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1. Introduction

As you have covered in your previous calculus classes, the subject of calculus has many
applications. Here are some applications that are specific to multivariable calculus. As we
have seen in the single variable setting, optimization can be quite useful. Often we want
to optimize some function of more than one variable, and doing so requires tools from mul-
tivariable calculus. Such optimization procedures appear in economics and engineering.
Fluid mechanics uses multivariable calculus to describe the flow of fluids through different
geometries and along different surfaces. Within physics, the theory of general relativity
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takes further many of the ideas that we will describe in this course, though this physical the-
ory uses much more geometry than we will encounter. Within medicine, the mathematics
of MRI and CT scans was discovered roughly forty years before these devices were invented.
The relevant mathematics here uses both multivariable calculus and Fourier analysis.

1.1. Plan for the Course. We will first introduce vectors, and then discuss surfaces and
build up our intuition for dealing with curves and surfaces in two and three dimensions.
We then discuss functions of several variables and their derivatives. The course ends with
optimization of functions of multiple variables. The ensuing courses discusses integration of
functions of several variables.

2. Vectors

When we change from calculus in one dimension to calculus in two and three dimensions,
we naturally need to deal with the extra dimensions. The most convenient way to deal with
these extra dimensions is to introduce vectors. We will see that the operations of addition
and subtraction on real numbers will extend to vectors. However, we cannot multiply two
vectors like they are real numbers. And there are new things to consider for vectors that
have no analogue for real numbers. For example, two vectors have an angle between them.

We begin by defining vectors in the plane.

2.1. Vectors in the Plane. We denote the plane as the set of all ordered pairs (x, y) where
x and y are both real numbers. We use the notation R2 to denote the plane.

Definition 2.1. A two-dimensional vector v is a directed line segment. This line segment
has a beginning point P and a terminal point Q, where P,Q ∈ R2. Suppose P = (x1, y1) and
if Q = (x2, y2), where x1, x2, y1, y2 are real numbers. We define the length or magnitude
of the vector v by

‖v‖ =
√

(x1 − x2)2 + (y1 − y2)2.
That is, by the Pythagorean Theorem, ‖v‖ is the length of the hypotenuse of the right
triangle, whose side lengths are |x1 − x2| and |y1 − y2|.

Remark 2.2. Unless otherwise stated, all vectors from now on will have their beginning
point P at the origin, so that P = (0, 0). We then will write any two-dimensional vector v
in the form v = (x, y). Then

‖v‖ =
√
x2 + y2.

Let λ be a real number. (We often refer to real numbers as scalars.) Define λv = (λx, λy).
Note that

‖λv‖ =
√
λ2x2 + λ2y2 =

√
λ2(x2 + y2) = |λ| ‖v‖ .

Definition 2.3. Two vectors v, w ∈ R2 are said to be parallel if there is some scalar λ ∈ R
such that v = λw.

We can add vectors together as follows.

Definition 2.4. Suppose v = (x1, y1) and w = (x2, y2). Define

v + w = (x1 + x2, y1 + y2).
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Visually, the vector v +w is obtained by taking the vector v, placing the beginning point of
w at the endpoint of v, so that the resulting endpoint is that of v + w. We also define

v − w = (x1 − x2, y1 − y2).
Note that

v + (0, 0) = (0, 0) + v = v, v − v = (0, 0).

Example 2.5.

(1, 2) + 2(3, 0) = (1, 2) + (6, 0) = (7, 2).

Proposition 2.6. For any vectors u, v, w ∈ R2 and for any scalar λ ∈ R,

v + w = w + v.

u+ (v + w) = (u+ v) + w.

λ(u+ v) = (λu) + (λv).

Definition 2.7. A vector v ∈ R2 such that ‖v‖ = 1 is called a unit vector. If v is any
nonzero vector, then the vector

ev =
v

‖v‖
is a unit vector which is parallel to v. To see that ev is a unit vector, we use Remark 2.2 to

get ‖ev‖ =
∥∥∥ v
‖v‖

∥∥∥ = ‖v‖
‖v‖ = 1.

Example 2.8. Consider the vector v = (1, 2). Then ev = v
‖v‖ = (1,2)√

5
= (1/

√
5, 2/
√

5) is a

unit vector, which is parallel to v.

Remark 2.9. Some textbooks use the notation ~i = (1, 0) and ~j = (0, 1), so that a vector

v = (x, y) ∈ R2 can be written as v = x~i+ y~j. However, we will not use this notation.

Theorem 2.10 (Triangle Inequality). For any vectors v, w ∈ R2, we have

‖v + w‖ ≤ ‖v‖+ ‖w‖ .

2.2. Vectors in Three Dimensions. We denote three-dimensional space as the set of all
ordered pairs (x, y, z) where x, y and z are all real numbers. We use the notation R3 to
denote three-dimensional space.

When drawing vectors in the plane, we always use the convention that the x-axis is the
horizontal axis, and the y-axis is the vertical axis. We will use a similar convention when
plotting vectors in three-dimensional space R3. However, we now need to orient the axes
using the right hand rule. Using your right hand, if the fingers curl from the x-axis to the
y-axis, then the z-axis will point in the direction of your extended thumb.

In addition to coordinate axes, we also now have coordinate planes. The xy-plane is the
set of all (x, y, z) ∈ R3 such that z = 0. The xz-plane is the set of all (x, y, z) ∈ R3 such
that y = 0. The yz-plane is the set of all (x, y, z) ∈ R3 such that x = 0. These are the
three coordinate planes. These planes divide R3 into eight regions, which we call octants.
The octant where x ≥ 0, y ≥ 0 and z ≥ 0 is called the first octant.

We can now derive a distance formula between points, using the Pythagorean Theorem,
just as we did in the plane R2.
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Theorem 2.11. The distance from the point (x, y, z) ∈ R3 to the origin (0, 0, 0) is√
x2 + y2 + z2.

Proof. Consider the point (x, y, 0) in the xy-plane. From our distance formula in the plane,

the distance from this point to the origin is
√
x2 + y2. Consider the right triangle with

vertices (0, 0, 0), (x, y, 0) and (x, y, z). By the Pythagorean Theorem, the length of the
hypotenuse (which is also the distance from (x, y, z) to the origin) is√

(
√
x2 + y2)2 + z2 =

√
x2 + y2 + z2.

�

Remark 2.12. Consequently, the distance between any two points (x1, y1, z1) ∈ R3 and
(x2, y2, z2) ∈ R3 is √

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

We now give a few examples of surfaces in R3.

Definition 2.13. A sphere of radius r > 0 and center (a, b, c) ∈ R3 is defined as the
set of points of distance exactly r from the point (a, b, c). So, the sphere is the set of all
(x, y, z) ∈ R3 such that √

(x− a)2 + (y − b)2 + (z − c)2 = r.

Equivalently, this sphere is described as the set of all (x, y, z) ∈ R3 such that

(x− a)2 + (y − b)2 + (z − c)2 = r2.

Example 2.14. The set of all (x, y, z) such that x2 + y2 + z2 ≤ r2 is the set of all points of
distance at most r from the origin. This set is known as the solid ball of radius r.

Example 2.15. The set of all (x, y, z) such that x2 + y2 + z2 = r2 and z ≥ 0 is the upper
hemisphere of the sphere of radius r.

Remark 2.16. Note that when z = 0 and c = 0, the equation (x−a)2+(y−b)2+(z−c)2 = r2

reduces to the equation for a circle of radius R and center (a, b):

(x− a)2 + (y − b)2 = R2.

That is, when c = 0, the sphere of radius R is cut by the plane z = 0, producing a circle.

Definition 2.17. A cylinder of radius r > 0 with displacement (a, b, 0) ∈ R3 is defined as
the set of points (x, y, z) ∈ R3 such that

(x− a)2 + (y − b)2 = r2.

Note that the variable z is unrestricted.

We can readily extend addition, length, etc. to the case of three-dimensional vectors.

Definition 2.18. A three-dimensional vector v = (x, y, z) is a directed line segment
from the origin (0, 0, 0) to the point (x, y, z). We define the length or magnitude of the
vector v by

‖v‖ =
√
x2 + y2 + z2.
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Let λ ∈ R. Define λv = (λx, λy, λz). Note that

‖λv‖ = |λ| ‖v‖ .

Two vectors v, w ∈ R3 are said to be parallel if there is some scalar λ ∈ R such that v = λw.

We can add vectors together as follows.

Definition 2.19. Suppose v = (x1, y1, z1) and w = (x2, y2, z2). Define

v + w = (x1 + x2, y1 + y2, z1 + z2).

v − w = (x1 − x2, y1 − y2, z1 − z2).
Note that

v + (0, 0, 0) = (0, 0, 0) + v = v, v − v = (0, 0, 0).

For any vectors u, v, w ∈ R3 and for any scalar λ ∈ R,

v + w = w + v.

u+ (v + w) = (u+ v) + w.

λ(u+ v) = (λu) + (λv).

Definition 2.20. A vector v ∈ R3 such that ‖v‖ = 1 is called a unit vector. If v is any
nonzero vector, then the vector

ev =
v

‖v‖
is a unit vector which is parallel to v. To see that ev is a unit vector, note that ‖ev‖ =∥∥∥ v
‖v‖

∥∥∥ = ‖v‖
‖v‖ = 1.

Example 2.21. Consider the vector v = (1, 2). Then ev = v
‖v‖ = (1,2)√

5
= (1/

√
5, 2/
√

5) is a

unit vector, which is parallel to v.

Remark 2.22. Some textbooks use the notation ~i = (1, 0, 0), ~j = (0, 1, 0) and ~k = (0, 0, 1)

so that a vector v = (x, y, z) ∈ R3 can be written as v = x~i+ y~j + z~k. However, we will not
use this notation.

Theorem 2.23 (Triangle Inequality). For any vectors v, w ∈ R3, we have

‖v + w‖ ≤ ‖v‖+ ‖w‖ .

2.3. Dot Product, Cross Product. The dot product operation allows us to combine two
vectors, producing a scalar. In some sense, the dot product measures how close two vectors
are. In another sense, the dot product of two vectors measures both their length and their
angle simultaneously. For now we will just define the dot product, but later on we will give
more geometric meaning to it.

Definition 2.24 (Dot Product). Let v = (x1, y1) and let w = (x2, y2) be vectors in R2.
We define the dot product of v and w by

v · w = x1x2 + y1y2.
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Definition 2.25 (Dot Product). Let v = (x1, y1, z1) and let w = (x2, y2, z2) be vectors in
R3. We define the dot product of v and w by

v · w = x1x2 + y1y2 + z1z2.

Note that
√
v · v =

√
x21 + y21 + z21 = ‖v‖.

Example 2.26.

(1, 2, 3) · (0, 5, 7) = 0 · 1 + 2 · 5 + 3 · 7 = 10 + 21 = 31.

Proposition 2.27 (Properties of the dot product). Let u, v, w ∈ R3 and let λ ∈ R.
Then

• (0, 0, 0) · v = v · (0, 0, 0) = 0.
• v · w = w · v.
• (λv) · w = v · (λw) = λ(v · w).
• u · (v + w) = (u · v) + (u · w), and (v + w) · u = (v · u) + (w · u).

Definition 2.28. The angle 0 ≤ θ ≤ π between two nonzero vectors v, w is defined to be

θ = cos−1
(

v

‖v‖
· w

‖w‖

)
.

That is, the dot product of the unit vector in the direction v with the unit vector in the
direction w is the cosine of θ. Written another way,

v · w = ‖v‖ ‖w‖ cos θ, cos θ =
v

‖v‖
· w

‖w‖
.

In this sense, the dot product of v and w contains information about the lengths of v and
w, as well as the angle between these vectors.

Remark 2.29. Recall that the range of cos−1 is [0, π], so our definition of θ automatically
means that θ ∈ [0, π].

Definition 2.30. Two nonzero vectors v, w are said to be perpendicular or orthogonal
if the angle θ between them is π/2. In this case, we write v ⊥ w. Since cos(π/2) = 0, and
since v · w = ‖v‖ ‖w‖ cos θ = 0, we see that the vectors v, w are perpendicular if and only if
v · w = 0. (If v · w = 0, then θ = cos−1(0), so θ = π/2.)

Remark 2.31. If v · w > 0, then θ < π/2, that is, the angle between v and w is less than
π/2. If v · w < 0, then θ > π/2, that is, the angle between v and w is more than π/2. Both
assertions follow from the definition of θ.

We will often need to project one vector onto another. Suppose we have a vector v and we
want to project it onto the nonzero vector w. That is, we want to write v = αw + n where
α ∈ R and n is perpendicular to w. In this case, we say that αw is the projection of v onto
w, and we denote αw = projw(v). To find α, note that since n ⊥ w,

v · w = (αw + n) · w = α(w · w) + (n · w) = α(w · w).

So, solving for α, we get

α =
v · w
w · w

.
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We therefore see that

projw(v) =
( v · w
w · w

)
w =

(
v · w
‖w‖2

)
w =

(
v · w

‖w‖

)
w

‖w‖
.

That is, projw(v) is given by taking the unit vector w/ ‖w‖, and multiplying it by the dot
product of v against the unit vector w/ ‖w‖.

Example 2.32. Write the vector v = (1, 2) as a sum of its projection onto w = (2, 1), plus
a vector perpendicular to w.

We know that

projw(v) =
v · w
w · w

w =
4

5
(2, 1).

We want to write

v = projw(v) + (v − projw(v)) = (8/5, 4/5) + (−3/5, 6/5).

Note that (8/5, 4/5) · (−3/5, 6/5) = 0.

Remark 2.33. Let v, w be vectors. As above, we can write v = projw(v)+n, where n·w = 0.
Consider then the right triangle with edges formed by v, projw(v) and n. The hypotenuse
of this triangle has length ‖v‖. And one of its other edges has length

‖projw(v)‖ =
∣∣∣ v · w
w · w

∣∣∣ ‖w‖ =
‖v‖ ‖w‖ cos θ

‖w‖2
‖w‖ = ‖v‖ cos θ.

That is, θ as defined above is the same as our “usual” definition of the angle θ between two
edges of a triangle.

2.3.1. Cross Product. The cross product allows us to multiply two vectors v, w in R3, pro-
ducing a third vector v × w in R3.

Warning 1: The cross product is not defined for vectors in R2.
Warning 2: The cross product is not commutative. That is, in general, we will have

v × w 6= w × v. In fact, v × w = −(w × v).

Definition 2.34 (Cross Product). Let v = (x1, y1, z1) ∈ R3 and let w = (x2, y2, z2) ∈ R3.
We define the cross product v × w ∈ R3 of v and w by

v × w = (y1z2 − z1y2 , z1x2 − x1z2 , x1y2 − y1x2).

Thankfully, there is a nice way to remember this formula. In order to remember it, we
need to discuss the determinant of a matrix.

Definition 2.35 (Determinant). Let A =

(
a b
c d

)
be a 2× 2 matrix. We define

det(A) = |A| = ad− bc.

