− 32)/2 + (9− 3.52) + (9− 42) + (9− 4.52) + (9− 52)/2) = −59/4 = −14.75.

M4 =
5− 3

4
((9− 3.252) + (9− 3.752) + (9− 4.252) + (9− 4.752)) = −117/8 = −14.625.

S4 =
5− 3

12
((9−32)+4(9−3.52)+2(9−42)+4(9−4.52)+(9−52)) = −44/3 =

∫ 5

3

(9−x2)dx.

Simpson’s rule gives the best approximation, since it actually gives an equality.

Consider f(x) = 9−x2. Then f ′′(x) = −2 for all x, so we can use K = 2 in the error bounds
for T4 and M4. Using K = 2, we observe that the error bounds are correct, since∣∣∣∣T4 − ∫ 5

3

(9− x2)dx
∣∣∣∣ = |−14.75 + 44/3| = 1/12 ≤ 2(5− 3)3

12(4)2
= 1/12.

∣∣∣∣M4 −
∫ 5

3

(9− x2)dx
∣∣∣∣ = |−14.625 + 44/3| = 1/24 ≤ 2(5− 3)3

24(4)2
= 1/24.

Finally, since f (4)(x) = 0, we can use K = 0 in the error bound for S4. And indeed, this is
okay, since ∣∣∣∣S4 −

∫ 5

3

(9− x2)dx
∣∣∣∣ = 0.

�

Exercise 5.6. Compute the following integral∫ 4

0

x3dx.

Then, approximate this integral by computing the Trapezoid rule TN , the Midpoint rule MN ,
and Simpson’s rule SN for N = 4. Compute also the error bounds for these three integral
approximations. Which approximation is the best?

Solution.
∫ 4

0
x3dx = [(1/4)x4]40 = 64.

The Trapezoid rule for N = 4 uses the points 0, 1, 2, 3, 4, so that

T4 =
4

4
(03/2 + 13 + 23 + 33 + 43/2) = 68.

M4 =
4

4
((1/2)3 + (3/2)3 + (5/2)3 + (7/2)3) = 62.

S4 =
4

12
(03/2 + 4 · 13 + 2 · 23 + 4 · 33 + 43) = 64

Simpson’s rule gives the best approximation, since it actually gives an equality.



14 STEVEN HEILMAN

Consider f(x) = x3. Then f ′′(x) = 6x for all x. So, |f ′′(x)| = 6 |x| ≤ 24 when 0 ≤ x ≤ 4.
So we can use K = 24 in the error bounds for T4 and M4. Using K = 24, we observe that
the error bounds are correct, since∣∣∣∣T4 − ∫ 4

0

x3dx

∣∣∣∣ = |68− 64| = 4 ≤ 24(4− 0)3

12(4)2
= 8.∣∣∣∣M4 −

∫ 4

0

x3dx

∣∣∣∣ = |62− 64| = 2 ≤ 24(4− 0)3

24(4)2
= 4.

Finally, since f (4)(x) = 0, we can use K = 0 in the error bound for S4. And indeed, this is
okay, since ∣∣∣∣S4 −

∫ 4

0

x3dx

∣∣∣∣ = 0.

�

Exercise 5.7. Compute the surface area of revolution about the x-axis over the interval
[0, 1] of the function

y = 2x+ 1.

Solution. The surface area is given by
∫ 1

0
2πy(x)

√
1 + (y′(x))2 =

∫ 1

0
2π(2x + 1)

√
5dx =

2π
√

5
∫ 1

0
(2x+ 1)dx = 2π

√
5(2) = 4π

√
5. �

Exercise 5.8. Compute the surface area of revolution about the x-axis over the interval
[1, 2] of the function

y =
√

9− x2

Solution. The surface area is given by∫ 2

1

2πy(x)
√

1 + (y′(x))2dx = 2π

∫ 2

1

√
9− x2

√
1 + (

−x√
9− x2

)2dx

= 2π

∫ 2

1

√
9− x2

√
9

9− x2
dx = 2π

∫ 2

1

3dx = 18π.

�

6. Homework 6

Exercise 6.1. Let r, h > 0 be constants. Let f(x) = r
h
x, where 0 ≤ x ≤ h. Compute the

volume by revolution of f over 0 ≤ x ≤ h, where f is rotated around the x-axis. You should
find a formula for the volume of a circular cone of radius r and height h. (Hint: use the disk
method.)

Solution. ∫ h

0

π(f(x))2dx = πr2h−2
∫ h

0

x2dx = πr2h−2[(1/3)x3]hx=0 = (1/3)πr2h.

�
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Exercise 6.2. Compute the volume of the solid obtained by revolving the region enclosed
by the ellipse x2 + 9y2 = 9 about the x-axis.

Solution. Since y2 = 1 − x2/9, we have y =
√

1− x2/9 or y = −
√

1− x2/9. Either curve,
when rotated around the x-axis, produces the same solid region, which has volume

π

∫ 3

−3
(f(x))2dx = π

∫ 3

−3
(1− x2/9)dx = π(6− x3/27)x=3

x=−3 = π(6− 1− 1) = 4π.

�

Exercise 6.3. Consider the region in the plane contained between the lines y = x, y = 0,
x = 0 and x = 1. Compute the volume obtained by rotating this region around the y-axis.

Solution. The cylinder of height 1 and radius 1 has volume π. A circular cone with radius 1
and height 1 has volume π

∫ 1

0
y2dy = π/3 by the disk method. So, the volume of the stated

region is the difference of these numbers, i.e. π − (π/3) = 2π/3. Alternatively, if we use
cylindrical shells with f(x) = x, we get

2π

∫ 1

0

x2dx = 2π/3.

�

Exercise 6.4. Suppose we take the region between the curves x = y2 − 3y and x = 2y − y2
and we revolve this region around the line x = 3. Write an integral that computes the
volume of the resulting solid region. You do NOT have to evaluate the integral.

Solution. We first find the intersection of the curves. Intersection occurs when y2 − 3y =
2y− y2, i.e. when 2y2− 5y = 0, i.e. y(2y− 5) = 0. Also, when y = 1, we have y2− 3y = −2
and 2y − y2 = −1, so 2y − y2 > y2 − 3y when 0 < y < 5/2. So, intersection occurs when
y = 0 and when y = 5/2. Also, when 0 < y < 5/2, the function f(y) = y2 − 3y = y(y − 3)
has maximum value 0, and the function g(y) = 2y − y2 = y(2 − y) has maximum value 0.
That is, both curves lie on the left side of the y-axis. And the curve f lies to the left of the
curve g. So, using the disk method, the volume is given by

π

∫ 5/2

0

(y2 − 3y − 3)2 − (2y − y2 − 3)2dy.

�

Exercise 6.5. Find the arc length of y = 2−4x4 + (1/2)x−2 over the interval [1, 4]. (Hint:
write 1 + (y′)2 as the square of something.)

Solution. Note that y′(x) = (1/4)x3−x−3, so 1+(y′)2 = 1+(1/16)x6+x−6−(1/2) = (1/2)+

(1/16)x6 + x−6 = ((1/4)x3 − x−3)2. The arc length is then given by
∫ 4

1

√
1 + (y′(x))2dx =∫ 4

1
(1/2)(x3 − x−3)dx = (1/2)[(1/4)x4 + (1/2)x−2]41 = (1/2)[64− 1/4 + (1/32)− 1/2]. �

Exercise 6.6. Using a comparison of integrals, show that the arc length of y = x4/3 over
[1, 2] is greater than or equal to 5/3.
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Solution. Note that y′(x) = (4/3)x1/3, so 1 + (y′(x))2 = 1 + (16/9)x2/3. If x ≥ 1, then

1 + (y′(x))2 ≥ 1 + 16/9 = 25/9. So, the arc length is equal to
∫ 2

1

√
1 + (y′(x))2dx ≥∫ 2

1

√
25/9dx = 5/3. �

Exercise 6.7. Compute the force on one side of a square plate of side length 2 meters, where
the plate is submerged vertically in a tank of water, and one side of the square is tangent
the surface of the water.

Solution. The force is given by ρg
∫ 2

0
y2dy = 4ρg. �

Exercise 6.8. Compute the force on one side of a circular plate of radius 3 meters, where
the plate is submerged vertically in a tank of water, and the top of the circle is tangent to
the surface of the water.

