Please provide complete and well-written solutions to the following exercises.

Assignment 3

Due October 16, at the beginning of class.

Exercise 1. Find the distance from the point $w=(1,2,3)$ to the line parametrized by $s(t)=(t, 2 t, 1+t),-\infty<t<\infty$.
Exercise 2. Plot the parametrized curve in the plane: $s(t)=\left(\cos ^{3} t, \sin ^{3} t\right), 0 \leq t \leq \pi$.
Exercise 3. Find the distance of the point $(1,2,5)$ from the plane $2 x+y-z=0$.
Exercise 4. Find the angle between the planes $x+2 y+3 z=1$ and $2 x-y-3 z=0$. Then, find a parametrization for the line of intersection of these planes.
Exercise 5. Suppose we have two parallel planes $a x+b y+c z=d_{1}$ and $a x+b y+c z=d_{2}$. Show that the distance between these two planes is

$$
\frac{\left|d_{1}-d_{2}\right|}{\|(a, b, c)\|}
$$

Exercise 6. Recall that if we have a point $w \in \mathbf{R}^{3}$ and a plane $a x+b y+c z=0$, then the distance from w to the plane is $|w \cdot(a, b, c)| /\|a, b, c\|$.

- Using this fact, show that the distance of a point $w \in \mathbf{R}^{3}$ to the plane $a x+b y+c z=d$ is

$$
\frac{|-d+w \cdot(a, b, c)|}{\|(a, b, c)\|}
$$

- Find an equation for the sphere that is tangent to the planes $x+y+z=3$ and $x+y+z=9$, given that the center of the sphere lies inside the planes $2 x-y=0$ and $3 x-z=0$.

Exercise 7. For each of the following equations, identify the type of quadric surface that appears. Then, sketch the surface.

- The set of all $(x, y, z) \in \mathbf{R}^{3}$ such that $z=x^{2}$.
- The set of all $(x, y, z) \in \mathbf{R}^{3}$ such that $x^{2}+4 y^{2}+9 z^{2}=1$.
- The set of all $(x, y, z) \in \mathbf{R}^{3}$ such that $x^{2}+y^{2}-z^{2}=1$.
- The set of all $(x, y, z) \in \mathbf{R}^{3}$ such that $x^{2}+y^{2}=2 z^{2}$, and such that $z \geq 0$.

