Please provide complete and well-written solutions to the following exercises.

Assignment 5

Due October 30, at the beginning of class.

Exercise 1.

- Sketch the domain in \mathbf{R}^{2} which is the set of all (x, y) such that $1 \leq x^{2}+y^{2} \leq 4$.
- Sketch the domain in \mathbf{R}^{3} which is the set of all (x, y, z) such that $0 \leq x \leq 1,0 \leq y \leq 1$ and $0 \leq z \leq 1$.
- Sketch the domain in \mathbf{R}^{3} which is the set of all (x, y, z) such that $x^{2}+y^{2} \leq 4, z \geq 0$ and $y+z \leq 5$.

Exercise 2.

- Sketch the function $z=f(x, y)=x^{2}-y^{2}$.
- Sketch the function $z=f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$.
- Sketch the function $z=f(x, y)=1 /(x y)$.

Exercise 3. Compute the following limit, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,1)} \frac{x}{y} .
$$

Exercise 4. Assume that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=3$ and $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=2$. Compute the following quantities:

- $\lim _{(x, y) \rightarrow(0,0)} 2 f(x, y)+\lim _{(x, y) \rightarrow(0,0)} g(x, y)$.
- $\left[\lim _{(x, y) \rightarrow(0,0)} f(x, y)\right]\left[\lim _{(x, y) \rightarrow(0,0)} g(x, y)\right]$.
- $\lim _{(x, y) \rightarrow(0,0)} \cos (f(x, y))$.

Exercise 5. Compute the following limit:

$$
\lim _{(x, y) \rightarrow(0,3)}(1+x)^{y / x}
$$

Exercise 6. Consider the following function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$.

$$
f(x, y)=\left\{\begin{array}{ll}
\left|y / x^{2}\right| e^{-\left|y / x^{2}\right|}, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array} .\right.
$$

Is f continuous or discontinuous at $(0,0)$? Justify your answer.