Solution. The force is given by ρg
∫ 6

0
y2
√

9− (y − 3)2dy. Changing variables so that u = y−
3, we have

∫ 6

0
y2
√

9− (y − 3)2dy =
∫ 3

−3(u+ 3)2
√

9− u2du. We know that
∫ 3

−3

√
9− u2du =

(9/2)π, since it is half the area of the disc of radius 3. (Alternatively, we could use trigono-
metric substitution u = 3 sin θ.) Also, substituting v = 9− u2 so that dv = −2udu, we have∫ 3

−3 u
√

9− u2du = 0. In conclusion, the force is equal to 3(2)ρg(9/2)π = ρg27π. �

7. Homework 7

Exercise 7.1. Compute the Taylor polynomials T2 and T3 for the function f(x) =
1

1 + x2
at x = 1.

Solution. We have
f ′(x) = −2x/(1 + x2)2.

f ′′(x) = [(1 + x2)2(−2) + 2x(2)(1 + x2)(2x)]/(1 + x2)4

= [(1 + x2)(−2) + 8x2]/(1 + x2)3 = (6x2 − 2)/(1 + x2)3.

f ′′′(x) = [(1 + x2)3(12x)− (6x2 − 2)3(1 + x2)2(2x)]/(1 + x2)4.

So, f(1) = 1/2, f ′(1) = −2/(22) = −1/2, f ′′(1) = 4/8 = 1/2, and f ′′′(1) = [8(12) −
4(3)(4)(2)]/16 = 0. So,

T2(x) = 1/2− (1/2)(x− 1) + (1/4)(x− 1)2, T3(x) = T2(x).

�

Exercise 7.2. Compute the Taylor polynomials T2 and T3 for the function f(x) =
1

1 + x
at

x = 2. Then, compute the Taylor polynomials T2 and T3 for the function f at x = 1.

Solution. We have
f ′(x) = −1/(1 + x)2.

f ′′(x) = 2(1 + x)/(1 + x)4 = 2/(1 + x)3.
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f ′′′(x) = −6(1 + x)2/(1 + x)6 = −6/(1 + x)4.

So, f(2) = 1/3, f ′(2) = −1/9, f ′′(2) = 2/27, f ′′′(2) = −6/81 = −2/27, and at x = 2, we
have

T2(x) = (1/3)− (1/9)(x− 2) + (1/27)(x− 2)2.

T3(x) = (1/3)− (1/9)(x− 2) + (1/27)(x− 2)2 − (1/81)(x− 2)3

Also, f(1) = 1/2, f ′(1) = −1/4, f ′′(1) = 2/8 = 1/4, and f ′′′(1) = −6/16 = −3/8. So, at
x = 1, we have

T2(x) = 1/2− (1/4)(x− 1) + (1/8)(x− 1)2.

T3(x) = 1/2− (1/4)(x− 1) + (1/8)(x− 1)2 − (1/16)(x− 1)3.

�

Exercise 7.3. Let Tn be the nth Taylor expansion of the function f(x) = cos(x) at x = 0.
Find n such that the following error bounds holds:

|cos(.3)− Tn(.3)| ≤ 10−7.

Solution. Note that all derivatives of cosine are bounded by 1. So, the error formula for the
Taylor expansion says we need the following error bound to hold: (1/3)n+1/(n+ 1)! < 10−7.
So, n = 6 suffices, since then (1/3)n+1/(n+ 1)! = 3−7/5040 ≈ 9.07× 10−8. �

Exercise 7.4. Let Tn be the nth Taylor expansion of the function f(x) = sin(x) at x = 0.
Find n such that the following error bounds holds:

|sin(.5)− Tn(.5)| ≤ 2−53.

Solution. Note that all derivatives of sine are bounded by 1. So, the error formula for the
Taylor expansion says we need the following error bound to hold: (1/2)n+1/(n+ 1)! < 2−53.
So, n = 14 suffices, since then (1/2)n+1/(n + 1)! = 2−15/15! ≈ 2.33 × 10−17, while 2−53 ≈
1.11× 10−16. �

Exercise 7.5. Show that, for any integer n ≥ 1,
n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

(Hint: use induction.)

Solution. We induct on n. The base case is n = 1, in which the left side is 12 = 1 and the
right side is 1(1 + 1)(2 + 1)/6 = 1. So, the base case holds. We now do the inductive step.
We assume that the assertion holds for n, and we prove that it holds for the case n + 1.
Then, using the inductive hypothesis for the first n terms in the sum
n+1∑
j=1

j2 = (n+ 1)2 +
n∑
j=1

j2(n+ 1)2 +
n(n+ 1)(2n+ 1)

6

= (n+ 1)[(n+ 1) + n(2n+ 1)/6] =
n+ 1

6
(6n+ 6 + 2n2 + n) =

n+ 1

6
(2n2 + 7n+ 6) =

n+ 1

6
(2n+ 3)(n+ 2) =

(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
.

That is, the assertion holds in the case n+1. We have completed the inductive step, therefore
the proof is complete. �
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Exercise 7.6. For the following sequences, say whether or not they converge or diverge as
n → ∞. If they converge, find the corresponding limit. If they diverge, determine if they
diverge to infinity.

• an = (−1/2)n

• an = n!.
• an = (−1)n.
• an = 1− 1

n
.

Solution. The first sequence converges to zero, since |an| = 1/(2n), and limn→∞ 2n = ∞, so
limn→∞ 1/2n = 0, so limn→∞ an = 0 as well.

The second sequence diverges to infinity, since n! becomes an arbitrarily large number as
n→∞. (In particular, n! ≥ n, so limn→∞ n! ≥ limn→∞ n =∞.)

The third sequence diverges, since it does not get close to any particular number as n→∞.
(For n ≥ 1, |an − an+1| = 2, so it cannot occur that the limit as n→∞ of an exists.) Also,
|an| = 1 for any n ≥ 1, so the sequence does not diverge to infinity, since its absolute value
is bounded for all n.

The last sequence converges to 1 since

lim
n→∞

an = lim
n→∞

(1− 1/n) = 1− lim
n→∞

(1/n) = 1− 0 = 1.

�

Exercise 7.7. Let a1 = 1. For any n ≥ 1, define

an+1 =
√

1 + an.

Show that the sequence a1, a2, . . . is increasing and it is contained in the interval [1, 2].
(Hint: use induction to show that 1 ≤ an ≤ 2 for all n ≥ 1. Then use induction to show
that the sequence is increasing.) (Second hint: to show that the sequence is increasing, the
inductive hypothesis is that an ≤ an+1. Assuming this hypothesis, you should then deduce
an+1 ≤ an+2.)

Since the sequence is increasing and bounded, limn→∞ an exists. So, this exercise gives a
meaning to the infinite repeated radical√

1 +

√
1 +

√
1 +
√

1 + · · ·

(Optional: compute limn→∞ an.) (Computing this limit will not be covered on the quiz.)

Solution. We first show by induction that 1 ≤ an ≤ 2. The base case n = 1 holds since
a1 = 1 so 1 ≤ a1 ≤ 2. We now show the inductive step. Assume that 1 ≤ an ≤ 2. We need
to show that 1 ≤ an+1 ≤ 2. Since 1 ≤ an ≤ 2, we have

2 ≤ 1 + an ≤ 3 ⇒ 1 ≤
√

2 ≤
√

1 + an ≤
√

3 ≤ 2 ⇒ 1 ≤ an+1 ≤ 2.



MATH 126 HOMEWORK SOLUTIONS 19

The last line used the definition of an+1. The inductive step is complete. We have therefore
shown that 1 ≤ an ≤ 2 for all n ≥ 1.

We now show that an ≤ an+1 for all n ≥ 1. The base case is n = 1. Since a1 = 1 and
a2 =

√
1 + 1 =

√
2 we have a1 ≤ a2. So, the base case is true. We now do the inductive

step. Assume that an ≤ an+1. We need to show that an+1 ≤ an+2. That is, we need to show
that √

1 + an ≤
√

1 + an+1.