Let A =

a b c
d e f
g h i

 be a 3× 3 matrix. We define

det(A) = |A| = a · det

(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
= a(ei− fh) + b(fg − di) + c(dh− eg).
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Example 2.36.

det

(
1 2
3 4

)
= 1 · 4− 2 · 3 = −2.

det

 1 2 3
0 0 4
−1 2 5

 = 1 · det

(
0 4
2 5

)
− 2 · det

(
0 4
−1 5

)
+ 3 · det

(
0 0
−1 2

)
= 1 · (0 · 5− 4 · 2)− 2(0 · 5− 4 · (−1)) + 3(0 · 2− 0 · (−1))

= −8− 8 + 0 = −16.

Remark 2.37. We can now write a way to remember the cross product formula. Let
v = (x1, y1, z1) ∈ R3 and let w = (x2, y2, z2) ∈ R3. Then, informally,

v × w = det

(1, 0, 0) (0, 1, 0) (0, 0, 1)
x1 y1 z1
x2 y2 z2


= (1, 0, 0) det

(
y1 z1
y2 z2

)
− (0, 1, 0) det

(
x1 z1
x2 z2

)
+ (0, 0, 1) det

(
x1 y1
x2 y2

)
= (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2).

Proposition 2.38 (Properties of Cross Product). Let u, v, w ∈ R3 be vectors, and let
a ∈ R. Then

• (av)× w = v × (aw) = a(v × w).
• u× (v + w) = (u× v) + (u× w).
• (v + w)× u = (v × u) + (w × u).
• v × w = −(w × v).
• (0, 0, 0)× u = (0, 0, 0).
• v × v = (0, 0, 0).
• v × w = (0, 0, 0) if and only if v and w are parallel.

Many of these properties follow readily from the definition of the cross product, Definition
2.34. We demonstrate that v × w = −(w × v).

Proof. Let v = (x1, y1, z1) ∈ R3 and let w = (x2, y2, z2) ∈ R3. Then

v × w = (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2)
= −(y2z1 − z2y1, z2x1 − x2z1, x2y1 − y2x1) = −w × v

�

Theorem 2.39 (Geometric Description of Cross Product). Let v, w ∈ R3.

(i) v × w is orthogonal to v and to w.
(ii) ‖v × w‖ = ‖v‖ ‖w‖ |sin θ|, where θ is the angle between v and w.

(iii) The ordered set of vectors v, w, v × w follows the right-hand rule.

We will demonstrate these properties by example.
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Example 2.40.

(1, 0, 0)× (0, 1, 0) = det

(1, 0, 0) (0, 1, 0) (0, 0, 1)
1 0 0
0 1 0

 = (0, 0, 1).

Evidently, (1, 0, 0) · (0, 0, 1) = 0 and (0, 1, 0) · (0, 0, 1) = 0, so (1, 0, 0)× (0, 1, 0) is orthogonal
to (1, 0, 0) and to (0, 1, 0).

(1, 0, 0)× (3, 1,
√

2) = det

(1, 0, 0) (0, 1, 0) (0, 0, 1)
1 0 0

3 1
√

2


= −
√

2(0, 1, 0) + (0, 0, 1) = (0,−
√

2, 1).

Note that θ = cos−1[(1, 0, 0) · (1/
√

12)(3, 1, 2)] = cos−1(3/
√

12) = cos−1(
√

3/2) = π/6. So,
‖(1, 0, 0)× (3, 1,

√
2)‖ = ‖(0,−

√
2, 1)‖ =

√
3 = 1 ·

√
12 · 1

2
= ‖(1, 0, 0)‖ ‖(3, 1,

√
2)‖ sin(θ).

The curious reader can read proofs of properties (i) and (ii) below.

Proof of (i). Let v = (x1, y1, z1) ∈ R3 and let w = (x2, y2, z2) ∈ R3. Then

v · (v × w) = (x1, y1, z1) · (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2)
= x1y1z2 − z1y2x1 + y1z1x2 − y1x1z2 + z1x1y2 − z1y1x2 = 0.

So, v × w is perpendicular to v. Similarly, v × w is perpendicular to w. �

Proof of (ii). We want to show ‖v × w‖ = ‖v‖ ‖w‖ |sin θ| = ‖v‖ ‖w‖
√

1− cos2(θ). So, let’s

verify ‖v × w‖2 = ‖v‖2 ‖w‖2 (1− cos2(θ)) = ‖v‖2 ‖w‖2 − (v · w)2.

‖v × w‖2 = (y1z2 − z1y2)2 + (z1x2 − x1z2)2 + (x1y2 − y1x2)2

= y21z
2
2 + z21y

2
2 − 2y1y2z1z2 + z21x

2
2 + x21z

2
2 − 2x1x2z1z2 + x21y

2
2 + y21x

2
2 − 2x1x2y1y2

= (x21 + y21 + z21)(x22 + y22 + z22)− (x1x2 + y1y2 + z1z2)
2

= ‖v‖2 ‖w‖2 − (v · w)2.

�

The cross product can also be related to volumes in the following way.

Theorem 2.41 (Cross Product, Area, and Volume). Let u, v, w be vectors in R3.

• The parallelogram with edges v, w has area ‖v × w‖.
• The parallelepiped with edges u, v, w has volume |u · (v × w)|.

Remark 2.42. Let v, w be vectors in R2. Write v = (a, b) and w = (c, d). Then the
parallelogram defined by v, w has area

‖(a, b, 0)× (c, d, 0)‖ = ‖(0, 0, ad− bc)‖ = |ad− bc| =
∣∣∣∣det

(
a b
c d

)∣∣∣∣ .
9



Remark 2.43. Let u = (x1, y1, z1) let v = (x2, y2, z2) and let w = (x3, y3, z3) be vectors in
R3. Then |u · (v × w)| is equal to the determinant of the matrix with rows u, v, w. To see
this, observe

u · (v × w) = (x1, y1, z1) ·
(

det

(
y2 z2
y3 z3

)
, − det

(
x2 z2
x3 z3

)
, det

(
x2 y2
x3 y3

))
= x1 det

(
y2 z2
y3 z3

)
− y1 det

(
x2 z2
x3 z3

)
+ z1 det

(
x2 y2
x3 y3

)

= det

x1 x2 x3
y1 y2 y3
z1 z2 z3

 .

Example 2.44. The parallelogram defined by the vectors (1, 2) and (2, 1) has area equal to∣∣ det

(
1 2
2 1

) ∣∣ = |1− 4| = 3.

Example 2.45. The parallelepiped defined by the vectors (1, 0, 0), (0, 2, 1) and (0, 0, 3) has

volume
∣∣∣ det

1 0 0
0 2 1
0 0 3

∣∣∣ = 6.

2.4. Parametric Curves. Let t be a real parameter. We will consider curves defined by
functions of t. Consider the following function, whose input is a real parameter, and whose
output is a vector in the plane.

s(t) = (cos(t), sin t), 0 ≤ t ≤ 2π.

The function s(t) is called a parametrization. The function s(t) defines a curve as follows.
For each t with 0 ≤ t ≤ 2π, we plot the point s(t) = (cos(t), sin(t)) in the plane. The set
of all such points is then a curve in the plane. In fact, for this function s(t), the resulting
curve is the unit circle C, or the set of points (x, y) in the plane such that x2 + y2 = 1.

We write a general parametrization in the plane in the form

s(t) = (x(t), y(t)),

where x(t) is a real-valued function of t, and y(t) is a real-valued function of t.

Remark 2.46. We make a distinction between the parametrization s and the curve C itself.
In particular, the parametrization is a function, but the curve C is a set of points. To see
the difference, note that s(t) = (cos(t), sin(t)) with 0 ≤ t ≤ 4π is a parametrization that
always lies in the unit circle C. However, s goes around the circle twice.

Example 2.47 (Parametrizing Lines). Any line in the plane can be parametrized in the
following way

s(t) = (a+ bt, c+ dt), a, b, c, d ∈ R, −∞ < t <∞.
For example, let’s describe the line that passes through the points (0, 1) and (2, 3). We know
from single-variable calculus that this line has the equation y = x + 1. So, re-naming the
parameter x as t, we see that s(t) = (t, t + 1) gives the correct parametrization of this line,
where −∞ < t <∞
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It is possible to find different parametrizations for the same line. For example, the
parametrization s1(t) = (t3, t3 + 1) also parametrizes this line, where −∞ < t < ∞. Also,
s2(t) = (t+ 1, (t+ 1) + 1) parametrizes this line.

We can also consider parametrized curves in three-dimensions. A general parametrization
in R3 in the form

s(t) = (x(t), y(t), z(t)),

where x(t) is a real-valued function of t, y(t) is a real-valued function of t, and z(t) is a
real-valued function of t.

Example 2.48. Let (x0, y0, z0) ∈ R3 and let v = (a, b, c) ∈ R3 be a vector. The line passing
through (x0, y0, z0) in the direction v can be parametrized as

s(t) = (x0, y0, z0) + tv = (x0 + ta, y0 + tb, z0 + tb), −∞ < t <∞.

Example 2.49 (Intersection of Lines). Suppose we parametrize two lines s(t) = (t, 4t, 3+
t) and r(t) = (2 + t, t, 3− t). Do these lines intersect?

If so, then we would have t1, t2 such that s(t1) = r(t2). That is, we would have

t1 = 2 + t2, 4t1 = t2, 3 + t1 = 3− t2.

The third equation says that t1 = −t2 and the second equation says t2 = 4t1. Together, they
say that t1 = −4t1, so that t1 = 0. Then t2 = −t1 = 0 as well. But then 0 = t1 6= 2 = 2 + t2,
so it cannot occur that s(t1) = r(t2). So, these lines do not intersect.

Note that two lines can either: coincide, intersect at a single point, or not intersect at all.

Example 2.50. Let (x0, y0, z0) ∈ R3 and let (x1, y1, z1) ∈ R3. The line passing through both
of these points can be parametrized by

s(t) = t(x1, y1, z1) + (1− t)(x0, y0, z0), −∞ < t <∞.

Note that s(0) = (x0, y0, z0), s(1) = (x1, y1, z1), and s(1/2) is the midpoint between (x0, y0, z0)
and (x1, y1, z1).

Example 2.51. An infinite helix can be parametrized by

s(t) = (cos(t), sin(t), t), −∞ < t <∞.

Example 2.52 (Distance from a Point to a Line). Let u, v, w be fixed vectors. Let
s(t) = u+ tv be a parametrization of a line through the origin. We define the distance of w
from the line to be the minimum value of ‖w − s(t)‖ over all t. Equivalently, the distance
of w from the line is the minimum value of ‖w − s(t)‖2 over all t. Observe

‖w − s(t)‖2 = (w − s(t)) · (w − s(t)) = (w · w)− 2(w · s(t)) + (s(t) · s(t))).

Taking the derivative in t, using the product rule, and setting this derivative equal to zero,

0 =
d

dt
‖w − s(t)‖2 = −2(w · s′(t)) + 2(s(t) · s′(t)) = 2(s(t)− w) · (s′(t)) = 2(s(t)− w) · v.

That is, when s(t) has minimal distance from w, we know that s(t)− w is orthogonal to v.
This fact allows us to find the minimum value of ‖s(t)− w‖
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Example 2.53. Find the distance of w = (1, 0, 1) from the line s(t) = (0, 1, 1) + t(1, 0, 0).
We need to find t such that s(t)− (1, 0, 1) = (−1, 1, 0) + t(1, 0, 0) is orthogonal to (2, 1, 0).

That is, we need to solve for t when (t − 1, 1, 0) · (1, 0, 0) = 0. That is, we need to find t
such that t − 1 = 0. We therefore find that t = 1. So, when s(t) = s(1) = (1, 1, 1), the
distance ‖s(t)− w‖ is minimized. For this t, we have ‖s(t)− w‖ = ‖(0, 1, 0)‖ = 1. So, the
point w = (1, 0, 1) has distance 1 from the line.

2.5. Planes in Three Dimensions.

Definition 2.54. Let n = (a, b) ∈ R2 be fixed and nonzero, let d be a constant, and let
(x, y) ∈ R2 be a variable point. Recall that a line in the plane can be specified as the set of
all points (x, y) ∈ R2 such that

ax+ by = d.

Written another, way, a line is the set of all points (x, y) ∈ R2 such that

n · (x, y) = d.

That is, a line is the set of all vectors (x, y) which have a constant dot product with the
vector n. In the case d = 0, the line is the set of all vectors that are orthogonal to n. For
this reason, we call n a normal vector to the line. (In the case d 6= 0, the line n · (x, y) = d
is a translation of the line n · (x, y) = 0.)

Definition 2.55. Let n = (a, b, c) ∈ R3 be fixed and nonzero, let d be a constant and let
v = (x, y, z) ∈ R3 be a variable point. Then a plane is defined as the set of all points
(x, y, z) ∈ R3 such that

ax+ by + cz = d.

Written another, way, a plane is the set of all points (x, y, z) ∈ R3 such that

n · (x, y, z) = d.

That is, a plane is the set of all vectors (x, y, z) which have a constant dot product with
the vector n. In the case d = 0, the plane is the set of all vectors that are orthogonal to
n. For this reason, we call n a normal vector to the plane. (In the case d 6= 0, the plane
n · (x, y, z) = d is a translation of the plane n · (x, y, z) = 0.)

Remark 2.56. A plane which passes through the point (x0, y0, z0) with normal vector n =
(a, b, c) can be written as the set of all (x, y, z) such that

n · (x− x0, y − y0, z − z0) = 0.

Example 2.57. The plane which passes through (0, 1, 2) with normal vector (3, 0, 2) is
described as the set of all (x, y, z) such that (3, 0, 2) · (x, y − 1, z − 2) = 0.

Example 2.58 (Plane through Three Points). Suppose we want to find the equation
for a plane passing through (1, 0, 0), (0, 2, 0) and (0, 1, 3). In order to find the equation of
this plane, it is most convenient to find two vectors parallel to the plane, and to then take
their cross product to find the normal vector. For example, (0, 2, 0) − (1, 0, 0) is parallel
to the plane, and so is (0, 1, 3) − (1, 0, 0). (The plane will satisfy n · (x, y, z) = d, so that
n · (0, 2, 0) = d and n · (1, 0, 0) = d, so that n · ((0, 2, 0) − (1, 0, 0)) = 0. That is, (0, 2, 0) −
(1, 0, 0) is perpendicular to n. That is, (0, 2, 0)− (1, 0, 0) is parallel to the plane. Similarly,
(0, 1, 3)− (1, 0, 0) is parallel to the plane.)
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Now, to find a normal vector n, we compute

n = (−1, 2, 0)× (−1, 1, 3) = (6, 3,−1 + 2) = (6, 3, 1).

So, the plane can be written as the set of all (x, y, z) such that (6, 3, 1) · (x, y, z) = d for some
d. To find d, note that (1, 0, 0) is in the plane, so (6, 3, 1) · (1, 0, 0) = 6 = d. In conclusion,
the plane is described as the set of all (x, y, z) where

(6, 3, 1) · (x, y, z) = 6.

And we can verify that (1, 0, 0), (0, 2, 0) and (0, 1, 3) all satisfy this equation.