Using the inductive hypothesis, we have

an ≤ an+1 ⇒ 1 + an ≤ 1 + an+1 ⇒
√

1 + an ≤
√

1 + an+1.

The inductive step is complete. Therefore, an ≤ an+1 for all n ≥ 1, i.e. the sequence is
increasing.

(Optional:) Since the sequence is increasing and bounded by 2, it converges to some limit L
(since monotonic bounded sequences converge). We have the informal expression

L =

√
1 +

√
1 +

√
1 +
√

1 + · · ·.

Since L = limn→∞ an, we also have

L = lim
n→∞

an+1 = lim
n→∞

√
1 + an =

√
1 + lim

n→∞
an =

√
1 + L.

That is, L2 = L+ 1, so that L2 − L− 1 = 0. That is,

L =
1±
√

1 + 4

2
=

1±
√

5

2
.

Since 1 ≤ an ≤ 2 for all n ≥ 1, we must have 1 ≤ L ≤ 2. So, L must be equal to the positive
root of L2 − L− 1 = 0. That is,

L =
1 +
√

5

2
≈ 1.618034...

This number is sometimes called the golden ratio.

�

Exercise 7.8. Let M be a positive real number. Recall that the Babylonian square root
algorithm is a sequence defined as follows. If M > 1 we define a1 = M . If 0 < M ≤ 1, we
define a1 = 1. Then, if n is a positive integer and we know an, we compute an+1 by

an+1 = an −
a2n −M

2an
=

1

2

(
an +

M

an

)
.

Show that {an} is a decreasing sequence. Show also that {an} is a positive sequence. Con-
clude that the sequence {an} converges to some real number L. (In fact, an converges to√
M , but you do not have to show this.)

Solution. We know that a1 is positive, and if an is positive for any n ≥ 1, then an+1 is also
positive, since it is defined as a sum of positive numbers. It therefore follows by induction
that an is positive for any n ≥ 1. We now show that an ≥

√
M by induction.
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In the base case, we have a1 = M >
√
M (when M > 1) and a1 = 1 ≥

√
M (when

0 < M ≤ 1), so the base case holds. We now do the inductive step. Assume an ≥
√
M . We

need to show that an+1 ≥
√
M . That is, we need to show that

1

2

(
an +

M

an

)
≥
√
M.

Consider the function

f(x) =
1

2
(x+M/x).

Then f ′(x) = (1/2)[1 −M/x2]. That is, f(
√
M) =

√
M , and f is increasing for x >

√
M .

That is, f(x) >
√
M when x >

√
M . By the inductive hypothesis, an ≥

√
M , so an+1 =

f(an) ≥
√
M as well. Having finished the inductive step, we conclude that an ≥

√
M for all

n ≥ 1.

We now show that the sequence is decreasing by induction. That is, we show that an ≥ an+1

for all n ≥ 1. The base case is n = 1. When M > 1, a1 = M and a2 = 1
2
(M + M

M
) ≤

1
2
(M+M) = M , so a1 ≥ a2 whenM > 1. When 0 < M ≤ 1, a1 = 1 and a2 = 1

2
(M+M

1
) = M ,

so a1 ≥ a2 when 0 < M ≤ 1. So, the base case is true. We now do the inductive step. Assume
that an ≥ an+1. We need to show that an+1 ≥ an+2. That is, we need to show that

1

2

(
an +

M

an

)
≥ 1

2

(
an+1 +

M

an+1

)
.

Using the inductive hypothesis, we have an ≥ an+1. Also, an ≥ an+1 ≥
√
M , from above.

Also from above, the function f(x) = 1
2
(x+M/x) is increasing when x >

√
M . Consequently,

f(an) ≥ f(an+1), since an ≥ an+1. The inductive step is complete. Therefore, an ≥ an+1 for
all n ≥ 1, i.e. the sequence is decreasing. �

8. Homework 8

Exercise 8.1. For each of the following sequences, determine whether or not the sequence
converges. (You may need to use the Squeeze Theorem or monotonicity.) If the sequence
converges, compute its limit as n→∞.

• an = n/2n.
• an = 1 + (−1)n.
• an = 1/(0.9)n.
• an = (sinn)/n.
• an =

(
1− 1

n

)n
.

• an = (1/n)1/(lnn).

Solution.

• an = n/2n. This sequence converges to zero. Note that n ≤ 2 · 2n/2 for all n ≥ 1. To
see this, note that 1 ≤ 2 · 21/2, and if f(x) = x and g(x) = 2 · 2x/2, then f(1) ≤ g(1),
and f ′(x) = 1 ≤ 2x/2 = g′(x) for all x ≥ 1. So, 0 ≤ an ≤ 2 · 2n/22−n = 2 · 2−n/2 → 0
as n→∞. So, by the Squeeze Theorem, limn→∞ an = 0.
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• an = 1 + (−1)n. This sequence does not converge. If n is even, then an = 2, and if n
is odd, then an = 0. So, an does not converge.
• an = 1/(0.9)n. This sequence does not converge. We have an = 1/(9/10)n =

(10/9)n →∞ as n→∞.
• an = (sinn)/n. This sequence converges to zero. Since −1 ≤ sin(x) ≤ 1 for all x,

we have −1/n ≤ (sinn)/n ≤ 1/n. So, by the Squeeze Theorem, since 1/n → 0 and
−1/n→ 0 as n→∞, we must have an → 0 as n→∞.
• an =

(
1− 1

n

)n
. We defined ex = limn→∞(1 + x/n)n. So, this sequence converges to

e−1.
• an = (1/n)1/(lnn). Let f(x) = (1/x)1/(ln(x)). Then ln f(x) = 1

ln(x)
ln(1/x) = − lnx

lnx
=

−1. So, ln f(n) = −1 for all n > 1. So, f(n) = e−1 for all n. So, this (constant)
sequence converges to e−1 as n→∞.

�

Exercise 8.2. From class, we saw that the sequence an = (−1)n does not converge as n→∞.
Similarly, the sequence bn = (−1)n+1 does not converge as n → ∞. However, an + bn = 0
for all n, so an + bn does converge as n → ∞. Therefore, in this case, limn→∞(an + bn) is
not equal to limn→∞ an plus limn→∞ bn. Explain how this does not contradict the theorem
(limit laws for sequences) which stated limn→∞(an + bn) = limn→∞ an + limn→∞ bn.

Solution. We only can conclude that limn→∞(an + bn) = limn→∞ an + limn→∞ bn when the
limit limn→∞ an exists, and when the limit limn→∞ bn exists. In the case an = (−1)n and
bn = (−1)n+1, neither of these limits exist. So, it does not follow that limn→∞(an + bn) =
limn→∞ an + limn→∞ bn. �

Exercise 8.3. Determine whether or not the following series converge or diverge. If the
series converges, find its sum.

•
∑∞

n=0(
√

2)n.

•
∞∑
n=0

(
1√
2

)n
.

•
∞∑
n=0

cos(nπ)

5n
.

•
∞∑
n=1

nn

n!
.

•
∞∑
n=1

ln

(
n

n+ 1

)
.

Solution.

•
∑∞

n=0(
√

2)n. This series diverges. Note that (
√

2)n → ∞ as n → ∞. So, the

Divergence test implies that the series
∑∞

n=0(
√

2)n diverges.
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•
∞∑
n=0

(
1√
2

)n
. This series converges, since it is a geometric series. The series converges

to 1/(1− 1/
√

2) =
√

2/(
√

2− 1).

•
∞∑
n=0

cos(nπ)

5n
. This series converges, since it is a geometric series. We can rewrite the

series as
∑∞

n=0
cos(nπ)

5n
=
∑∞

n=0(−1)n/5n =
∑∞

n=0(−1/5)n = 1/(1− (−1/5)) = 5/6.

•
∞∑
n=1

nn

n!
. This series diverges. Since nn = n · n · · ·n a total of n times, and since

n! = n(n− 1)(n− 2) · · · 2 · 1, it always holds that nn/n! ≥ 1. So, the Divergence test
implies that the series

∑∞
n=1

nn

n!
does not converge.

•
∞∑
n=1

ln

(
n

n+ 1

)
. This series diverges. Consider the Nth partial sum

SN =
N∑
n=1

ln(n/(n+ 1)) =
N∑
n=1

(ln(n)− ln(n+ 1)).