Example 2.59 (Intersection of Two Planes). Let a, b, c, d, p, q, r, s be constants. What is
the intersection of the planes ax+by+cz = d and px+qy+rz = s? (Assume (a, b, c) 6= (0, 0, 0)
and (p, q, r) 6= (0, 0, 0).)

We could solve for one variable and substitute that equation into the other equation,
and this could give a (potentially complicated) algebraic description of the intersection.
It is sometimes more convenient to first find a vector parallel to the line of intersection.
This vector is given by (a, b, c) × (p, q, r). Note that if (x, y, z) is in the first plane, then
(x, y, z) + t(a, b, c)× (p, q, r) is also in the first plane, since (a, b, c) · [(a, b, c)× (p, q, r)] = 0,
so (a, b, c) · ((x, y, z) + t(a, b, c)× (p, q, r)) = (a, b, c) · (x, y, z) = d. That is, the parametrized
line s(t) = (x, y, z) + t(a, b, c)× (p, q, r) lies in the first plane. By similar reasoning, this line
also lies in the second plane (if (x, y, z) is in the second plane too). So, the parametrized
line s(t) = (x, y, z) + t(a, b, c)× (p, q, r) lies in both planes.

For example, consider the planes x+ y+ 2z = 1 and 2x+ y = 3. The line of intersection is
then parallel to (1, 1, 2)× (2, 1, 0) = (−2, 4,−1). Also, equating the planes gives one point in
the intersection. That is, we have x = 1−y−2z, so 2(1−y−2z)+y = 3, so −y−4z = 1. So,
for example, the point (0, 3,−1) is in the line of intersection. Since this line also is parallel
to the vector (−2, 4,−1), we can parametrize this line by u(t) = (0, 3,−1) + t(−2, 4,−1).

Note that the two planes are parallel if and only if their normal vectors are parallel. So,
the two planes are parallel if and only if (a, b, c)× (p, q, r) = (0, 0, 0).

Example 2.60 (Distance from a Point to a Plane). What is the distance of the point
w ∈ R3 from the plane ax+ by + cz = 0?

The distance from w to the plane ax+ by + cz = 0 is the smallest value of ‖w − (x, y, z)‖
where (x, y, z) ranges over all points in the plane ax+ by + cz = 0. As in the case of a line,
the point (x, y, z) where ‖w − (x, y, z)‖ is smallest occurs when w− (x, y, z) is perpendicular
to the plane. We claim that ‖w − (x, y, z)‖ is smallest when w − (x, y, z) = proj(a,b,c)(w).
To see this, consider the right triangle with edges w − (x, y, z) and proj(a,b,c)(w). Since this
is a right triangle, the Pythagorean Theorem implies that the length of the hypotenuse is
greater than the lengths of the other edges. That is, ‖w − (x, y, z)‖ ≥ ‖proj(a,b,c)(w)‖. In
conclusion, the distance from w to the plane ax+ by + cz = 0 is∥∥proj(a,b,c)(w)

∥∥ .
For example, let’s find the distance of w = (1, 0, 2) to the plane x + 2y + 3z = 0. Since

(a, b, c) = (1, 2, 3), the distance is given by

|w · (a, b, c)/ ‖a, b, c‖| = |(1, 0, 2) · (1, 2, 3)| /
√

14 = 7/
√

14.
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Definition 2.61. The angle between two planes is the angle between their normal vectors.
So, if the planes are ax+ by + cz = d and px+ qy + rz = s, then their angle is

cos−1
(
|(a, b, c) · (p, q, r)|
‖(a, b, c)‖ ‖(p, q, r)‖

)
.

2.6. Quadric Surfaces. Let A,B,C,D,E, F be constants. Recall that a general conic
section in the plane is a set of points (x, y) ∈ R2 satisfying

Ax2 +By2 + Cxy +Dx+ Ey + F = 0.

A conic section of the following form is said to be in standard position.

Ax2 +By2 + Ey + F = 0.

For example, when E = 0, A = 1, B = 1, F = −1 corresponds to the unit circle x2 + y2 = 1,
i.e. the circle centered at the origin with radius 1; A = 1, B = 1/2, F = −1 corresponds to
an ellipse x2 + 2y2 = 1 with axis lengths 1 and 1/

√
2; A = 1, B = −1, F = −1 corresponds

to a hyperbola x2 − y2 = 1; and y = x2 is a parabola, and so on.
The main non-degenerate conic sections are then: parabolas, hyperbolas, circles and el-

lipses. Some degenerate conic sections occur e.g. when x2 = y2, which is the union of two
intersecting lines, or when x2 + y2 = 0, which is a single point (x, y) = (0, 0).

Quadric surfaces generalize conic sections to three-dimensions. A general quadric surface
is a set of points (x, y, z) ∈ R3 satisfying

Ax2 +By2 + Cz2 +Dxy + Eyz + Fzx+Gx+Hy + Iz + J = 0.

The main non-degenerate quadric surfaces are: paraboloids, hyperboloids, spheres, ellipsoids,
cones and cylinders. Some degenerate quadric surfaces occur e.g. when x2 = y2, which is the
union of two intersecting planes, or when x2 + y2 = 0, which is a single line where x = y = 0
and −∞ < z <∞, or when x2 + y2 + z2 = 0, which is the single point (0, 0, 0).

Below, we will focus on quadric surfaces in standard position.

Example 2.62. The case A = B = C = 1 and J = −1 with all other coefficients zero
corresponds to the unit sphere x2 + y2 + z2 = 1, i.e. the sphere centered at the origin with
radius 1. More generally, if r > 0, then x2 + y2 + z2 = r2 defines the sphere of radius r
centered at the origin.

Example 2.63. The case A = 1, B = 2, C = 3 and J = −1 with all other coefficients zero
corresponds to an ellipsoid x2 + 2y2 + 3z2 = 1, which is a surface which is somewhat similar
to an ellipse. In particular, when z = 0 (which corresponds to intersection this ellipse with
the xy-plane), we get x2 + 2y2 = 1, which is an ellipse. That is, the cross-section of the
ellipsoid is an ellipse. A general ellipsoid is written as the set of all (x, y, z) ∈ R3 such that(x

a

)2
+
(y
b

)2
+
(z
c

)2
= 1, a, b, c > 0.

An ellipsoid generally looks like a sphere that has been squished in certain directions.

Example 2.64. The case A = 1, B = −1, C = 1 and J = −1 with all other coefficients zero
corresponds to a hyperboloid x2−y2+z2 = 1, which is a surface which is somewhat similar to
a hyperbola. In particular, when z = 0 (which corresponds to intersection this hyperboloid
with the xy-plane), we get x2 − y2 = 1, which is a a hyperbola. That is, this cross-section
of the hyperboloid is a hyperbola. However, another cross-section of the hyperboloid is an
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ellipse. When y = 0 (which corresponds to the intersection of this hyperboloid with the
xz-plane), we get x2 + z2 = 1, which is an ellipse (in fact a circle).

A general hyperboloid of one sheet is written as the set of all (x, y, z) ∈ R3 such that(x
a

)2
+
(y
b

)2
=
(z
c

)2
+ 1, a, b, c > 0.

A general hyperboloid of two sheets is written as the set of all (x, y, z) ∈ R3 such that(x
a

)2
+
(y
b

)2
=
(z
c

)2
− 1, a, b, c > 0.

The hyperboloid of one sheet is a single surface, while the hyperboloid of two sheets is two
separate surfaces. To see the latter property, note that the hyperboloid of two sheets contains
the points (0, 0, c) and (0, 0,−c), but it does not contain any point (x, y, z) with −c < z < c,
since the left side of the defining equation would be nonnegative, while the right side would
be negative.

Example 2.65. A cone is broadly defined as any surface such that, if (x, y, z) is in the
cone, then so is λ(x, y, z) for all λ ≥ 0. For example, a general elliptic cone is the set of all
(x, y, z) such that (x

a

)2
+
(y
b

)2
=
(z
c

)2
, a, b, c > 0.

Note that if (x, y, z) is in this elliptic cone, then so is λ(x, y, z), for all λ ≥ 0.

Example 2.66. A general elliptic paraboloid is the set of all (x, y, z) such that

z =
(x
a

)2
+
(y
b

)2
, a, b > 0.

This paraboloid looks like a parabola that has been rotated around an axis. And a general
hyperbolic paraboloid is the set of all (x, y, z) such that

z =
(x
a

)2
−
(y
b

)2
, a, b > 0.

This last paraboloid looks like a saddle, or a pringle potato chip.

Example 2.67. A cylinder is broadly defined as any curve which is extruded across a
perpendicular direction. For example, if C is curve in the xy-plane, then the set of all
vertical lines passing through C is a cylinder. An example of an elliptical cylinder is the
set of all (x, y, z) such that x2 + 4y2 = 1. Note that the z-coordinate is unrestricted, so that
the ellipse with radii 1 and 2 is extruded along the z-axis.

An example of an hyperbolic cylinder is the set of all (x, y, z) such that x2 − y2 = 1.
An example of an parabolic cylinder is the set of all (x, y, z) such that y = x2.

3. Vector-Valued Functions

In your previous calculus classes, we typically considered real-valued functions on the real
line. That is, we considered functions f : R → R. In multivariable calculus, we consider
functions with more variables in the domain, and with more variables in the range. Later
on we will deal with having more variables in the domain. For now, we consider functions
with more variables in the range. That is, we will consider functions of the form

r(t) = (x(t), y(y))
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and of the form

s(t) = (x(t), y(t), z(t))

where t is a real variable, and x, y, z are each real-valued functions of the real variable t.
Since r has a real domain and a two-dimensional range, we write r : R→ R2. Similarly, we
write s : R→ R3.

We have already seen functions like this in our discussion of parametrizations.

Example 3.1. Consider again the infinite helix

s(t) = (cos t, sin t, t), −∞ < t <∞

Visualizing this parametrized curve can be made simpler by consider its projection onto the
coordinate hyperplanes. The projection of the parametrization onto the xy-plane gives a
parametrization of the unit circle

(cos t, sin t), −∞ < t <∞.

The projection of the parametrization onto the xz-plane gives a parametrization of a cosine
curve

(cos t, t), −∞ < t <∞.

And the projection of the parametrization onto the yz-plane gives a parametrization of a
sine curve

(sin t, t), −∞ < t <∞.

Remark 3.2. Recall that there are many different ways to parametrize a given curve. For
example, r(t) = (cos t, sin t, t + 2π) also parametrizes the helix. And the function h(t) =
(cos(t3), sin(t3), t3), −∞ < t <∞ also parametrizes the helix. Note that h(t) = s(t3). That
is, h is a re-parametrization of s.

Example 3.3 (Intersection of Two Surfaces). We now describe how to parametrize the
intersection of two surfaces in R3. For example, consider the intersection of the cylinder
x2 + y2 = 1 with the paraboloid x2 − y2 = z − 1. In order to find the intersection, we
substitute one formula into the other. Since x2 = 1− y2, we then get (1− y2)− y2 = z − 1,
so that 2−2y2 = z. Since x2 +y2 = 1, we get x2 = 1−y2 = z/2. So, using x as a parameter,
we can parametrize the intersection as

s(x) = (x,
√

1− x2, 2x2), −1 ≤ x ≤ 1.

However, this parametrization only obtains part of the intersection, since whenever x2+y2 =
1, we also have x2+(−y)2 = 1. That is, the intersection could have both positive and negative
values of y, whereas s(x) only has nonnegative values of y. We therefore obtain the rest of
the intersection with the parametrization

r(x) = (x,−
√

1− x2, 2x2), −1 ≤ x ≤ 1.

We could have also described this intersection with a single parametrization:

s(t) = (cos(t), sin(t), cos2 t− sin2 t+ 1)., 0 ≤ t < 2π
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3.1. Calculus for Vector-Valued Functions. We now begin to extend the notions of
calculus to the setting of vector-valued functions. As in single-variable calculus, we first
discuss limits and continuity, and we then define derivatives. So, let us begin with limits.

Definition 3.4 (Limit). Suppose r : R → R3 is a vector-valued function. Let v ∈ R3 be a
vector, and let t0 ∈ R. We say that r(t) approaches v as t→ t0 if limt→t0 ‖r(t)− v‖ = 0. In
this case, we write

lim
t→t0

r(t) = v.

Remark 3.5. Suppose r : R→ R3 is a vector-valued function. Write r(t) = (x(t), y(t), z(t)).
Let v = (x, y, z) ∈ R3 be a vector, and let t0 ∈ R. Then limt→t0 ‖r(t)− v‖ = 0 if and only if
the following three limits exist: limt→t0 x(t), limt→t0 y(t), limt→t0 z(t). In this case, we have

lim
t→t0

r(t) =

(
lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)

)
.

Example 3.6. Let s(t) = (t− 1, t2, 2t− 3). Then to compute limt→0 s(t), we use

lim
t→0

s(t) = (lim
t→0

(t− 1), lim
t→0

t2, lim
t→0

(2t− 3)) = (−1, 0,−3).

Definition 3.7 (Continuity). Suppose r : R→ R3 is a vector-valued function. We say that
r is continuous at t0 ∈ R if

r(t0) = lim
t→t0

r(t).

From Remark 3.5, if r(t) = (x(t), y(t), z(t)), then r is continuous at t0 if and only if: x(t), y(t)
and z(t) are each continuous at t0.

Definition 3.8 (Derivative). Suppose r : R→ R3 is a vector-valued function. We say that
r is differentiable at t ∈ R if the following limit exists

r′(t) =
d

dt
r(t) = lim

h→0

r(t+ h)− r(t)
h

.

We refer to r′(t) as the derivative of r at t. If r is differentiable on its domain, we say that
r is differentiable. Note that since r is a vector-valued function, the difference quotient is
a limit of vectors, rather than a limit of numbers. Consequently, r′ : R→ R3.

Remark 3.9. We can then define higher order derivatives by iterating the first derivative.
For example, if r′ is differentiable, we define r′′(t) = (d/dt)r′(t). And if r′′ is differentiable,
we define r′′′(t) = (d/dt)r′′(t), and so on.

Remark 3.10. Suppose r : R→ R3 is a vector-valued function, where r(t) = (x(t), y(t), z(t)).
Then r(t) is differentiable if and only if: x(t), y(t) and z(t) are all differentiable. In this case,
we have

r′(t) = (x′(t), y′(t), z′(t)).

Example 3.11. Let r(t) = (t, t2−1, t−1). Then r′(t) = (1, 2t,−t−2), and r′′(t) = (0, 2, 2t−3).

Most of the usual rules of differentiation apply to vector-valued functions.

Proposition 3.12. Let s, r, : R→ R3, and let f : R→ R all be differentiable functions. Let
c be a constant.

• d
dt

(s(t) + r(t)) = s′(t) + r′(t). (Sum Rule)
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• d
dt

(cs(t)) = cs′(t).

• d
dt

(f(t)s(t)) = f ′(t)s(t) + f(t)s′(t). (Product Rule)

• d
dt
s(f(t)) = s′(f(t))f ′(t). (Chain Rule)

• d
dt

(s(t) · r(t)) = (s′(t) · r(t)) + (s(t) · r′(t)) (Product Rule for Dot Product)

• d
dt

(s(t)× r(t)) = (s′(t)× r(t)) + (s(t)× r′(t)) (Product Rule for Cross Product)

Remark 3.13 (Geometric Interpretation of Derivative). When we have a real-valued
function f : R → R, we recall that f ′(t) is the slope of the tangent line to f at the point t.
This fact can be understood from the definition of the derivative itself

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
.

The difference quotient [f(t+ h)− f(t)]/h is the slope of the line which passes between the
points (t, f(t)) and (t+ h, f(t+ h)) in the plane.

There is a similar interpretation for vector-valued functions r : R→ R3. We have

r′(t) = lim
h→0

r(t+ h)− r(t)
h

.

The difference quotient is itself a line segment passing through the points (t, r(t)) and (t +
h, r(t+ h)). And as h→ 0, this line segment becomes a tangent vector to the parametrized
curve r(t).

Example 3.14. Let r(t) = (t, t2, 2 + t). The tangent line to the parametrized curve r(t) at
t = 2 is given by the following parametrized line

h(t) = r(2) + t · r′(2) = (2, 4, 4) + t(1, 4, 1), −∞ < t <∞.

Remark 3.15 (Orthogonality of r and r′ when ‖r‖ is constant). Let r : R → R3.
Assume that ‖r(t)‖ is equal to a constant value for all t. Then

0 =
d

dt
‖r(t)‖2 =

d

dt
(r(t) · r(t)) = 2r(t) · r′(t).

That is, r(t) is orthogonal to r′(t).

Definition 3.16 (Integral). Let r : R→ R3, where r(t) = (x(t), y(t), z(t)). Let a < b. We
define the integral of r over [a, b] to be the following vector∫ b

a

r(t)dt =

(∫ b

a

x(t)dt,

∫ b

a

y(t)dt,

∫ b

a

z(t)dt

)
Example 3.17. Let r(t) = (t, t2, 1). Then

∫ 1

0
r′(t)dt = (

∫ 1

0
1dt,

∫ 1

0
2tdt,

∫ 1

0
0dt) = (1, 1, 0).

Theorem 3.18 (Fundamental Theorem of Calculus). Let a < b. Let r : [a, b]→ R3 be
differentiable. Assume that r′ : [a, b]→ R3 is continuous. Then∫ b

a

r′(t)dt = r(b)− r(a).

Example 3.19. Let r(t) = (t, t2, 1). Then
∫ 1

0
r′(t)dt = r(1) − r(0) = (1, 1, 1) − (0, 0, 1) =

(1, 1, 0).
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3.2. Arc Length, Speed, Curvature.

Definition 3.20 (Arc Length). Let r : R→ R3. Write r(t) = (x(t), y(t), z(t)). Let a < b.
We define the arc length of r from t = a to t = b by∫ b

a

‖r′(t)‖ dt =

∫ b

a

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt.

Example 3.21. Let’s compute the arc length of the parametrization r(t) = (cos(t), sin t, 0),
0 ≤ t < 2π, which parametrizes the unit circle. The length is∫ 2π

0

‖r′(t)‖ dt =

∫ 2π

0

√
cos2 t+ sin2 t dt =

∫ 2π

0

dt = 2π.

However, note that if we use a different domain, then we could “double-count” the unit
circle’s length. For example, if we use the same parametrization with 0 ≤ t < 4π, then we
would compute a length of 4π. In this case, r(t) would traverse the circle twice, resulting in
a length of 2(2π) = 4π. So, given a parametric curve, we can not necessarily associate its
arc length with the length of the curve itself (unless r(t1) 6= r(t2) whenever t1 6= t2).

It is often more convenient to have a parametrization r such that ‖r′(t)‖ = 1. Starting
with essentially any parametrization, we can re-parametrize it to achieve this condition, as
we now show.

Definition 3.22 (Arc Length Parametrization). Let r : [a, b]→ R3 be any parametrized

curve. Suppose r′(t) 6= (0, 0, 0) for all t. Define `(t) =
∫ t
a
‖r′(u)‖ du. Then `′(t) = ‖r′(t)‖ > 0

for all t, using the Fundamental Theorem of Calculus. Since ` : [a, b] → R is increasing, it
has an inverse function `−1, which we denote by φ(s). Recall that φ′(s) = 1/(`′(φ(s))). We
define the arc length parametrization of r by r1(s) = r(φ(s)). This parametrization is
also called the unit speed parametrization since we have ‖r′1(s)‖ = 1. Observe, by the
Chain Rule,

d

ds
r1(s) =

d

ds
r(φ(s)) =

dr

dt
(φ(s))

dφ(s)

ds
= r′(φ(s))

1

`′(φ(s))
=

r′(φ(s))

‖r′(φ(s))‖
.

Therefore, ‖r′1(s)‖ = ‖r′(φ(s))‖ / ‖r′(φ(s))‖ = 1, as desired.

Example 3.23. Consider r(t) = (t, 2t, 1), t ≥ 0. Then r′(t) = (1, 2, 0), so we have `(t) =∫ t
0
‖r′(u)‖ du =

∫ t
0

√
5du =

√
5t. So, φ(s) = s/

√
5 (since `(φ(s)) = s). Therefore, r1(s) =

r(φ(s)) = (s/
√

5, 2s/
√

5, 1) is an arc length parametrization for r.

Definition 3.24. Let r : R → R3. We say that a parametrization is regular if r′(t) 6=
(0, 0, 0) for all t. If r is regular, we define the unit tangent vector T (t) by

T (t) =
r′(t)

‖r′(t)‖
.

Recall that r′(t) is tangent to the curve r. So, we define T (t) so that T is still tangent to
the curve r, while ‖T (t)‖ = ‖r′(t)‖ / ‖r′(t)‖ = 1.

It is often convenient to know the unit-tangent vector of a curve. For example, the unit
tangent vector can be used to measure how much a curve is “twisted around itself.” The
latter notion can be made precise with the introduction of curvature.
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Definition 3.25 (Curvature). Let r(s) be an arc-length parametrization of a curve. We
define the curvature κ(s) of r at s to be

κ(s) = ‖r′′(s)‖ =
∥∥(d2/ds2)r(s)

∥∥ = ‖(d/ds)T (s)‖ .

Example 3.26. The curvature of any straight line is always zero. To see this, let r(s) =
(x0, y0, z0) + su be a parametrization of a line, where u ∈ R3 is a vector. If ‖u‖ = 1, then
‖r′(s)‖ = ‖u‖ = 1, so r(s) is an arc-length parametrization. And r′′(s) = 0, so κ(s) = 0.

Example 3.27. Let R > 0. The curvature of the circle of radius R is 1/R. We use the

parametrization r(t) = (R cos t, R sin t), 0 ≤ t < 2π. Then ‖r′(t)‖ =
√
R2 sin2 t+R2 cos2 t =

R. And `(t) =
∫ t
0
‖r′(u)‖ du = Rt. So, the inverse of ` is φ(s) = s/R (since `(φ(s)) = s).

And the arc length parametrization of the circle of radius R is then r1(s) = r(φ(s)) =
(R cos(s/R), R sin(s/R)). So, the curvature is

κ(s) = ‖r′′1(s)‖ =
∥∥(−R−1 cos(s/R),−R−1 sin(s/R))

∥∥ = R−1.

Proposition 3.28 (Other Formulas for Curvature). Let r : R→ R3. Then

κ(t) =
‖T ′(t)‖
‖r′(t)‖

=
‖r′(t)× r′′(t)‖
‖r′(t)‖3

.

Proof. The first formula follows from the Chain rule. Let `(t) =
∫ t
0
‖r′(u)‖ du. Let φ(s)

be the inverse of `(t). Recall that r(φ(s)) is an arc length parametrization of r. Note that
T (φ(`(t))) = T (t), so by the Chain rule

T ′(t) =
d

dt
T (φ(`(t))) =

d

d`
T (φ(`(t)))

d`(t)

dt
=

d

d`
T (φ(`(t))) ‖r′(t)‖ =

d

d`
T (t) ‖r′(t)‖ .

So, ‖T ′(t)‖ = ‖(d/d`)T (t)‖ ‖r′(t)‖ = κ(t) ‖r′(t)‖.
For the second formula, note that T (t) = r′(t)/ ‖r′(t)‖, so r′(t) = T (t) ‖r′(t)‖, so r′′(t) =

T ′(t) ‖r′(t)‖+ T (t)(d/dt) ‖r′(t)‖. Then using T (t)× T (t) = (0, 0, 0),

r′(t)× r′′(t) = (T (t) ‖r′(t)‖)× (T ′(t) ‖r′(t)‖+ T (t)(d/dt) ‖r′(t)‖) = (T (t)× T ′(t)) ‖r′(t)‖2 .

Finally, recalling Remark 3.15, since T (t) is of unit length, T (t)·T ′(t) = 0. So, using Theorem
2.39(ii), we get

‖r′(t)× r′′(t)‖ = ‖T (t)× T ′(t)‖ ‖r′(t)‖2

= ‖T (t)‖ ‖T ′(t)‖ ‖r′(t)‖2 = ‖T ′(t)‖ ‖r′(t)‖2 = κ(t) ‖r′(t)‖3 .

In the last line, we used the first formula: ‖T ′(t)‖ / ‖r′(t)‖ = κ(t). �

3.3. Motion of Projectiles and Planets. Let r : R→ R3. We think of r(t) as the position
of an object at time t. We define the velocity v(t) of the object at time t by

v(t) = r′(t).

Recall that the speed of the object is ‖v(t)‖ = ‖r′(t)‖. And we define the acceleration a(t)
of the object at time t by

a(t) = v′(t) = r′′(t).
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Example 3.29 (Projectile Motion). Suppose a cannon launches a cannonball on the
earth with initial position r0 ∈ R3 and initial velocity v0 ∈ R3. We treat the z-axis as the
vertical direction, and we ignore air friction. Let g be the gravitational constant (so g ≈ 9.8
in standard units). Once the projectile is in the air, the only acceleration acting upon it
acceleration due to gravity. That is, r′′(t) = (0, 0,−g). The initial conditions mean that
r(0) = r0 and r′(0) = v(0) = v0. Integrating from 0 to t, and applying the Fundamental
Theorem of Calculus (Theorem 3.18),

v(t)− v(0) =

∫ t

0

v′(p)dp =

∫ t

0

r′′(p)dp =

∫ t

0

(0, 0,−g) = (0, 0,−gt).

That is v(t) = v0 + (0, 0,−gt). Integrating again from 0 to t, we get

r(t)− r(0) =

∫ t

0

r′(p)dp =

∫ t

0

v(p)dp =

∫ t

0

(v0 + (0, 0,−gp))dp = tv0 + (0, 0,−gt2/2).

That is, the trajectory of the projectile is given by the following parabola.

r(t) = r0 + tv0 + (0, 0,−gt2/2).

Example 3.30. Consider a particle moving in a circle r(t) = (cos t, sin t), t ≥ 0. Then
v(t) = r′(t) = (− sin t, cos t), and a(t) = v′(t) = r′′(t) = (− cos t,− sin t) = −r(t). That is,
the acceleration of the particle always points towards the center of the circle.

We now describe Kepler’s Laws for planetary motion. We have the following simplified
assumptions. The sun is placed at the origin (0, 0, 0). A single planet orbits the sun. Both
the sun and the planet are treated as point masses. Suppose the planet is orbiting the sun
with position r(t) at time t ≥ 0. Let A(t) denote the area of the sector formed by the origin,
r(0), r(t) and the curve r itself. Let T > 0 be the time required for the planet to complete
one full revolution, i.e. so that r(T ) = r(0).

Theorem 3.31 (Kepler’s Laws for Planetary Motion).

• The curve r(t) is an ellipse with the sun at one focus. (Law of Ellipses)
• d

dt
A(t) is a constant which does not depend on t. Consequently, A(t1) − A(t2) =

A(t1 − t2). (Law of Equal Area in Equal Time)
• T 2 = 4π2a3/(GM). (Law of the Period of Motion). Here a is the length of the

semimajor axis of the ellipse, i.e. a is half the length of the longest segment contained
in the ellipse, G is the Gravitational Constant, and M is the mass of the sun.

Remark 3.32. Nowadays we know that the Law of Ellipses is not exactly right, but we
cannot presently discuss this issue.

Before proving these laws, we derive a preliminary fact. From Newton’s Law of Gravita-
tion, if the planet has mass m, then the force of gravity acts on the planet in the direction
−r as follows:

mr′′(t) = − GMm

‖r(t)‖2
r(t)

‖r(t)‖
= − GMm

‖r(t)‖3
r(t).

That is, r′′(t) is parallel to r(t). Consequently,

r(t)× r′′(t) = (0, 0, 0). (1)
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Proof of the second law. Let h > 0 be small. Then A(t + h) − A(t) is approximately a
triangle formed by the vectors r(t) and r(t + h). This triangle has area equal to half the
area of the paralleogram formed by the vectors r(t) and r(t+ h). This parallelogram is also
defined by the vectors r(t) and r(t + h)− r(t). So, using Theorem 2.41, A(t + h)− A(t) =
1
2
‖r(t)× (r(t+ h)− r(t))‖. So,

d

dt
A(t) = lim

h→0

A(t+ h)− A(t)

h
= lim

h→0

1

2

1

h
‖r(t)× (r(t+ h)− r(t))‖

= lim
h→0

1

2

∥∥∥∥r(t)× r(t+ h)− r(t)
h

∥∥∥∥ =
1

2
‖r(t)× r′(t)‖ .

It remains to show that ‖r(t)× r′(t)‖ does not depend on t. In fact, we will show that
r(t) × r′(t) is a constant vector. That is, we will show that (d/dt)(r(t) × r′(t)) = (0, 0, 0).
Observe, using the product rule and (1),

d

dt
(r(t)× r′(t)) = (r(t)× r′′(t)) + (r′(t)× r′(t)) = r(t)× r′′(t) = (0, 0, 0).

�

Remark 3.33. Since r(t) × r′(t) is orthogonal to both r(t) and r′(t), and r(t) × r′(t) is
a constant vector, we conclude that r(t) and r′(t) are both always orthogonal to the fixed
vector r(t)× r′(t) (and the latter vector does not depend on t, as we just verified). So, the
orbit r(t) is always contained in a plane.

Proof of the first law. Define

L(t) =

(
1

GMm
r′(t)× [r(t)× r′(t)]

)
− r(t)

‖r(t)‖
.

One can show that d
dt
L(t) = (0, 0, 0). Assuming this fact, we know that L(t) is a constant

vector, so let D = ‖L(t)‖ be a constant which does not depend on t. Recall also that
in our proof of the second law, r(t) × r′(t) was a constant vector as well. So let p =
(r(t)× r′(t)) · (r(t)× r′(t))/(GMm) be a constant which also does not depend on t. If θ(t)
denotes the angle between r(t) and L(t), we have, using the identity u · (v×w) = w · (u× v),

‖r(t)‖D cos θ(t) = r(t) · L(t) =
1

GMm
r(t) · (r′(t)× [r(t)× r′(t)])− r(t) · r(t)

‖r(t)‖

=
1

GMm
[r(t)× r′(t)] · [r(t)× r′(t)]− r(t) · r(t)

‖r(t)‖
= p− ‖r(t)‖ .