Then the series is a telescoping series, since SN = ln(1) − ln(2) + ln(2) − ln(3) +
ln(3) − · · · + ln(N) − ln(N + 1), so that SN = − ln(N + 1). Since SN → −∞ as
N →∞, the partial sums do not converge, so the series does not converge.

�

Exercise 8.4. Suppose a ball is dropped from a height of 4 meters. Each time the ball hits
the ground after falling from a height of h meters, the ball rebounds to the height of (3/4)h
meters. Find the total distance the ball travels up and down. Then, find the total number of
seconds that the ball is moving. (Hint: the formula s = (4.9)t2 implies that t =

√
|s| /4.9.)

Solution. The ball first falls 4 meters, then it goes up 4(3/4) = 3 meters, then down
4(3/4) = 3 meters, then it goes up 4(3/4)2 = 9/4 meters, then down 3(3/4)2 meters, then it
goes up 3(3/4)3 meters, and so on. So, the total distance travelled is 4 + 8

∑∞
n=1(3/4)n =

4 + 8 3/4
1−3/4 = 4 + 83/4

1/4
= 4 + 8(3) = 28 meters. To find the traversal time, note that the ball

falls 4 meters from resting position, which lasts
√

4/4.9 seconds. Then, at the next peak of
travel, the ball falls 3 meters from resting position, so the time between the first and second
hits to the ground is 2

√
3/4.9 seconds, followed by 2

√
3(3/4)/4.9 seconds, and so on. So, the

total travel time is
√

4/4.9 + 2
√

3/4.9
∑∞

n=0(
√

3/4)n =
√

4/4.9 + 2
√

3/4.9 1

1−
√

3/4
≈ 12.58

seconds. �

9. Homework 9

Exercise 9.1. Using appropriate convergence tests as necessary, determine whether the
following series converge or diverge.
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•
∞∑
n=2

1

n(lnn)2
.

•
∞∑
n=1

2n+ 1

n2 + 2n+ 1
.

•
∞∑
n=1

1

(n+ 1)!
.

•
∞∑
n=1

n1/n

n2
.

•
∞∑
n=2

lnn

n5/4
.

Solution.

•
∞∑
n=2

1

n(lnn)2
. This sum converges by the integral test. Let f(x) = 1/(x(ln(x))2).

Then, using the substitution u = lnx, we get∫ ∞
2

f(x)dx =

∫ ∞
2

(ln(x))−2dx/x =

∫ ∞
ln 2

u−2du = lim
R→∞

∫ R

ln 2

u−2du

= lim
R→∞

[−u−1]u=Ru=ln 2 = lim
R→∞

[−R−1 + (ln 2)−1] = (ln 2)−1 <∞

•
∞∑
n=1

2n+ 1

n2 + 2n+ 1
. This sum diverges by comparison. Note that 2n+1

n2+2n+1
≥ 1/n for all

n ≥ 2, since n(2n + 1) ≥ n2 + 2n + 1, i.e. n2 + n2 + n ≥ n2 + n + n + 1. Since, the
harmonic series

∑∞
n=1 1/n diverges, the series

∑∞
n=1

2n+1
n2+2n+1

must also diverge.

•
∞∑
n=1

1

(n+ 1)!
. This series converges. For example, we have 0 ≤ 1/(n+ 1)! ≤ 1/n2 for

all n ≥ 1. So, by comparison, since
∑∞

n=1 1/n2 converges, we know that
∑∞

n=1
1

(n+1)!
converges.

•
∞∑
n=1

n1/n

n2
. This series converges. Recall that L = limx→∞ x

1/x = 1. To see this, note

that lnL = limx→∞
lnx
x

= limx→∞(1/x) = 0 by L’Hopital’s Rule, so lnL = 0 and

L = 1. So, there exists a constant C > 0 such that 1 ≤ n1/n ≤ C for all n ≥ 1.
So, by comparison, we have 0 ≤ n1/n/n2 ≤ C/n2, and so the series converges, since∑∞

n=1C/n
2 converges.

•
∞∑
n=2

lnn

n5/4
. This series converges. Note that

lim
x→∞

lnx

x1/8
= lim

x→∞

1/x

(1/8)x−7/8
= lim

x→∞
8x−1/8 = 0.
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So, there exists a constant C > 0 such that ln(n) ≤ Cn1/8 for all n > 1. So, by
comparison, we have 0 ≤ (lnn)/n5/4 ≤ C/n9/8, and so the series converges, since∑∞

n=1 1/n9/8 converges.

�

Exercise 9.2. Using appropriate convergence tests as necessary, determine whether the
following series converge absolutely, converge conditionally, or diverge.

• 1

2
− 1

3
+

1

22
− 1

32
+

1

23
− 1

33
+ · · · .

•
∞∑
n=1

(−1)n

n3/2
.

•
∞∑
n=1

sinn

n2
.

Solution.

• 1

2
− 1

3
+

1

22
− 1

32
+

1

23
− 1

33
+ · · · . This series converges, but the alternating series

test does not apply, since the terms are not monotone. However, we have
∣∣ 1
2n
− 1

3n

∣∣ =∣∣3n−2n
6n

∣∣ ≤ 3n

6n
= 2−n. So, by comparison, the even partial sums SN converge, where

SN is the sum of the first N terms of the series, and N is even. The odd partial sums
must then converge to the same value, since |S2N − S2N+1| < 2−N .

•
∞∑
n=1

(−1)n

n3/2
. This series converges by the alternating series test.

•
∞∑
n=1

sinn

n2
. This series converges by comparison. We have −1/n2 ≤ sinn/n2 ≤ 1/n2

for all n ≥ 1. And
∑∞

n=1 1/n2 converges.

�

Exercise 9.3. Using the Ratio Test, determine whether the series converges, diverges, or
that the test is inconclusive.

•
∞∑
n=1

n!e−n.

•
∞∑
n=1

lnn

n
.

Solution.

•
∞∑
n=1

n!e−n. This series diverges. Let an = n!e−n. Then |an+1/an| = |(n+ 1)/e| → ∞

as n→∞. So, the series
∑∞

n=1 n!e−n diverges by the ratio test.
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•
∞∑
n=1

lnn

n
. This series diverges by the comparison test since (lnn)/n ≥ 1/n when n ≥ 3,

but the ratio test is inconclusive. Let an = (lnn)/n. Then |an+1/an| =
∣∣∣ ln(n+1)

lnn
n+1
n

∣∣∣→
1 as n → ∞, so the ratio test is inconclusive. (Note that limn→∞

n+1
n

= 1 and

limx→∞
ln(x+1)

lnx
= limx→∞

1/(x+1)
1/x

= 1, both by L’Hopital’s Rule.)

�

Exercise 9.4. For the following power series, find the radius of convergence R. Describe
the set of all points where the power series converges absolutely, describe the set of all points
where the power series converges conditionally, and describe the set of all points where the
power series diverges.

•
∞∑
n=0

(x+ 5)n.

•
∞∑
n=0

xn

2n
√
n

.

•
∞∑
n=0

xn

n!

Solution.

•
∞∑
n=0

(x + 5)n. Let x be a real number. Let an = (x + 5)n. From the ratio test,

|an+1/an| = |x+ 5|. So, the series diverges when |x+ 5| > 1, and the series converges
absolutely when |x+ 5| < 1. In the case |x+ 5| = 1, we have x = −4 or x = −6. In
the case x = −4, the series is

∑∞
n=0 1, which diverges. In the case x = −6, the series

is
∑∞

n=0(−1)n, which diverges by the Divergence Test. So, the radius of convergence
is R = 1.

•
∞∑
n=0

xn

2n
√
n

. Let x be a real number. Let an = xn2−nn−1/2. From the ratio test,

|an+1/an| = |x| 2−1(n+1)−1/2n1/2. Note that limn→∞ n
1/2(n+1)−1/2 = (limn→∞ n(n+

1)−1)1/2 = 11/2 = 1 by L’Hopital’s Rule. So, limn→∞ |an+1/an| = |x| /2. So, by the
ratio test, if |x| < 2, then the series converges absolutely, and if |x| > 2, then the
series diverges. In the remaining cases, we have x = 2 or x = −2. In the case
x = 2, the series is

∑∞
n=0

1√
n
, which diverges. In the case x = −2, the series is∑∞

n=0
(−1)n√

n
, which converges conditionally, by the Alternating Series Test. So, the

radius of convergence is R = 2.