Solving for ‖r(t)‖, we get

‖r(t)‖ =
p

1 +D cos θ(t)
.

In the case D = 0, this says ‖r(t)‖ = p so that r(t) is a circle of radius p. Suppose
then that D 6= 0. Since r is contained in a plane by Remark 3.33, and L is a constant
vector, without loss of generality L points in the direction of the positive x axis, and
r(t) is contained in the xy-plane. Then, we can write r(t) = (x, y, 0) = (x(t), y(t), 0) =
(‖r(t)‖ cos θ(t), ‖r(t)‖ sin θ(t), 0). We then have ‖r(t)‖ (1 + D cos θ(t)) = p, or ‖r(t)‖ =
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p − D ‖r(t)‖ cos θ(t) = p − Dx. Squaring gives x2 + y2 = ‖r(t)‖2 = (p − Dx)2, so that
x2(1−D2) + 2pDx+ y2 = p2, and multiplying by (1−D2) and completing the square,

(1−D2)2
(
x+

pD

1−D2

)2

+ y2(1−D2) = p2 ifD 6= 1.

(If D = 1, we get 2px + y2 = p2.) This is the equation of a conic section, i.e. it could be a
parabola (D = 1), hyperbola (D > 1), or ellipse (0 ≤ D < 1). If the orbit is bounded, then
this equation is an ellipse. Otherwise, it is a parabola or hyperbola, or a line (p = 0, D = 1),
or a point (p = 0, D 6= 1). And indeed, some comets have these trajectories. �

Remark 3.34. A photon which passes by the sun also has a hyperbolic trajectory, which
can be found using the above derivation. Photons have no mass, but they are still affected
by the sun’s gravity, a prediction of Einstein’s theory of general relativity. However, the
deflection angle of the photon will be twice that predicted by the above derivation. Also,
it turns out that the planets do not travel in perfect ellipses, which is another prediction of
general relativity.

4. Functions of Two or Three Variables

In a previous course, you discussed functions f : R → R. We could then graph these
functions in the xy-plane. In this class, we have been discussing functions r : R → R2 and
r : R → R3. We can think of these functions as curves. We now consider functions with
larger domains as well. For example, we will first consider functions f : R2 → R.

Example 4.1. Let (x, y) ∈ R2. Define f : R2 → R by f(x, y) = x2 + y2. We can plot this
function in three-dimensions by considering the value of f to be the z-coordinate. That is,
we identify the function f(x, y) = x2 + y2 with the surface z = f(x, y) = x2 + y2. We recall
that surface z = x2 + y2 is a paraboloid.

Example 4.2. Suppose we have a domain D in the plane, which we think of as a map of
California. Given (x, y) ∈ D, we can think of f(x, y) as the current temperature at the point
(x, y). Then f : D → R.

Example 4.3. Suppose we have a domain D in three-dimensional space R3. For example,
we can identify the unit ball x2 + y2 + z2 ≤ 1 with the earth. Given (x, y, z) ∈ D, we
can think of f(x, y, z) as the current temperature at the point (x, y, z) on the earth. Then
f : D → R.

More generally, given any positive integer n, we can consider functions f : Rn → R. We
write a general point in Rn as (x1, x2, . . . , xn) ∈ Rn. And at each such point (x1, . . . , xn) ∈
Rn, we let f(x1, . . . , xn) be some number.

Remark 4.4. Given a function f : R2 → R, we said we could identify the function f with
the surface z = f(x, y) in R3. However, visualizing functions f : R3 → R is a bit more
difficult. One way to visualize these functions is to think of f(x, y, z) as a color intensity
assigned to the point (x, y, z). For example, if f(x, y, z) is a large number, we can think of
(x, y, z) as having a light grey color. And if f(x, y, z) is a very small number, we can think of
(x, y, z) as having a dark grey color. Drawing a picture like this is perhaps impossible, but
the visualization is perhaps more tractable. For example, if f(x, y, z) is the temperature of
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the earth at the point (x, y, z) with x2 + y2 + z2 ≤ 1, we could think of f(x, y, z) as a bright
red color when the point (x, y, z) is very hot, and we could think of f(x, y, z) as a dark blue
color when the point (x, y, z) is very cold.

Example 4.5 (Drawing Functions of Two Variables). Suppose we want to draw the
function f(x, y) = x2 + y2. So, we want to draw the surface z = x2 + y2. It is sometimes
convenient to draw the level curves of the function f . That is, we can maybe draw the
curve x2 + y2 = 1 in the plane z = 1, and then draw the curve x2 + y2 = 4 in the plane
z = 4. Doing so results in two circles. On each individual circle, the function f is constant
(i.e. the surface has constant height). We can also draw the intersection of z = x2 + y2 with
other hyperplanes. For example, in the plane x = 0, we could draw the hyperbola z = y2; in
the plane x = 1 we could draw the hyperbola z = 1 + y2; in the plane y = 1, we could draw
the parabola z = x2 + 1, and so on. Drawing the intersection of z = x2 + y2 with several
hyperplanes in this way gives a good sketch of the function.

Example 4.6 (Level Surfaces in Three Variables). Consider the function f(x, y, z) =
x2+y2+z2. As we discussed above, this function is perhaps difficult to draw. However, we can
still draw the level surfaces of the function. For example, the level surface x2 + y2 + z2 = 1
is the unit sphere, and we can then draw this surface. And the level surface x2 + y2 + z2 = 4
is the sphere of radius 2 centered at the origin, which can also be drawn, and so on. The
function f is constant on any individual level surface.

Example 4.7 (Domains). Multivariable domains can be a bit more complicated than
single-variable domains. Suppose we have a function f : D → R where D is a subset of R2

defined as the set of (x, y) such that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. We can draw this domain
by intersecting the domain corresponding to each condition. For example, the set 0 ≤ x ≤ 1
is an infinite rectangle lying between the lines x = 0 and x = 1. And the set 0 ≤ y ≤ 1 is
an infinite rectangle lying between the lines y = 0 and y = 1. The intersection of these two
rectangles is the unit square.

For another example, consider the domain D in R3 defined as the set of all (x, y, z) such
that x2 + y2 ≤ 4 and such that y2 + z2 ≥ 1. The first condition gives an infinite solid
cylinder, bounded by the cylinder x2 + y2 = 4. From this solid cylinder, we remove the
cylinder y2 + z2 < 1. In summary, the domain D is an infinite solid cylinder with a hole
drilled through it along the x-axis.

4.1. Limits and Continuity. In single-variable calculus, we learned a lot about functions
by using the notions of continuity and derivatives. We can play a similar game now for
multivariable functions. However, the continuity and derivative are now a bit different.

In this section, we only consider functions f : R2 → R. Treating functions with domain
R3 can be done analogously.

Definition 4.8 (Limit, Informal Definition). Let (a, b) ∈ R2 and let f : R2 → R. Let
L ∈ R. We say that lim(x,y)→(a,b) f(x, y) = L if, whenever (x, y) is close to (a, b), we know
that f(x, y) is close to L.

Definition 4.9 (Limit, Formal Definition). Let (a, b) ∈ R2 and let f : R2 → R. Let
L ∈ R. We say that lim(x,y)→(a,b) f(x, y) = L if, given any ε > 0, there exists δ = δ(ε) > 0
such that, if (x, y) satisfies 0 < ‖(x, y)− (a, b)‖ < δ, then |f(x, y)− L| < ε.
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Example 4.10. Let f(x, y) = x + y. Let (a, b) = (1, 2). Let L = 3. Let’s verify from the
formal definition that lim(x,y)→(a,b) f(x, y) = 3. Let ε > 0. Then choose δ = ε/2. Assume
0 < ‖(x, y)− (1, 2)‖ < δ. Then |x− 1| < δ and |y − 2| < δ. So, |f(x, y)− L| = |x+ y − 3| =
|(x− 1) + (y − 2)| ≤ |x− 1|+ |y − 2| < δ + δ = ε. So, lim(x,y)→(a,b) f(x, y) = 3.

Example 4.11. Let f(x, y) = x2/(x2 + y2) We show that the following limit does not exist:
lim(x,y)→(0,0) f(x, y). Consider (xn, yn) = (0, 1/n), n ≥ 1. Then (xn, yn) → (0, 0) as n → ∞,
and f(xn, yn) = 0. However, if (cn, dn) = (1/n, 0), n ≥ 1, then (c,n , dn) → (0, 0), but
f(cn, dn) = 1. If lim(x,y)→(0,0) f(x, y) exists, then limn→∞ f(xn, yn) would have to be equal to
limn→∞ f(cn, dn). So, lim(x,y)→(0,0) f(x, y) does not exist.

Proposition 4.12 (Limit Laws). Let f, g : R2 → R. Assume that lim(x,y)→(a,b) f(x, y) exists
and that lim(x,y)→(a,b) g(x, y) exists. Then

• lim(x,y)→(a,b)[f(x, y) + g(x, y)] = (lim(x,y)→(a,b) f(x, y)) + (lim(x,y)→(a,b) g(x, y)).
• For any constant c, lim(x,y)→(a,b)[cf(x, y)] = c · lim(x,y)→(a,b) f(x, y).
• lim(x,y)→(a,b)[f(x, y)g(x, y)] = (lim(x,y)→(a,b) f(x, y))(lim(x,y)→(a,b) g(x, y)).
• If lim(x,y)→(a,b) g(x, y) 6= 0, then

lim
(x,y)→(a,b)

(f(x, y)/g(x, y)) = ( lim
(x,y)→(a,b)

f(x, y))/( lim
(x,y)→(a,b)

g(x, y)).

Definition 4.13 (Continuity). Let f : R2 → R. We say that f is continuous at the point
(a, b) if

f(a, b) = lim
(x,y)→(a,b)

f(x, y).

We say that f is continuous on a domain D if f is continuous at (a, b) for every (a, b) in D.

Example 4.14. Let f : R3 → R, so that f(x, y, z) = x3+xy2+zxy. Then f is a polynomial,
so f is continuous.

Let g(x, y, z) = x sin(z) + y. Then g is continuous, and so is the product of the continuous
functions f(x, y, z) · g(x, y, z).

Let h(x, y, z) = x4y4z2. Let F (x, y, z) = f(x, y, z)/g(x, y, z). Then F is a quotient of
continuous functions, so F is continuous at any point (x, y, z) where g(x, y, z) 6= 0.

Theorem 4.15 (A Composition of Continuous Functions is Continuous). Suppose
f : R2 → R is continuous and let g : R→ R be continuous. Then the composition g(f(x, y))
is continuous.

Example 4.16. The function ln(x2 + y2) is continuous for all (x, y) with (x, y) 6= (0, 0).
However, this function is discontinuous at (x, y) = (0, 0).

4.2. Partial Derivatives. Now that we have discussed continuity for multivariable func-
tions, we now continue extending calculus to multivariable functions. Our next topic is now
differentiability. For a single-variable function f : R→ R, we defined

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

And we interpreted f ′(x) as the rate of change of f , as x increases.
Now, consider a function f : R2 → R. Now that there are two variables in the domain,

there are many more directions in which we can measure the rate of change of the function.
For example, how much does the function change as x increases (but y is fixed)? How much
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does the function change as y increases (but x is fixed)? How much does the function change
as y increases at a rate 3.5 times larger than the rate that x increases? And so on. We will
begin by answering the first two questions, and we will save the other one for later.

Definition 4.17 (Partial Derivatives). Let f : R2 → R. Let (a, b) ∈ R. We define the
partial derivative of f at the point (a, b) in the x-direction by the following limit (if it exists):

∂f

∂x
(a, b) = fx(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
.

That is, the partial derivative of f in the x-direction is just the derivative of f(x, y) with
respect to x, if we consider y to be fixed.

We similarly define the partial derivative of f at the point (a, b) in the y-direction by

∂f

∂y
(a, b) = fy(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
.

Example 4.18. Let f(x, y) = x2y3 + y2 + x. Then

∂f

∂x
= 2xy3 + 1,

∂f

∂y
= 3x2y2 + 2y.

Example 4.19. Let f(x, y, z) = x2 + y2 + z2. Then

∂f

∂x
= 2x,

∂f

∂y
= 2y

∂f

∂z
= 2z.

Remark 4.20. We can interpret a partial derivative in the same way we always interpret
derivatives. For example, ∂f/∂x is the rate of change of f , as x increases (while other
variables are held fixed).

Example 4.21. Since a partial derivative is essentially a one-variable derivative, it follows
all of the usual rules such as the chain rule, product rule, quotient rule, etc.

Let f(x, y) = x(x2+1)2

y2+1
. Then

∂f

∂x
=

2x(x2 + 1)(2x) + (x2 + 1)2

y2 + 1
,

∂f

∂y
=
−x(x2 + 1)2(2y)

(y2 + 1)2
.

For single variable functions, after defining the first derivative f ′(x) of a function f : R→
R, we then defined f ′′(x) = (d/dx)f ′(x), f ′′′(x) = (d/dx)f ′′(x), and so on. We will do
something similar now for multivariable functions. However, now that we have more than
one variable, there are many more derivatives to consider.

Definition 4.22 (Iterated Partial Derivatives). Let f : R2 → R. We define the second
order partial derivatives of f in the following way.

∂2f

∂x2
= fxx =

∂

∂x

∂f

∂x
,

∂2f

∂y2
= fyy =

∂

∂y

∂f

∂y
.

∂2f

∂x∂y
= fxy =

∂

∂x

∂f

∂y
,

∂2f

∂y∂x
= fyx =

∂

∂y

∂f

∂x
.
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Example 4.23. Let’s compute some iterated partial derivatives of f(x, y, z) = xyz + x2.
We have

∂2f

∂x2
=

∂

∂x

∂f

∂x
=

∂

∂x
(yz + 2x) = 2.

∂2f

∂y2
=

∂

∂y

∂f

∂y
=

∂

∂y
(xz) = 0.

∂2f

∂y∂z
=

∂

∂y

∂f

∂z
=

∂

∂y
(xy) = x,

∂2f

∂z∂y
=

∂

∂z

∂f

∂y
=

∂

∂z
(xz) = x

In the last example, we found that fyz = fzy. That is, the order of the iterated partial
derivative does not matter. This observation is in fact generic.

Theorem 4.24 (Clairaut’s Theorem). Let f : R2 → R. Suppose fxy and fyx both exist
and are continuous. Then fxy = fyx.

4.3. Differentiability and Tangent Planes. Suppose f : R→ R. Fix a ∈ R. Recall that
the linearization of f at the point a is given by the following function of x.

L(x) = f(a) + (x− a)f ′(a).

This function is the linearization of f since L is a linear function of x, L(a) = f(a) and
L′(a) = f ′(a). We also refer to L(x) as the tangent line to f at a. We can do something
similar for function several variables.

Definition 4.25. Suppose f : R2 → R. Fix (a, b) ∈ R. We define the linearization of f at
the point (a, b) to be the following function of (x, y) ∈ R2.

L(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b) = f(a, b) + ((x, y)− (a, b)) · ∇f(a, b).

Here we defined the gradient of f at the point (a, b) to be the following vector in R2.

∇f(a, b) = (fx(a, b), fy(a, b)).

If f : R3 → R and if (a, b, c) ∈ R, we similarly define the gradient of f at (a, b, c) to be the
vector in R3.

∇f(a, b, c) = (fx(a, b, c), fy(a, b, c), fz(a, b, c)).

And we similarly define the linearization of f at the point (a, b, c) to be the following
function of (x, y, z) ∈ R3.

L(x, y, z) = f(a, b, c) + ((x, y, z)− (a, b, c)) · ∇f(a, b, c).

Example 4.26. We find the linearization of the function f(x, y) = x2 + y2 at the point
(1, 3). The linearization is given by

L(x, y) = f(1, 3) + ((x, y)− (1, 3)) · ∇f(1, 3)

= 10 + ((x, y)− (1, 3)) · (2, 6) = 10 + 2(x− 1) + 6(y − 3).

Remark 4.27. Suppose f : R2 → R. The linearization L gives an equation for a plane
z = L(x, y). We say that the plane z = L(x, y) is then the tangent plane to the surface
z = f(x, y) at the point (a, b). The tangent plane at (a, b) is a linear approximation to the
surface z = f(x, y) in the same way that a single-variable function f : R → R can have a
tangent line.
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Example 4.28. Continuing the previous example, the tangent plane to the paraboloid
z = x2 + y2 at (1, 3) is given by z = 10 + 2(x− 1) + 6(y − 3).

Example 4.29. Let’s find the tangent plane to the cone z2 = x2 + y2, z ≥ 0 at (3, 4).

Solving for z, we have z =
√
x2 + y2. Setting f(x, y) =

√
x2 + y2, we have ∇f(x, y) =

(x(x2 + y2)−1/2, y(x2 + y2)−1/2). So, ∇f(3, 4) = (3/5, 4/5). So, the tangent plane is given by
z = f(3, 4) + ((x, y)− (3, 4)) · ∇f(3, 4) = 5 + (x− 3)(3/5) + (y − 4)(4/5).

Note that the gradient of f is discontinuous at (x, y) = (0, 0), and there is similarly no
clear geometric meaning to the tangent plane at the tip of the cone.

Remark 4.30 (Linear Approximation). Recall that for a single-variable function f : R→
R, we have the heuristic f(x) ≈ L(x) when x is near a. We similarly have a heuristic for
functions of multiple variables. For example, if f : R2 → R, then f(x, y) ≈ L(x, y) when
(x, y) is near the point (a, b). This approximation holds since f and L agree to first order,
just as in the single-variable case. Indeed, we have

L(a, b) = f(a, b), ∇L(a, b) = (Lx(a, b), Ly(a, b)) = (fx(a, b), fy(a, b)) = ∇f(a, b).

4.4. Gradient and Directional Derivative. Let f : R→ R. Recall that if the derivative
of f is positive, then the function is increasing; if the derivative is negative, then the function
is decreasing, and if the derivative is zero, then the function has a critical point. So, the
derivative of f tells us how the function f is changing. There is an analogous thing to
say for functions of two or more variables. However, we now have many variables, so a
single derivative may not necessarily tell us what is going on. That is, we will need to look
at a few different derivatives, but then some notion of positivity or negativity is then less
straightforward.

Example 4.31. Consider the function f(x, y) = x2 − y2. If y = 0, then f(x, y) = x2. That
is, when we restrict the function to the line y = 0, we see that f(x, y) has a local minimum
at x = 0. However, if x = 0, then f(x, y) = −y2. That is, when we restrict the function
to the line x = 0, we see that f(x, y) has a local maximum at y = 0. This behavior can be
understood by looking at both derivatives of f . We have fx = 2x, so that moving x towards
zero will always decrease the value of f . And fy = −2y, so moving y towards zero will always
increase the value of f . This increasing/decreasing nature of f cannot be understood just
by looking at a single derivative of f .

Let f : R2 → R Recall that we defined the gradient of f at (a, b) by

∇f(a, b) = (fx(a, b), fy(a, b)).

Remark 4.32. The gradient vector ∇f(a, b) points in the direction in which the function f
is increasing, at the point (a, b). If ∇f(a, b) = (0, 0), or if fx or fy is undefined, we say that
(a, b) is a critical point of the function f .

Example 4.33. Let f(x, y) = x2 − y2 as in the previous example. Then ∇f(a, b) =
(2a,−2b) = 2(a,−b). The vector (a,−b) points in the direction in which f increases, at
the point (a, b). If (a, b) = (0, 0), then ∇f(a, b) = (0, 0), so (0, 0) is a critical point of f .
However, note that this point is neither a local maximum nor a local minimum of f . We will
discuss critical points later on in the course.
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Example 4.34. Let f(x, y) = x2 + y2. Then ∇f(a, b) = (2a, 2b). The vector (a, b) points in
the direction in which f increases, at the point (a, b). That is, moving away from the origin
always increases the value of f . If (a, b) = (0, 0), then ∇f(a, b) = (0, 0), so (0, 0) is a critical
point of f . In this case, the origin (0, 0) is the global minimum of the function f .

Proposition 4.35 (Properties of the Gradient). Let f, g : R2 → R and let c ∈ R.

• ∇(f + g) = (∇f) + (∇g)
• ∇(cf) = c · (∇f).
• ∇(fg) = f · (∇g) + g · (∇f). (Product Rule)
• Let F : R→ R. Then ∇F (f(x, y)) = F ′(f(x, y)) · ∇f(x, y). (Chain Rule)

Example 4.36. Let f(x, y) = x2 + y2, let g(x, y) = 2x. Then at the point (a, b), we have
∇(f + g) = ∇f +∇g = (2a, 2b) + (2, 0) = (2a+ 2, 2b).

Let h(x, y) = (x2 + y2) and let F (t) = t3. Then at the point (a, b), we have ∇F (h(a, b)) =
3(h(a, b))2∇h(a, b) = 3(a2 + b2)2(2a, 2b).

Proposition 4.37 (Chain Rule for Vector-Valued Functions). Let f : R3 → R. Let
r : R→ R3. Then

d

dt
(f(r(t))) = (∇f(r(t))) · r′(t).

Proof Sketch. We use the linear approximation, r(t+h) ≈ r(t)+hr′(t). Also, f((x, y, z)+v) ≈
f(x, y, z) + v · ∇f(x, y, z). Substituting one approximation into the other,

d

dt
f(r(t)) = lim

h→0

f(r(t+ h))− f(r(t))

h
≈ lim

h→0

f(r(t) + hr′(t))− f(r(t))

h

≈ lim
h→0

[f(r(t)) + hr′(t) · ∇f(r(t))]− f(r(t))

h
= lim

h→0

hr′(t) · ∇f(r(t))

h
= r′(t) · ∇f(r(t)).

�

Example 4.38. Let f(x, y) = x2 + y2. Let s(t) = (t, t3). Then f(s(t)) = t2 + t6. From the
Chain Rule, we have (d/dt)f(s(t)) = ∇f(s(t)) · s′(t) = (2t, 2t3) · (1, 3t2) = 2t+ 6t5.

4.5. Directional Derivatives. From the Chain Rule for vector-valued functions, we saw
that, if f : R3 → R and if r : R→ R3, then

d

dt
(f(r(t))) = lim

h→0

f(r(t) + hr′(t))− f(r(t))

h
= (∇f(r(t))) · r′(t).

We can similarly allow r′(t) to be any fixed vector v ∈ R3, and turn this limit into a definition.

Definition 4.39 (Directional Derivative). Let f : R3 → R. Let (a, b, c) ∈ R3 and let
v ∈ R3. We define the derivative Dvf(a, b, c) of f with respect to v at the point (a, b, c) by

Dvf(a, b, c) = lim
h→0

f((a, b, c) + hv)− f(a, b, c)

h
= (∇f(a, b, c)) · v.

If v is a unit vector, we call Dvf(a, b, c) the directional derivative of f in the direction v
at the point (a, b, c).

Remark 4.40. Let f : R2 → R and let v ∈ R2. The directional derivative Dvf(a, b) measures
the rate of growth of f at the point (a, b) in the direction v. More specifically, Dvf(a, b)
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is the slope of the tangent line to the surface z = f(x, y) at the point (x, y) = (a, b) which
points in the direction v = (v1, v2). To see this, consider the line

r(t) = (a, b, f(a, b)) + t(v1, v2, v · ∇f(a, b)).

Then this line is contained in the tangent plane to f at (a, b). That is, this line must
satisfy z = L(x, y) = f(a, b) + ((x, y) − (a, b)) · ∇f(a, b). Indeed, the z-component of r is
f(a, b) + tv · ∇f(a, b), while the other components satisfy x = a+ tv1 and y = b+ tv2, so

z = f(a, b) + tv · ∇f(a, b) = f(a, b) + ((x, y)− (a, b)) · ∇f(a, b).

In conclusion, the line r(t) is tangent to the surface z = f(x, y) at the point (a, b). And the
slope of this line is the z-component of r′(t), which is exactly

v · ∇f(a, b) = Dvf(a, b).

Example 4.41. Let f(x, y) = x2 + y2. Let v = (1, 2). Then Dvf(0,−1) = (∇f(0,−1)) ·
(1, 2) = (0,−2) · (1, 2) = −4.

Directional derivatives allow us to better understand the information contained in the
gradient itself. For example, suppose v ∈ R2 is a unit vector and let (a, b) ∈ R2. Then, if θ
denotes the angle between ∇f(a, b) and v, we have

Dvf = ∇f(a, b) · v = ‖∇f(a, b)‖ cos θ.

That is, Dvf is the most positive when θ = 0, and Dvf is most negative when θ = π. In the
case θ = 0, v points in the same direction as ∇f(a, b). And in the case that θ = π, v points
in the opposite direction of ∇f(a, b).

Finally, in the case θ = π/2, Dvf = 0. So, when v is perpendicular to ∇f(a, b), f is neither
increasing nor decreasing in the direction v. We summarize these observations below.

Definition 4.42 (Optimization Interpretation of Gradient and Directional Deriva-
tives). Let f : R2 → R, let v ∈ R2 be a unit vector, and let (a, b) ∈ R2. Assume
∇f(a, b) 6= (0, 0). Then

(i) ∇f(a, b) points in the direction of greatest increase of f . And −∇f(a, b) points in
the direction of greatest decrease of f .

(ii) ∇f(a, b) is orthogonal to the level curve of f at (a, b).

In the case f : R3 → R, then ∇f(a, b, c) is normal to the level surface of f at (a, b, c).

Proof of (ii). Let r : R→ R2 be a level curve of f . That is, assume that f(r(t)) is constant
as t varies, and assume that r(0) = (a, b, c). Then using the Chain Rule,

0 =
d

dt
f(r(t)) = ∇f(r(t)) · r′(t).

That is, r′(t) is orthogonal to ∇f(r(t)) for any t (in particular for t = 0). And r′(t) is
tangent to the level curve r(t). So, ∇f(r(t)) is orthogonal to the level curve. �

Example 4.43 (Tangent Planes for Implicitly Defined Surfaces). Let f : R3 → R and
let d be a constant. Suppose we have a surface implicitly defined by f(x, y, z) = d. Then
we can find both a normal vector and tangent plane to a given point (a, b, c) in the surface.
We know that ∇f(a, b, c) is orthogonal to the surface f(x, y, z) = d. So, a normal vector at
(a, b, c) is ∇f(a, b, c), and the tangent plane is given by the equation

((x, y, z)− (a, b, c)) · ∇f(a, b, c) = 0.
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Remark 4.44. The above formula is almost identical to the formula for the linearization of
a function f : R3 → R from Definition 4.25. However, the formula for the tangent plane for
the surface g(x, y, z) = d is a bit different than the formula for the tangent plane z = L(x, y)
for a function f : R2 → R, as defined in Remark 4.27. However, the two formulas can be
related in the following scenario. Suppose we can write g in the form g(x, y, z) = −z+f(x, y),
and if we consider the surface g(x, y, z) = −z + f(x, y) = 0, then the tangent plane for the
implicitly defined surface g(x, y, z) = 0 becomes

0 = ((x, y, z)− (a, b, c)) · ∇g(a, b, c) = ((x, y, z)− (a, b, c)) · (fx(a, b), fy(a, b),−1)

= ((x, y)− (a, b)) · ∇f(a, b) + c− z = ((x, y)− (a, b)) · ∇f(a, b)− z + f(a, b)

In the last line, we used g(a, b, c) = 0 = −c + f(a, b), so c = f(a, b). In summary, the
implicitly defined tangent plane for g reduces to the formula for the tangent plane for f from
Remark 4.27.

Example 4.45. Consider the sphere x2 + y2 + z2 = 1. Let f(x, y, z) = x2 + y2 + z2. The
tangent plane to the point (a, b, c) in the sphere is given by

((x, y, z)− (a, b, c)) · (2a, 2b, 2c) = 0.

Simplifying a bit, we have (x, y, z) · (a, b, c) = a2 + b2 + c2 = 1. The nice thing here is that
we did not have to solve for z and take derivatives of the resulting expression.

Example 4.46. Consider the cone z2 = x2 + y2. Let f(x, y, z) = x2 + y2 − z2. The tangent
plane to the point (a, b, c) in the cone is given by

((x, y, z)− (a, b, c)) · (2a, 2b,−2c) = 0.

Simplifying a bit, we have (x, y, z) · (a, b,−c) = a2 + b2 − c2 = 0. Note that if (a, b, c) = 0,
this equation no longer becomes a plane, but it becomes all of R3.

4.6. Chain Rule. Recall that if f : R3 → R and if r : R→ R3, then the Chain Rule says

d

dt
(f(r(t))) = (∇f(r(t))) · r′(t).

There is an even more general statement to make.

Theorem 4.47 (Chain Rule). Let f : Rn → R. We write f(x1, . . . , xn). Suppose each
variable x1, . . . , xn is itself a function of variables t1, . . . , tm. Then for any 1 ≤ k ≤ m,

∂f

∂tk
=

∂f

∂x1

∂x1
∂tk

+
∂f

∂x2

∂x2
∂tk

+ · · ·+ ∂f

∂xn

∂xn
∂tk

.

Alternatively, if we denote ∇f = (fx1 , . . . , fxn), r(tk) = (x1(t1, . . . , tm), . . . , xn(t1, . . . , tm)),
then we have

∂f

∂tk
= (∇f) · r′.

Example 4.48. Let f(x, y, z) = xy + z. Suppose x = s3, y = st and z = t3. We would like
to compute ∂f/∂s. We let r(s) = (s3, st, t3). We then have

∂f

∂s
= ∇f · r′ = (y, x, 1) · (3s2, t, 0)

= (st, s3, 1) · (3s2, t, 0) = 3s3t+ ts3 = 4s3t.