•
∞∑
n=0

xn

n!
. Let x be a real number. Let an = xn/n!. From the ratio test, |an+1/an| =

|x| / |n+ 1| → 0 as n→∞. So, from the ratio test, the series converges for all x. So,
the radius of convergence is R =∞.
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�

Exercise 9.5. For the following series, find the radius of convergence R. Describe the set
of all points where the series converges absolutely, describe the set of all points where the
series converges conditionally, and describe the set of all points where the series diverges.
Finally, find the sum of the series as a function of x.

•
∞∑
n=1

(x− 1)2n

4n
.

•
∞∑
n=0

n(n− 1)xn−2.

Solution.

•
∞∑
n=1

(x− 1)2n

4n
. Let x be a real number. Let an = (x − 1)2n/(4n). From the ratio

test, |an+1/an| = |x− 1|2 |n| / |n+ 1| → (x − 1)2 as n → ∞. So, from the ratio
test, the series converges absolutely when |x− 1| < 1, and the series diverges when
|x− 1| > 1. So, the radius of convergence is R = 1. The only remaining cases are
x = 0 and x = 2. In the case x = 0, the series is

∑∞
n=1 1/(4n), which diverges,

since it is (1/4) multiplied by the harmonic series. In the case x = 2, the series is∑∞
n=1 1/(4n), which diverges, since it is (1/4) multiplied by the harmonic series.
Finally, recall that − ln(1− x) =

∑∞
n=1 x

n/n, so
∞∑
n=1

(x− 1)2n/(4n) = −(1/4) ln(1− (x− 1)2).

•
∞∑
n=0

n(n−1)xn−2. Let x be a real number. Let an = n(n−1)xn−2. From the ratio test,

|an+1/an| =
∣∣n+1
n−1

∣∣ |x| → |x| as n → ∞. So, from the ratio test, the series converges
absolutely when |x| < 1, and the series diverges when |x| > 1. So, the radius of
convergence is R = 1. The only remaining cases are x = −1 and x = 1. In the case
x = 1, the series is

∑∞
n=1 n(n − 1), which diverges, by the Divergence Test. In the

case x = −1, the series is
∑∞

n=1 n(n − 1)(−1)n, which diverges, by the Divergence
Test.

Finally, recall that 1
1−x =

∑∞
n=0 x

n, so differentiating this series term-by-term twice,

we see that
∑∞

n=0 n(n− 1)xn−2 = (d2/dx2)(1/(1− x)) = 2/(1− x)3.

�

Exercise 9.6. Find the Maclaurin series for the following functions. Find also the radius of
convergence.

• cosh(x) =
ex + e−x

2
.

• 1− cosx

x
.
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• ex ln(1 + x).

Solution.

• cosh(x) =
ex + e−x

2
. Recall that ex =

∑∞
n=0 x

n/n!, so e−x =
∑∞

n=0(−1)nxn/n!, so

cosh(x) = (ex + e−x)/2 =
∑∞

n=0(1/2)(1 + (−1)n)xn/n! =
∑∞

n=0 x
2n/(2n)!. Let x be

a real number. Let an = x2n/(2n)!. From the ratio test, |an+1/an| = |x|2 /((2n +
2)(2n + 1)) → 0 as n → ∞. So, from the ratio test, the series converges absolutely
for all real x. So, the radius of convergence is R =∞.

• 1− cosx

x
. Recall that cos(x) =

∑∞
n=0(−1)nx2n/(2n)!, so

(1− cos(x))/x =
∞∑
n=1

(−1)n−1x2n−1/(2n)!.

Let x be a real number. Let an = (−1)n−1x2n−1/(2n)!. From the ratio test, |an+1/an| =
|x|2 /((2n+ 2)(2n+ 1))→ 0 as n→∞. So, from the ratio test, the series converges
absolutely for all real x. So, the radius of convergence is R =∞. (Note that the series
converges for all x, even though the function (1− cosx)/x is technically undefined at
x = 0.)
• ex ln(1+x). Recall that ex =

∑∞
n=0 x

n/n!, and− ln(1−x) =
∑∞

n=1 x
n/n, so ln(1+x) =

−(− ln(1 − (−x))) =
∑∞

n=1(−1)n−1xn/n. Define an = 1/n!, and define bn = 0 for
n = 0 and bn = (−1)n−1/n for n > 0. Then, define cn =

∑n
j=0 ajbn−j. Then from

the multiplication formula for power series, the Maclaurin series of ex ln(1 + x) is∑∞
n=0 x

ncn.

�

10. Homework 10

Exercise 10.1. Show that the following series converges to zero.

π − π3

3!
+
π5

5!
− π7

7!
+ · · ·

Solution. Recall that sin(x) =
∑∞

n=0 x
2n+1(−1)n/(2n+1)!, and from the ratio test, this series

converges absolutely for all real x. In particular, sin(x) converges absolutely for x = π. Since
sin(π) = 0, the following series therefore converges to zero:

∑∞
n=0 π

2n+1(−1)n/(2n+1)!. �

Exercise 10.2. Express the following integral as an infinite series for |x| < 1∫ x

0

ln(1 + t2)dt.

Solution. Recall that − ln(1 − x) =
∑∞

n=1 x
n/n, and this series converges absolutely for all

|x| < 1. So, ln(1 + t2) = −(− ln(1− (−t2))) =
∑∞

n=1(−1)n−1t2n/n. and this series converges
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absolutely whenever |t2| < 1, i.e. whenever |t| < 1. Integrating the series term by term then
maintains the radius of convergence. That is, whenever |x| < 1, we have∫ x

0

ln(1 + t2)dt =
∞∑
n=1

(−1)n−1n−1
∫ x

0

t2ndt =
∞∑
n=1

(−1)n−1n−1
1

2n+ 1
x2n+1.

�

Exercise 10.3. The following integral often arises in probability theory, in relation to dif-
fusions, Brownian motion, and so on.

F (x) =
2√
π

∫ x

0

e−t
2

dt.

Using a Taylor series for e−t
2
, find a Taylor series for F . Then, find the radius of convergence

of this series. Finally, compute F (1/
√

2) to four decimal places of accuracy, and then compute
F (2/

√
2) to two decimal places of accuracy. The answers should remind you of the concept

of standard deviation. (F is also known as a bell curve, or the error function. Optional: give
an estimate for F (3/

√
2).)

Solution. Recall that ex =
∑∞

n=0 x
n/n!, so e−t

2
=
∑∞

n=0(−1)nt2n/n!. So, integrating term by
term, we have

F (x) =
2√
π

∞∑
n=0

(−1)n(n!)−1
∫ x

0

t2ndt =
2√
π

∞∑
n=0

(−1)n(n!)−1
1

2n+ 1
x2n+1.

From the ratio test, if an = (−1)n(n!)−1 1
2n+1

x2n+1, then |an+1/an| = 1
n+1

2n+3
2n+1
|x|2 → 0 as

n → ∞, so the series converges absolutely for all x, i.e. the radius of convergence is ∞.
Then

F (1/
√

2) =
2√
π

∞∑
n=0

(−1)n(n!)−1
1

2n+ 1
2−n−1/2.

So, F (1/
√

2) is an alternating series of decreasing numbers. So, from the error bound for
alternating series, if Tn denotes the nth Taylor polynomial at x = 0, we have∣∣∣F (1/

√
2)− Tn(1/

√
2)
∣∣∣ ≤ 2√

π

1

(n+ 1)!

1

2n+ 3

1

2n+3/2
.

So, summing n = 5 terms should suffice, since then 2√
π

1
(n+1)!

1
2n+3

1
2n+3/2 ≈ 1.33 × 10−6. And

indeed, we have T4(1/
√

2) ≈ 0.682688, so the first four decimal places of F (1/
√

2) are 0.6826
(without rounding).

Now

F (2/
√

2) = F (
√

2) =
2√
π

∞∑
n=0

(−1)n(n!)−1
1

2n+ 1
2n+1/2.