We can verify this result directly. Note that f(x, y, z) = xy + z = s3st+ t3. So, fs = 4s3t.
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Example 4.49. Let f(x, y, z) = xz + y2. Suppose x = s2, y = s/t and z = t2. We would
like to compute ∂f/∂t. We let r(t) = (s2, s/t, t2). We then have

∂f

∂t
= ∇f · r′ = (z, 2y, x) · (0,−st−2, 2t)

= (t2, 2s/t, s2) · (0,−st−2, 2t) = −2s2t−3 + 2ts2.

We can verify this result directly. Note that f(x, y, z) = xz + y2 = s2t2 + s2t−2. So,
ft = 2s2t− 2s2t−3.

4.6.1. Implicit Differentiation. Recall that in single-variable calculus, if we have an equation
of the form f(x, y) = 0, then we can treat y as an implicit function of x. That is, we write
f(x, y(x)) = 0. And by the Chain Rule, we can differentiate this to get

fx(x, y(x)) + fy(x, y(x))
dy

dx
= 0.

Solving for dy/dx, we get dy/dx = −fx/fy (assuming fy 6= 0).

Example 4.50. Suppose x2 + y2 − 1 = 0, we define f(x, y) = x2 + y2 − 1, and we have
2x + 2y(dy/dx) = 0, so that dy/dx = −x/y. And indeed, if we solved for y, we would get
y(x) = ±

√
1− x2, so that dy/dx = −(±x/

√
1− x2) = −x/y(x).

We can do a similar thing with more variables, using our general Chain Rule. For example,
suppose we have a function f(x, y, z) = 0 and we want to compute ∂y/∂x. That is, we are
thinking of y as an implicit function of x, but still treating z and x as independent variables.
That is, ∂z/∂x = 0. From the Chain Rule, we get

0 = fx
∂x

∂x
+ fy

∂y

∂x
+ fz

∂z

∂x
= fx + fy

∂y

∂x
.

Solving for ∂y/∂x, we get the same formula ∂y/∂x = −fx/fy (assuming fy 6= 0).

Example 4.51. Suppose x2 +y+z2x−3 = 0. We want to compute ∂z/∂x. From the Chain
Rule, we have 2x+ 2zx(∂z/∂x) + z2 = 0. Solving for ∂z/∂x, we get

∂z

∂x
=
−z2 − 2z

2zx

5. Optimization

We have now built up enough machinery of differential calculus to begin optimizing func-
tions of multiple variables. We have seen that the gradient of a function points in the
direction of greatest increase, and the negative of the gradient of a function points in the
direction of greatest decrease. We will exploit this and other properties of the gradient to
optimize functions. We first recall optimization for a single variable.

Suppose f : R → R. Recall that a critical point occurs at x when f ′(x) = 0 or f ′(x) is
undefined. If x is a critical point for f , then x may or may not be a local extremum of f .
For example, if f(x) = x2, then f ′(x) = 0 occurs only at x = 0. And we know that x = 0
is a global minimum for f . That is, f(x) ≥ f(0) for all x ∈ R. However, if f(x) = x3, then
f ′(x) = 0 occurs only at x = 0. But x = 0 is not a local maximum or a local minimum.
That is, no matter how close we look near x = 0, there are always points x1, x2 near zero
such that f(x1) > f(0) > f(x2). The issue here is that f ′′(x) changes sign at x = 0, so
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that x = 0 is an inflection point of f . So, the first derivative can be helpful sometimes for
optimizing functions, but not always. Lastly, recall that if f ′′(x) > 0, then f has a shape
similar to g(x) = x2 (f is concave up), and if f ′′(x) < 0, then f has a shape similar to
g(x) = −x2 (f is concave down). So, the second derivative of f can also tell us some things
about local extrema of a function. Note that f(x) = |x| has a global minimum at x = 0
even though f ′(0) is undefined. Note also that f(x) = x4 has a global minimum at x = 0,
while f ′(0) = f ′′(0) = 0, so the value of the second derivative at a single point cannot always
identify a local extremum.

Let’s recall the second derivative test in one variable.

Example 5.1. Let f : R→ R. We say that c is a local maximum for f if all points x near
c satisfy f(x) ≤ f(c). We say that c is a local minimum for f if all points x near c satisfy
f(x) ≥ f(c). We say that c is a local extremum for f if c is either a local maximum or a
local minimum of f .

(Second Derivative Test on R)

• If f ′(c) = 0 and f ′′(c) > 0 then c is a local minimum of f .
• If f ′(c) = 0 and if f ′′(c) < 0, then c is a local maximum of f .
• If f ′(c) = 0 and if f ′′(c) = 0, then this test is inconclusive. That is, c may or may

not be a local extremum of f .

We will come up with an analogous test for functions of more variables. However, the test
will be a bit more complicated than before. We begin with some definitions

Definition 5.2 (Local Extremum). Let f : R2 → R.

• We say that f has a local maximum at (a, b) if f(x, y) ≤ f(a, b) for all (x, y)
near (a, b). (Formally: there is some t > 0 such that, if ‖(a, b)− (x, y)‖ < t, then
f(x, y) ≤ f(a, b).)
• We say that f has a local minimum at (a, b) if f(x, y) ≥ f(a, b) for all (x, y)

near (a, b). (Formally: there is some t > 0 such that, if ‖(a, b)− (x, y)‖ < t, then
f(x, y) ≤ f(a, b).)

We say that f has a local extremum at (a, b) if (a, b) is either a local maximum or a local
minimum.

Example 5.3. f(x, y) = x2 + y2 has a local minimum at (0, 0), since f(x, y) ≥ 0 = f(0, 0)
for all (x, y) ∈ R2. Note that ∇f(0, 0) = (0, 0).
g(x, y) = −x2 − y2 has a local maximum at (0, 0), since g(x, y) ≤ 0 = g(0, 0) for all

(x, y) ∈ R2. Note that ∇g(0, 0) = (0, 0).
h(x, y) = x2−y2 does not have a local extremum at (0, 0). Still, we have ∇h(0, 0) = (0, 0).

Definition 5.4 (Critical Point). Let f : R2 → R and let (a, b) ∈ R2. We say that (a, b) is
a critical point of f if either:

• ∇f(a, b) = (0, 0), or
• One component of ∇f(a, b) is undefined.

Example 5.5. The point (0, 0) is the only critical point of f(x, y) = x2 + y2, of g(x, y) =
−x2 − y2, and of h(x, y) = x2 − y2. The point (0, 0) is a critical point of f(x, y) = 1/x.

Example 5.6. Let f(x, y) = |x|+ |y|. Then (a, b) is a critical point of f whenever a = 0 or
b = 0. The global minimum of f occurs at (0, 0). Note that ∇f(0, 0) is undefined.
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Definition 5.7 (Saddle Point). Let f : R2 → R and let (a, b) ∈ R2. We say that (a, b) is a
saddle point of f if (a, b) is a critical point of f and if (a, b) is not a local extremum of f .
Formally: (a, b) is a saddle point of f if (a, b) is a critical point of f , and for any t > 0, there
exist points (x1, y1) and (x2, y2) such that ‖(x1, y1)− (a, b)‖ < t, ‖(x2, y2)− (a, b)‖ < t, and
such that f(x1, y1) > f(a, b) > f(x2, y2).

Example 5.8. The point (0, 0) is a saddle point for h(x, y) = x2 − y2. We have ∇h(0, 0) =
(0, 0), and for any n > 1, we have h(1/n, 0) > h(0, 0) > h(0, 1/n).

Theorem 5.9. Let f : R2 → R. If f has a local extremum at (a, b), then (a, b) is a critical
point of f .

Proof Sketch. Assume that ∇f(a, b) exists. Using the linear approximation of f for points
(x, y) near (a, b), we have

f(x, y) ≈ f(a, b) + ((x, y)− (a, b)) · ∇f(a, b).

Let ε be a small number and choose (x, y) = (a, b) + ε∇f(a, b), so that f(x, y) ≈ f(a, b) +
ε ‖∇f(a, b)‖. If ∇f(a, b) 6= (0, 0), then we can choose ε > 0 to get f(x, y) > f(a, b). And we
can choose ε < 0 so that f(x, y) < f(a, b). Since (a, b) is a local extremum of f , we cannot
find points near (a, b) that lie above and below f(a, b). We conclude that ∇f(a, b) = (0, 0),
as desired. �

From the previous Theorem, if we want to find the local extrema of a function, it suffices
to find the critical points of f . Once we have found a critical point, we would like to identify
it as a local maximum, local minimum, or saddle point. For functions of two variables, the
following quantity allows such an identification.

Definition 5.10. Let f : R2 → R. Let (a, b) ∈ R2. Define the discriminant D(a, b) of f at
(a, b) by

D(a, b) = det

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
= fxx(a, b)fyy(a, b)− (fxy(a, b))

2.

D(a, b) is sometimes called the Hessian of f at (a, b).

Theorem 5.11 (Second Derivative Test on R2). Let f : R2 → R. Let (a, b) ∈ R2.
Assume that (a, b) is a critical point of f , and that the second derivatives fxx, fxy, fyy exist
and are continuous near (a, b). Then

• If D > 0 and if fxx(a, b) > 0, then (a, b) is a local minimum of f .
• If D > 0 and if fxx(a, b) < 0, then (a, b) is a local maximum of f .
• If D < 0, then (a, b) is a saddle point of f .
• If D = 0, then no conclusion can be drawn in general.

Example 5.12. If f(x, y) = x2 +y2, then D(0, 0) = 4 > 0. Since fxx(0, 0) = 2 > 0, we know
that (0, 0) is a local minimum of f .

If g(x, y) = −x2− y2, then D(0, 0) = 4 > 0. Since fxx(0, 0) = −2 < 0, we know that (0, 0)
is a local maximum of g.

If h(x, y) = x2 − y2, then D(0, 0) = −4 < 0, so (0, 0) is a saddle point of h.
If p(x, y) = x4 + y4, then D(0, 0) = 0, but (0, 0) is a global minimum of p. If p(x, y) =
−x4 − y4, then D(0, 0) = 0, but (0, 0) is a global maximum of p. If p(x, y) = x4 − y4, then
D(0, 0) = 0, but (0, 0) is saddle point of p.
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Proof sketch of Theorem 5.11. For simplicity, assume (a, b) = (0, 0). It turns out that there
are multivariable versions of Taylor’s Theorem. In the present case, we have the following
Taylor expansion near (0, 0). (Note the resemblance to the linear approximation of f .)

f(x, y) ≈ f(0, 0) + (x, y) · ∇f(0, 0) + x2fxx(0, 0)/2 + y2fyy(0, 0)/2 + xyfxy(0, 0) + · · ·
If ∇f(0, 0) = 0, then the first-order terms go away, so that we have

f(x, y) ≈ f(0, 0) + x2fxx(0, 0)/2 + y2fyy(0, 0)/2 + xyfxy(0, 0) + · · ·
That is, the most significant part of the function is the quadratic term

q(x, y) = x2fxx(0, 0)/2 + y2fyy(0, 0)/2 + xyfxy(0, 0).

(Note that qxx(0, 0) = fxx(0, 0), qyy(0, 0) = fyy(0, 0) and qxy(0, 0) = fxy(0, 0)). To make
things easier, we complete the square to get rid of the xy term.

q(x, y) =
1

2
fxx(0, 0)

(
x+ y

fxy(0, 0)

fxx(0, 0)

)2

+
1

2fxx(0, 0)
y2
(
fyy(0, 0)fxx(0, 0)− (fxy(0, 0))2

)
.

If D > 0 and fxx(0, 0) > 0, then q(x, y) > 0, so (0, 0) is a local minimum. The other cases
are handled similarly. �

Finding local extrema is nice, but it would be better to find the maximum or minimum
values of a function on a given domain. Doing so requires more than just looking at the
critical points of the function.

Definition 5.13. Let D be a domain in R2, and let f : D → R. The global maximum
of f on D is the largest value of f on the domain D (if such a value exists). The global
minimum of f on D is the smallest value of f on the domain D (if such a value exists).

Example 5.14. Let f(x) = x on the domain 0 ≤ x ≤ 1, so that f : [0, 1] → R. The
global maximum of f occurs at x = 1, and the global minimum of f occurs at x = 0. Note
that f ′(x) is never zero, so we cannot identify the global maximum and minimum just by
examining critical points. We also need to examine the boundary of the domain 0 ≤ x ≤ 1,
which in this case is exactly x = 0 and x = 1. Note also that if we consider f to have the
domain −∞ < x <∞, then f has no maximum or minimum value.

Example 5.15. Suppose we want to maximize f(x) = (x2 − 1)2 = x4 − 2x2 + 1, where
−∞ < x < ∞. We see that f ′(x) = 4x(x2 − 1), so that f ′(x) = 0 when x = 0, 1,−1. Also,
f ′′(x) = 12x2 − 4, so f ′′(0) < 0. That is, x = 0 is a local maximum. However, f has no
global maximum on −∞ < x < ∞, since limx→∞ f(x) = ∞. Also, the other two critical
points are local minima. So, even though there is only one local maximum, this does not
necessarily imply that a global maximum exists. On the other hand, we can come up with
a condition on the domain of the function f such that, if this condition is satisfied, then we
can find the global maximum or minimum of f with an algorithm.

Definition 5.16. Let D be a domain in R2. Let (a, b) ∈ R2. We say that (a, b) is a
boundary point if, given any t > 0, the open disk {(x, y) ∈ R2 : ‖(x, y)− (a, b)‖ < t}
contains at least one point in D, and it contains at least one point not in D. A domain D
is closed if it contains all of its boundary points. A domain D is called bounded if there
exists some R > 0 such that D is contained in the disk {(x, y) ∈ R2 : ‖(x, y)− (a, b)‖ < R}.

Remark 5.17. These definitions can be applied to Euclidean space of any dimension.
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Example 5.18. The closed interval [0, 1] is closed. Its boundary points are 0 and 1, and
both points are contained in [0, 1].

The open interval (0, 1) is not closed. Its boundary points are 0 and 1, and both points
are not contained in (0, 1).

Both of the intervals [0, 1] and (0, 1) are bounded. However, the interval (0,∞) is not
bounded.

As we saw from the above examples, if the domain of a function is not closed, then the
global maximum may not exist. Similarly, if the domain of a function is not bounded, then
the global maximum may not exist. Fortunately, if the domain of a continuous function is
both closed and bounded, then the global maximum does exist. The following theorem is
proven is a proof-based calculus class, otherwise known as analysis. At UCLA, this Theorem
is proven in Math 131A and in Math 131B.

Theorem 5.19 (Extreme Value Theorem). Let D be a domain in R2. Assume that D
is closed and bounded. Let f : D → R be continuous. Then

• The function f achieves both its maximum and minimum values in D.
• The extreme values of f occur either at critical points of f in D, or on the boundary

of D.