So, F (2/
√

2) is an alternating series of decreasing numbers. So, from the error bound for
alternating series, if Tn denotes the nth Taylor polynomial at x = 0, we have∣∣∣F (1/

√
2)− Tn(1/

√
2)
∣∣∣ ≤ 2√

π

1

(n+ 1)!

1

2n+ 3
2n+3/2.
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So, summing n = 6 terms should suffice, since then 2√
π

1
(n+1)!

1
2n+3

1
2n+3/2 ≈ .0027. And indeed,

we have T6(1/
√

2) ≈ 0.9567, so the first two decimal places of F (2/
√

2) are 0.95 (without
rounding).

Optional: Lastly,

F (3/
√

2) =
2√
π

∞∑
n=0

(−1)n(n!)−1
1

2n+ 1
(3/
√

2)2n+1.

Unfortunately, F (3/
√

2) is not an alternating series of decreasing numbers. So, to get an
approximation for F (3/

√
2) without guaranteed error bounds, we simply sum up the first 20

terms of the series. We then get T20(3/
√

2) ≈ .9973.

In summary, F (1/
√

2) represents the area under the bell curve within one standard deviation
of the mean (which is zero), F (2/

√
2) represents the area under the bell curve within two

standard deviations of the mean, and F (3/
√

2) represents the area under the bell curve within
three standard deviations of the mean. And we have the approximations F (1/

√
2) ≈ .68,

F (2/
√

2) ≈ .95 and F (3/
√

2) ≈ .99.

�

Exercise 10.4. Let i =
√
−1. Using the Maclaurin series for sin(x), cos(x) and ex, verify

Euler’s identity
eix = cos(x) + i sin(x).

In particular, using x = π, we have
eiπ + 1 = 0.

Also, use Euler’s identity to prove the following equalities

cos(x) =
eix + e−ix

2
.

sin(x) =
eix − e−ix

2i
.

In particular, we finally see that the hyperbolic sine and cosine functions are exactly the
usual sine and cosine functions, evaluated on imaginary numbers.

cos(x) = cosh(ix).

sin(x) = sinh(ix)/i.

Solution. Recall that ex =
∑∞

n=0 x
n/n!, so

eix =
∞∑
n=0

(ix)n

n!
=

∑
n≥0 even

(−1)n/2xn

n!
+
∑

n≥0 odd

i(−1)(n−1)/2xn

n!
= cos(x) + i sin(x).

Setting x = π, we get
eiπ = cos(π) + i sin(π) = 1 + 0 · i = 1.

Since eix = cos(x) + i sin(x), we have e−ix = cos(x) + i sin(−x) = cos(x)− i sin(x). Adding
and substracting these identities, we get

eix + e−ix = 2 cos x, eix − e−ix = 2i sinx.
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So, recalling that 2 cosh(x) = ex + e−x and 2 sinh(x) = ex − e−x, we have

2 cosh(ix) = eix + e−ix = 2 cos(x), 2 sinh(ix)/i = (eix − e−ix)/i = 2 sin(x).

�

Exercise 10.5. Euler’s identity can be used to remember all of the multiple angle formulas
that are easy to forget. For example, note that

cos(2x)+ i sin(2x) = e2ix = (eix)2 = (cos(x)+ i sin(x))2 = cos2(x)− sin2(x)+2i sin(x) cos(x).

By equating the real and imaginary parts of this identity, we therefore get

cos(2x) = cos2(x)− sin2(x)

sin(2x) = 2 sin(x) cos(x).

Derive the triple angle identities in this same way, using e3ix = (eix)3.

Solution. Note that cos(3x) + i sin(3x) = e3ix = (eix)3 = (cos(x) + i sin(x))3 = cos3(x) +
3i cos2(x) sin(x)− 3 cos(x) sin2(x)− i sin3(x). Equating the real and imaginary parts, we get
cos(3x) = cos3(x)− 3 cos(x) sin2(x), and sin(3x) = 3 cos2(x) sin(x)− sin3(x). �

Exercise 10.6. Find the sum of the infinite series

1 +
2

10
+

3

102
+

7

103
+

2

104
+

3

105
+

7

106
+

2

107
+

3

108
+

7

109
+ · · · .

Solution. In decimal notation, the series is 1.237237237237237 . . .. In fraction notation, the
series is 1 + 237/999, which is 1236/999. �

Exercise 10.7. Using Maclaurin series, evaluate the following limit

lim
x→0

cos(x)− 1 + x2/2

x4
.

Solution. Recall that cos(x) = 1 − x2/2 + x4/4! − x6/6! − · · · , so (cos(x) − 1 + x2/2)/x4 =
(1/4!) + x2/6!− · · · , so letting x→ 0, we get limx→0(cos(x)− 1 + x2/2)/x4 = 1/24. �

11. Homework 11

Exercise 11.1. Consider the parametric curve s : R→ R2 defined for any real t by

s(t) = (t2 + 1, t3 + t).

Find the tangent line to the curve when t = 2. You can express this line either in parametric
form, or in the form y = mx+ b. What is the slope of the tangent line?

Write a formula for the arc length of the curve between t = 0 and t = 3. You do not have
to evaluate this integral.
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Solution. We have s′(t) = (2t, 3t2 + 1), so s′(2) = (4, 13), and the tangent line is of the form

h(t) = s(2) + ts′(2) = (5, 10) + t(4, 13).

The arc length is ∫ 3

0

||s′(t)|| dt =

∫ 3

0

√
(2t)2 + (3t2 + 1)2dt.

�

Exercise 11.2. Using polar coordinates (r, θ), plot the function r2 = sin θ for θ ∈ (0, π).
The end result should resemble a figure eight. Compute the area enclosed by the curve.
Write a formula that computes the length of the curve [you do NOT have to evaluate this
integral].

0.2
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330

180 0

Solution. The area is

2

∫ π

0

(1/2)(r(θ))2dθ =

∫ π

0

sin θdθ = 2.

The arc length is

2

∫ π

0

√
(r(θ))2 + (r′(θ))2dθ2

∫ π

0

√
sin θ + (cos θ/(2

√
sin θ))2dθ.

�

Exercise 11.3. Using polar coordinates (r, θ), plot the function r = 1+cos θ. The end result
should resemble an apple, or a heart. Compute the area enclosed by the curve. Compute
the length of the curve.

Solution. The area is∫ 2π

0

(1/2)(r(θ))2dθ = (1/2)

∫ 2π

0

1 + cos2 θ + 2 cos θdθ = (1/2)

∫ 2π

0

1 + (1/2)dθ = 3π/2.



32 STEVEN HEILMAN
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The arc length is∫ 2π

0

√
(r(θ))2 + (r′(θ))2dθ =

∫ 2π

0

√
1 + cos2 θ + 2 cos θ + (sin θ)2dθ

=

∫ 2π

0

√
2
√

2 cos2(θ/2)dθ = 2

∫ 2π

0

|cos(θ/2)| dθ

= 4

∫ π

0

|cos(θ/2)| dθ = 4

∫ π

0

cos(θ/2)dθ = 8 sin(θ/2)|π0 = 8.

�

Exercise 11.4. Using polar coordinates (r, θ), plot the function r = (1/2) + cos θ. Find the
tangent line to the curve when θ = π/4. You can express this line either in parametric form,
or in the form y = mx+ b. What is the slope of the tangent line?

Solution. We have s(θ) = (r(θ) cos θ, r(θ) sin(θ)) as the parametrization of the curve in
Euclidean coordinates, and s′(θ) = (−r sin θ+ r′ cos θ, r cos θ+ r′ sin θ), so s′(π/4) = (−[(1 +√

2)/2](
√

2/2)− (
√

2/2)2, [(1 +
√

2)/2](
√

2/2)− (
√

2/2)2) the tangent line is

h(θ) = s(π/4) + θs′(π/4)

= ([(1 +
√

2)/2](
√

2/2), [(1 +
√

2)/2](
√

2/2), )

+ θ(−[(1 +
√

2)/2](
√

2/2)− (
√

2/2)2, [(1 +
√

2)/2](
√

2/2)− (
√

2/2)2).

The slope of the tangent line is [(1+
√
2)/2](

√
2/2)−(

√
2/2)2

−[(1+
√
2)/2](

√
2/2)−(

√
2/2)2

. �

Exercise 11.5. Using polar coordinates (r, θ), plot the functions r =
√

2 and r2 = 4 sin θ,
and label their points of intersection. Find the tangent line to each curve when θ = π/4.
You can express the lines either in parametric form, or in the form y = mx+ b. What is the
slope of each tangent line?
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r = sqrt(2)

Solution. Solving for the points of intersection, we get 2 = 4 sin θ, so sin θ = 1/2, so θ = π/6
and 5π/6. Since both curves are preserved by changing r to −r, we also have points of
intersection at θ = 7π/6 and 11π/6. (At all points of intersection, r =

√
2.)

We have s(θ) = (r(θ) cos θ, r(θ) sin(θ)) as the parametrization of the curves in Euclidean

coordinates, and s′(θ) = (−r sin θ + r′ cos θ, r cos θ + r′ sin θ), so for r = 2
√

sin θ, s′(π/4) =
(−23/42−1/2 + 2−1/42−1/2, 23/42−1/2 + 2−1/42−1/2) the tangent line is

h(θ) = s(π/4)+θs′(π/4) = (23/42−1/2, )23/42−1/2,+θ(−23/42−1/2+2−1/42−1/2, 23/42−1/2+2−1/42−1/2).



34 STEVEN HEILMAN

The slope of the tangent line is 23/42−1/2+2−1/42−1/2

−23/42−1/2+2−1/42−1/2 . �

Exercise 11.6. Suppose you have a heavy chain that is 50 kg and 2 meters long. The chain
is resting on the ground. Calculate the work required to lift one end of the chain:

• 1 meter off the ground.
• 2 meters off the ground.
• 3 meters off the ground.

Ignore any effects of friction between the chain and the ground.

Solution.

• 1 meter off the ground: g
∫ 1

0
(1− x)25dx

• 2 meters off the ground. g
∫ 2

0
(2− x)25dx

• 3 meters off the ground. g
∫ 2

0
(3− x)25dx

�

Exercise 11.7. Suppose there is an underground oil deposit. The oil has density ρ. The
oil deposit is contained in a cavern that is the shape of a sphere of radius 100 meters. The
center of the sphere is 500 meters below the surface of the earth. The sphere is completely
full of oil. Determine the work require to pump all of the oil to the earth’s surface.

Solution. At depth 400 < z < 600, a thin horizontal slice of the sphere is a disk described by
x2 + y2 = 1002 − (z − 500)2, so it has a radius

√
1002 − (z − 500)2. This thin slice of liquid

is transported a distance of z. So, the work required is

ρg

∫ 600

400

z
√

1002 − (z − 500)2dz = ρg2500000π.

�

The Exercises below are OPTIONAL. The Exercises below will NOT be covered
on any quiz. These exercises are meant to help with your final exam studying.

Exercise 11.8 (Optional). If the following limit exists, calculate it:

lim
x→0

(1 + sin(3x2))
1

6x2 .

Solution. Let L be the limit. Then by continuity of ln,

lnL = lim
x→0

ln(1+sin(3x2))
1

6x2 = lim
x→0

ln(1 + sin(3x2))

6x2
L′H
= lim

x→0

6x cos(3x2)

[1 + sin(3x2)]12x
= lim

x→0

cos(3x2)

2[1 + sin(3x2)]
=

1

2
.

In the last equality, the function is continuous in x, so we can just “plug in” to get the
answer. �

Exercise 11.9 (Optional).
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• Evaluate
∫ π/12
0

sin2(3x)dx.

• Calculate
∫ √

1−x2
x2

dx. (Hint: cot′(x) = − csc2 x)

Solution.∫ π/12

0

sin2(3x)dx =

∫ π/12

0

(1/2)(1−cos(6x))dx = (1/2)(x−(1/6) sin(6x))|π/120 = (1/2)(π/12−1/6).

Using the substitution x = sin θ, dx = cos θ, (noting that −π/2 ≤ θ ≤ π/2, so cos θ ≥ 0)∫ √
1− x2
x2

dx =

∫ √
cos2 θ

sin2 θ
cos θ dθ =

∫
cos2

sin2 θ
dθ =

∫
cos2 θ csc2 θ dθ

=

∫
cos2 θ(− cot′ θ) dθ = − cos2 θ cot θ −

∫
2 cos θ sin θ cot θ dθ

= − cos3 θ/ sin θ −
∫

2 cos2 θ dθ = − cos3 θ/ sin θ −
∫

(1 + cos(2θ)) dθ

= − cos3 θ/ sin θ − θ − (1/2) sin(2θ) + C.

Using θ = sin−1(x), cos(sin−1(x)) =
√

1− x2 and sin(2θ) = 2 sin θ cos θ, we get∫ √
1− x2
x2

dx = −(1− x2)3/2/x− sin−1(x)− x
√

1− x2 + C. = −
√

1− x2/x− sin−1(x) + C.

�

Exercise 11.10 (Optional). Write the following function as a partial fraction.

3x2 − 5x+ 8

(x+ 1)(x2 − 2x+ 5)

Solution. The factor x2− 2x+ 5 does not have real roots since 22− 4(1)(5) < 0, so we write

3x2 − 5x+ 8

(x+ 1)(x2 − 2x+ 5)
=

A

x+ 1
+

Bx+ C

x2 − 2x+ 5
,

and solve for A,B,C. That is, we solve

3x2−5x+ 8 = A(x2−2x+ 5) + (Bx+C)(x+ 1) = x2(A+B) +x(−2A+C+B) + (5A+C).

So, A+B = 3, −2A+C +B = −5 and 5A+C = 8. Adding copies of the first equation to
the second and third, we get

A+B = 3, C + 3B = 1, −5B + C = −7.

Subtracting the second equation from the third,

A+B = 3, C + 3B = 1, −8B = −8.

So, B = 1, C = 1− 3B = 1− 3 = −2, and A = 3−B = 3− 1 = 2. That is

3x2 − 5x+ 8

(x+ 1)(x2 − 2x+ 5)
=

2

x+ 1
+

x− 2

x2 − 2x+ 5
.

�
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Exercise 11.11 (Optional). Decide whether or not the following integrals converge or di-
verge. You do not have to compute the values of the integrals.

• ∫ ∞
0

2 cos(x4)

x5 +
√
x+ 1

• ∫ 3

0

10

x(x2 + 2)

Solution. For any x ≥ 1, we have∣∣∣∣ 2 cos(x4)

x5 +
√
x+ 1

∣∣∣∣ ≤ 2

x5
= 2x−5

And for any 0 < x < 1, ∣∣∣∣ 2 cos(x4)

x5 +
√
x+ 1

∣∣∣∣ ≤ 2√
x

= 2x−1/2.

So, ∣∣∣∣∫ ∞
0

2 cos(x4)

x5 +
√
x+ 1

dx

∣∣∣∣ ≤ ∫ ∞
0

∣∣∣∣ 2 cos(x4)

x5 +
√
x+ 1

∣∣∣∣ dx ≤ ∫ 1

0

2x−1/2dx+

∫ ∞
1

2x−5dx <∞.

Therefore, the first integral converges.

The second integral diverges, since for any 0 < x < 3, x2 + 2 ≤ 11, so

10

x(x2 + 2)
≥ 10

x(11)
,

so ∫ 3

0

10

x(x2 + 2)
≥ 10

11

∫ 3

0

1

x
dx =∞.

�

Exercise 11.12 (Optional). Compute the volume of the solid of revolution obtained by
rotating the region D bounded by the curves x = 0, y = ln(x), and y = 0 about the line
x = −1.
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Solution. The volume is given by e.g. the method of cylindrical shells:

2π

∫ 1

0

(x− (−1)) |ln(x)| dx = 2π

∫ 1

0

(x+ 1) ln(1/x)dx = 2π

∫ 1

0

[x2/2 + x]′ ln(1/x)dx

= 2π[ln(1/x)(x2/2 + x)]10 −
∫ 1

0

[x2/2 + x][ln(1/x)]′dx

= 2π lim
s→0+

[ln(1/x)(x2/2 + x)]1s −
∫ 1

0

[x2/2 + x]x · (−x−2)dx

= 2π lim
s→0+

[− ln(1/s)(s2/2 + s)]−
∫ 1

0

[x2/2 + x]x · (−x−2)dx

= 2π

∫ 1

0

[x/2 + 1]dx = 2π[x+ x2/4]10 = 2π[1 + 1/4] = 5π/2.