We can then turn this Theorem into an algorithm for finding the extreme values of a
function

Algorithm 1 (Finding Extreme Values). Let D be a domain in R2. Assume that D is
closed and bounded. Let f : D → R be continuous. To find the maximum and minimum
values of f , we perform the following procedure:

(i) Find all critical points of f in D.
(ii) Find the maximum and minimum of f on the boundary points of D.

(iii) Among the points found in parts (i) and (ii), choose those points with the largest
and smallest values of f .

The maximum and minimum values of f on D must occur at the points found in Step (iii).

Remark 5.20. Step (ii) requires care when D is a domain in R3, as we demonstrate below.

Example 5.21. Consider f(x, y) = x+ y on the domain D where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
We have ∇f(x, y) = (1, 1), so f has no critical points in D, and Step (i) is then complete. We
now check the boundary of the domain. This boundary consists of four line segments, and
we need to check each one separately. The first line segment is when y = 0 and 0 ≤ x ≤ 1.
In this case f(x, y) = x. We know ∂f/∂x = 1 6= 0 on this line, so the extrema on this line
occur on its boundary, which is x = 0 and x = 1. So, we have added the points (0, 0) and
(1, 0) to our list of points in Step (ii). The next line segment is when y = 1 and 0 ≤ x ≤ 1.
In this case f(x, y) = x + 1. We know ∂f/∂x = 1 6= 0 on this line, so the extrema on this
line occur on its boundary, which is x = 0 and x = 1. So, we have added the points (0, 1)
and (1, 1) to our list of points in Step (ii). Similarly, we can check the third and fourth line
segments (x = 0, 0 ≤ y ≤ 1 and x = 1, 0 ≤ y ≤ 1), which add the points (0, 0), (0, 1) and
(1, 0), (1, 1) respectively to our list of points in Step (ii). However, we already added these
points to our list, so we did not add any new points.

In conclusion, from Steps (i) and (ii), we found a list of all possible candidate extrema,
and this list is: (0, 0), (0, 1), (1, 0) and (1, 1). So, it remains to check the values of f at these
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points. We have f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1 and f(1, 1) = 2. The minimum and
maximum of these values are the minimum and maximum of f on D. That is, the minimum
value of f on D is 0, and it occurs only at (0, 0). And the maximum value of f on D is 2,
and it occurs only at (1, 1).

Example 5.22. Consider f(x, y) = x2 + y2 + z2 on the domain D where −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. We have ∇f(x, y) = (2x, 2y, 2z), so f only has a critical
point at (0, 0, 0), and Step (i) is then complete. We now check the boundary of the domain.
This boundary consists of six squares, and we need to check each one separately. The first
square is x = −1, −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. In this case f(x, y, z) = 1 + y2 + z2. That
is, we are confronted with a two-variable optimization of the function g(y, z) = 1 + y2 + z2

where −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. We therefore perform Algorithm 1 on the function
g. We see that ∇g = (2y, 2z), so a critical point only occurs at (y, z) = (0, 0). We then
need to check the boundary of the square, which consists of four line segments. The first
line segment occurs when y = 1 and −1 ≤ z ≤ 1. On this line, we have g(y, z) = 2 + z2. We
have ∂g/∂z = 2z, so that z = 0 is the only critical point of g on the line. We finally add the
boundary points of the line segment to our list of points, where z = 1,−1.

In summary, so far we have added the following points to our list of potential extreme
values: (0, 0, 0), (−1, 0, 0), (−1, 1, 0), (−1, 1, 1), (−1, 1,−1). We still have to examine the
three other sides of the square x = −1, −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. And we have to
examine the five other squares of the domain D. Once we do this procedure, we will get a
list of points consisting of all possible triples of points from the set {−1, 0, 1}.

It remains to check the values of f at these points. We have f(0, 0, 0) = 0, f(±1,±1,±1) =
3, and all other candidate extrema have value 1 or 2. So, the minimum value of f on D is
0, and it occurs only at (0, 0, 0). And the maximum value of f on D is 3, and it occurs only
at the set of eight points (±1,±1,±1).

5.1. Lagrange Multipliers. We have now reached the culmination of this chapter and of
the course. As we have seen from the previous section, many optimization problems naturally
require us to consider constraints. For example, when we tried to maximize the function
f(x, y, z) = x2 + y2 + z2 over the box −1 ≤ x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1, we were forced
to optimize the function f on the boundary of the box. For example, we had to optimize the
function f subject to the constraint x = −1, −1 ≤ y ≤ 1 and −1 ≤ z ≤ 1. This constraint
was relatively easy to deal with, since we could just substitute the value x = −1 into the
function f , and then optimize over y and z. However, for more general constraints, this
substitution procedure may not work, or it could make things unnecessarily complicated.

Example 5.23. Consider the function f(x, y) = x2 subject to the constraint x+y = 1. There
may not be a way to substitute the constraint x+y = 1 into the function f(x, y) = x2 to get a
single variable function, which can be optimized. However, in this case, this procedure works:
you could try to parametrize the line x+ y = 1 as r(t) = (t, 1− t), t ∈ R, and then consider
f(x, y) = x2 = t2 which has a critical point only at t = 0, which corresponds to the point
(0, 1). And (0, 1) is the global minimum of f on x+ y = 1. However, there is an automatic
procedure which works in any dimension, and it does not require any parametrization.

Theorem 5.24 (Lagrange Multipliers). Let f : R2 → R and let g : R2 → R be functions
such that ∇f and ∇g exist and are continuous. Consider the problem of maximizing or
minimizing f subject to the constraint g(x, y) = 0. If f has a local maximum or local
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minimum at the point (a, b) subject to the constraint g(x, y) = 0, and if ∇g(x, y) 6= (0, 0),
then there exists a real number λ such that

∇f(a, b) = λ∇g(a, b).

Remark 5.25. The condition ∇f(a, b) = λ∇g(a, b) says that the vectors ∇f and ∇g are
parallel.

Proof Sketch. Suppose r(t) is a parametrization of the constraint curve g(x, y) = 0 where
r(0) = (a, b). Then f(r(t)) is a function of the real variable t which has a local maximum
or minimum at t = 0. That is, (d/dt)f(r(t)) = 0 when t = 0. From the Chain Rule, this
equation says

∇f(r(0)) · r′(0) = 0.

That is, r′(0) is perpendicular to ∇f(a, b) = ∇f(r(0)). Since r′(0) is parallel to the curve
g(x, y) = 0 and ∇g(a, b) is perpendicular to the curve g(x, y) = 0, we see that r′(0) is
perpendicular to ∇g(a, b). And since r′(0) is also perpendicular to ∇f(a, b), we see that
∇f(a, b) is parallel to ∇g(a, b). �

Remark 5.26. This Theorem also holds for functions f : R3 → R and constraints g : R3 →
R.

Example 5.27. Let’s find the extreme values of the function f(x, y) = x+ 2y on the ellipse
x2 + 2y2 = 1.

We use the method of Lagrange Multipliers, with f(x, y) = x+2y and g(x, y) = x2+2y2−1.
We need to solve for x, y and λ in the equation

∇f(x, y) = λ∇g(x, y).

That is, we need to solve for

(1, 2) = λ(2x, 4y).

We have the system of three equations in three unknowns
1 = λ(2x)

2 = λ(4y)

x2 + 2y2 = 1.

We have 2λ(2x) = 2 = λ(4y). So, if λ 6= 0, we have 4x = 4y. That is, x = y. Substituting
this into the last equation, we have

1 = 3x2

Solving for x, we get x = ±1/
√

3, so that y = ±1/
√

3 as well. So, two candidate points for
extreme values are (1/

√
3, 1/
√

3) and (−1/
√

3,−1/
√

3).
Note that the case λ = 0 cannot occur, since it would say that (1, 2) = (0, 0), which is

not true. So, the extreme values can only occur at (1/
√

3, 1/
√

3) and (−1/
√

3,−1/
√

3). By
inspection, f(1/

√
3, 1/
√

3) = 3/
√

3 =
√

3, and f(−1/
√

3,−1/
√

3) = −3/
√

3 = −
√

3.
In conclusion, subject to the constraint x2 + 2y2 = 1, the function f has its global

maximum of
√

3 at the point (1/
√

3, 1/
√

3) and its global minimum of −
√

3 at the point
(−1/

√
3,−1/

√
3). (Note that ∇g(x, y) 6= (0, 0) when x2 + 2y2 = 1, since if x = 0, then

y 6= 0. So, the Lagrange Multiplier Theorem applies.)
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Example 5.28. Let a, b, c > 0. Find the dimensions of the box of maximal volume, whose
edges are parallel to the coordinate axes, which can be inscribed in the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

Suppose the box B has vertices at the coordinates (±x,±y,±z) ∈ R3, where x, y, z ≥ 0.
Then the area of the box is 8xyz. Also, since the vertices intersect the ellipsoid, we have
x2/a2 + y2/b2 + z2/c2 = 1. To find the maximum area box, we therefore maximize the
function f(x, y, z) = xyz with the constraint g(x, y, z) = x2/a2 + y2/b2 + z2/c2− 1 = 0, with
x, y, z,≥ 0. Let

D = {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0}.
Then

∇f =

yzxz
xy

 , ∇g =

2x/a2

2y/b2

2z/c2

 .

(Since ∇g 6= (0, 0, 0) on D, the Lagrange Multiplier Theorem applies.)
We need to solve the equation ∇f = λ∇g. This system of equations says

yz = λ2x/a2, xz = λ2y/b2, xy = λ2z/c2.

Since ∇f 6= (0, 0, 0) on D, we may assume that λ 6= 0. Substituting the first equation into
the second gives (yza2/(2λ))z = 2λy/b2, so z2 = 4λ2/(a2b2). So, z = 2 |λ| /(ab). Substituting
the second equation into the third gives (xzb2/(2λ))x = 2λz/c2, so x = 2 |λ| /(bc). Similarly,
y = 2 |λ| /(ac). Plugging these equalities for x, y, z into the condition g(x, y, z) = 0 shows
that 12λ2 = a2b2c2, so 2

√
3 |λ| = abc. So, the only critical point we have found in D is

(x, y, z) = (a/
√

3, b/
√

3, c/
√

3).

On the boundary of D, f = 0. Also, f(a/
√

3, b/
√

3, c/
√

3) = abc3−3/2 > 0. So, we have
found the unique maximum of f . The box of maximal volume with edges parallel to the
coordinate axes therefore has dimensions 2a/

√
3, 2b/

√
3, 2c/

√
3.

Example 5.29. Suppose that we have a probability distribution on the set {1, . . . , n}, i.e.
we have a set of number p1, . . . , pn ∈ [0, 1] such that

∑n
i=1 pi = 1. A fundamental quantity

for a probability distribution is its entropy

f(p1, . . . , pn) = −
n∑
i=1

pi log pi .

(We extend the function x log x to 0 by continuity, so that 0 log 0 = 0.) The entropy of
p1, . . . , pn measures the disorder or lack of information in p. This quantity is important in
statistical physics.

We will try to maximize the entropy f subject to the constraint
∑n

i=1 pi = 1. That is, we
optimize f subject to the constraint g(p1, . . . , pn) = (

∑n
i=1 pi)− 1 = 0. Note that

∇f(p1, . . . , pn) =

−1− log p1
...

−1− log pn

 , ∇g(p1, . . . , pn) =

1
...
1

 .

(Since ∇g 6= (0, . . . , 0), the Lagrange Multiplier Theorem applies.)
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We need to solve the equation∇f(p1, . . . , pn) = λ∇g(p1, . . . , pn). This system of equations
says

−1− log p1 = λ, . . . ,−1− log pn = λ.

That is, p1 = p2 = · · · = pn. Since g(p1, . . . , pn) = 0 = (
∑n

i=1 pi)− 1 = np1 − 1, we conclude
that p1 = 1/n, so that p1 = · · · = pn = 1/n. That is, we have found only one candidate
extreme value of f subject to the constraint g(p1, . . . , pn) = 0.

In order to optimize f , we now need to check the boundary of the domain. The boundary
consists of p1, . . . , pn such that

∑n
i=1 pi = 1, and there is some pj which is equal to 1 or

0, so that pj log pj = 0. So, when we are on the boundary of the domain, we have n − 1
nonnegative numbers p1, . . . , pj−1, pj+1, . . . , pn that add to 1. That is, we can exactly repeat
the above calculation with n− 1 replaced by n. We then see that the only critical point we
find occurs when the n− 1 numbers are equal to 1/(n− 1). So, our next candidate extreme
value of f occurs at such a point. We now need to check the boundary of this region, and
so on. Iterating, we see that the only candidate extreme values occur when some of the
numbers are zero, and the rest are equal to each other.

So, our candidate extreme values occur when (p1, . . . , pn) = (1/n, . . . , 1/n), (p1, . . . , pn) =
(0, 1/(n− 1), . . . , 1/(n− 1)), (p1, . . . , pn) = (0, 0, 1/(n− 2), . . . , 1/(n− 2)), and so on, along
with any permutation of these points. By inspection, we have

f(1/n, . . . , 1/n) =
n∑
i=1

−(1/n) log(1/n) = (n/n) log n = log n.

f(0, 1/(n− 1), . . . , 1/(n− 1)) =
n−1∑
i=1

− 1

n− 1
log
( 1

n− 1

)
=
n− 1

n− 1
log(n− 1) = log(n− 1).

And so on. We therefore see that the maximum entropy occurs at the point (1/n, . . . , 1/n).
(And the minimum entropy occurs at the point (0, . . . , 0, 1).)

6. Appendix: Notation

R denotes the set of real numbers

∈ means “is an element of.” For example, 2 ∈ R is read as “2 is an element of R.”

R2 = {(x1, x2) : x1 ∈ R andx2 ∈ R}
R3 = {(x1, x2, x3) : x1 ∈ R andx2 ∈ R andx3 ∈ R}
f : A→ B means f is a function with domain A and range B. For example,

f : R2 → R means that f is a function with domain R2 and range R

Let v = (x1, y1, z1) and let w = (x2, y2, z2) be vectors in Euclidean space R3.
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v · w = x1x2 + y1y2 + z1z2 , the dot product of v and w

‖v‖ =
√
x21 + y21 + z21 , the length of the vector v

v × w = (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2) , the cross product of v and w

Let A =

(
a b
c d

)
be a 2× 2 matrix. We define

det(A) = |A| = ad− bc.

Let A =

a b c
d e f
g h i

 be a 3× 3 matrix. We define

det(A) = |A| = a(ei− fh) + b(fg − di) + c(dh− eg).

Let f : R2 → R. Let (a, b) ∈ R2. Let v ∈ R2 be a vector.

∂f

∂x
(a, b) = fx(a, b), denotes the partial derivative of f in the x-direction

∂f

∂y
(a, b) = fy(a, b), denotes the partial derivative of f in the y-direction

∇f(a, b) = (fx(a, b), fy(a, b)), denotes the gradient vector of f at (a, b)

Dvf(a, b) = ∇f(a, b) · v, denotes the derivative of f with respect to the direction v

D(a, b) = det

(
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)
= fxx(a, b)fyy(a, b)− (fxy(a, b))

2

denotes the discriminant, or Hessian, of f at (a, b)
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