We used here that lims→0+ s ln(1/s) = 0 and lims→0+ s
2 ln(1/s) = 0, which follows by

L’Hôpital’s rule. �

Exercise 11.13 (Optional). Determine whether or not the following series converge or
diverge.

•
∞∑
n=4

(−1)n
n

n2 + 4

•
∞∑
n=6

(−1)n
( 4e2n − 4

5en + 6e2n

)n−1
•

∞∑
n=2

2n sin(2/n).

•
∞∑
n=5

ln
(

1 +
1

n3

)
.

Solution. The first sum converges because it is an alternating series of decreasing positive
numbers. That is, it is of the form

∑∞
n=4(−1)nan, where a4 > a5 > a6 > · · · and limn→∞ an =

0, where an = n/(n2 + 4). Indeed,

an+1

an
=
n+ 1

n

n2 + 4

(n+ 1)2 + 4
=
n+ 1

n

n2 + 4

n2 + 4 + 2n
=
n3 + n2 + 4n+ 1

n3 + 2n2 + 4n
< 1,

since n2 > 1 when n ≥ 4.

For the second series, we use the ratio test to get

lim
n→∞

∣∣∣∣(−1)n
( 4e2n − 4

5en + 6e2n

)n−1∣∣∣∣1/n = lim
n→∞

∣∣∣∣ 4e2n − 4

5en + 6e2n

∣∣∣∣1−1/n = lim
n→∞

4

6
=

2

3
< 1.

Since this limit is less than 1, the ratio test says the sum converges.
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The third series diverges by the divergence test, since limn→∞ 2n sin(2/n) = 4 6= 0. (This
follows either by Taylor expanding the sin function, or by L’Hôpital’s rule.)

For the fourth sum, note that, by definition of ln,

0 ≤ ln(1 + n−3) =

∫ 1+n−3

1

x−1dx ≤ n−3 max
1≤x≤1+n−3

x−1 = n−3.

So, by comparison,

0 ≤
∞∑
n=5

ln
(

1 +
1

n3

)
≤

∞∑
n=5

n−3 <∞.

The last sum converges by e.g. the integral test, since
∫∞
4
x−3dx < ∞. So, the fourth sum

converges. �

Exercise 11.14 (Optional). Define f(x) = 4
5−x for any real x.

• Show that f is an increasing function, and for any x in [0, 3], f(x) is also in [0, 3].
• Let b0 = 5/2, and for any n ≥ 1 define bn = f(bn−1). Show that, for any n ≥ 0,

0 ≤ bn ≤ 3. Then show that the sequence b0, b1, . . . is decreasing.
• Show that the sequence b0, b1, . . . converges to a limit L. Find the value of L.

Solution. Note that f ′(x) = 4/(5− x)2 > 0 so f is always increasing. Also, f(0) = 4/5 and
f(3) = 4/2 = 2, so 0 < x < 3 implies that 4/5 < f(x) < 2, so that 0 < f(x) < 3 holds for
any x in [0, 3].

We now show that 0 ≤ bn ≤ 3 by induction. The base case holds since b0 ∈ [0, 3]. We now
induct on n. We assume bn ∈ [0, 3] and we need to show that bn+1 ∈ [0, 3]. Recall that f
is an increasing function on [0, 3]. That is, for any x ∈ [0, 3], f(0) ≤ f(x) ≤ f(3). That
is, for any x ∈ [0, 3], 4/5 ≤ f(x) ≤ 2. By the inductive hypothesis, bn ∈ [0, 3], so that
bn+1 = f(bn) ∈ [4/5, 2] ⊆ [0, 3]. Having completed the inductive step, the assertion follows
by induction.

We now show that b0, b1, . . . is decreasing by induction. The base case holds since b0 = 5/2
and b1 = 4/(5 − 5/2) = 4/(5/2) = 8/5 < b0. We now induct on n. We assume bn+1 < bn
and we need to show that bn+2 < bn+1. Recall that f is an increasing function on [0, 3].
Since bn+1 < bn, we therefore have f(bn+1) < f(bn). By definition of bn+1, this says that
bn+2 < bn+1. That is, we have completed the inductive step. Having completed the inductive
step, the assertion follows by induction.

The sequence b0, b1, . . . is monotonic and bounded by part(b). It therefore converges. Let
L = limn→∞ bn. Then, using the definition of bn+1 and the continuity of f on [0, 3],

L = lim
n→∞

bn = lim
n→∞

bn+1 = lim
n→∞

f(bn) = f( lim
n→∞

bn) = f(L).

That is, L = f(L). That is, L = 4/(5 − L), i.e. −L2 + 5L − 4 = 0, i.e. L = [−5 ±√
25− 16]/(−2) = (5/2) ± 3/2. That is, L = 4 or L = 1. Since b0 = 5/2 and the sequence

is decreasing, we conclude that L = 1. �
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Exercise 11.15 (Optional). For any real x, define

f(x) =
∞∑
n=1

(−1)n+1nx3n+1.

• Find the interval of convergence of f . That is, find all points where the sum converges.
• Find a simple formula for f (that does not involve any

∑
signs).

Solution. Let an = (−1)n+1nx3n+1. From the ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)x3n+4

nx3n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣n+ 1

n

∣∣∣∣ |x|3 = |x|3 .

So, the ratio test implies that the sum converges when |x| < 1 and it diverges when |x| > 1.
To check the convergence when x = ±1 we just plug in. We get

f(1) =
∞∑
n=1

(−1)n+1n, f(−1) =
∞∑
n=1

(−1)4n+2n.

Both sums diverge, by the divergence test. So, the interval of convergence is (−1, 1), and
the sum diverges elsewhere.

To find a formula for f , recall that, for any |x| < 1,

1

1− x
=
∞∑
n=0

xn

So
1

1 + x
=
∞∑
n=0

(−1)n(−x)n =
∞∑
n=0

(−1)nxn

1

1 + x3
=
∞∑
n=0

(−1)nx3n

Taking derivatives of both sides (which can be done term-by-term within the radius of
convergence)

−3x2

(1 + x3)2
=
∞∑
n=0

(−1)n3nx3n−1

Multiplying both sides by −x2/3 then gives

x4

(1 + x3)2
=
∞∑
n=0

(−1)n+1nx3n+1

�

Exercise 11.16 (Optional). Approximate the value of the integral∫ 1

0

x

3 + x3
dx

within four decimal places of accuracy.
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Solution. When |x| < 1 we have by Taylor series (and the previous problem)

1

1 + x3
=
∞∑
n=0

(−1)nx3n

1

3 + 3x3
=

1

3

∞∑
n=0

(−1)nx3n

1

3 + x3
=

1

3

∞∑
n=0

(−1)n(x/31/3)3n =
1

3

∞∑
n=0

(−1)n3−nx3n

x

3 + x3
=

1

3

∞∑
n=0

(−1)n3−nx3n+1.

The first series converges whenever |x| < 1. Since we replaced x with x/31/3, the last series
converges whenever |x| < 31/3. Integrating both sides term by term (which is allowed when
0 ≤ x ≤ 1, since this is inside the radius of convergence), we get∫ 1

0

x

3 + x3
dx =

1

3

∞∑
n=0

(−1)n3−n
∫ 1

0

x3n+1dx =
1

3

∞∑
n=0

(−1)n3−n
1

3n+ 2
.

This series S is an alternating series. Consider its partial sum

SN =
N∑
n=0

(−1)n3−n−1
1

3n+ 2
.

The error bound for alternating series says that

|S − SN | < aN+1,

where aN = 3−N−1 1
3N+2

. So, we just have to find N such that aN+1 < 10−5. This holds when

N = 6, since 3−8/23 < 10−5. And

S6 =
1

3(2)
− 1

9(5)
+

1

27(8)
− 1

81(11)
+

1

243(14)
− 1

729(17)
≈ .1481

In conclusion, the first four decimal places of the integral
∫ 1

0
x

3+x3
dx are: .1481

�
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