Math 32B Steven Heilman

Digest 8

(A compilation of emailed homework questions, answered around Wednesday.) (Sending this
out Monday, may update in one or two days.)

Question. (From a student): What is covered on the second exam for this class?
Answer. See the CCLE announcement labelled “Exam 2 Stuff.”

Question. (From a student): Whenever you integrate an ice cream cone, do you always
parametrize with spherical coordinates with p from 0 to 7/4, 6 from 0 to 27 because even
though you have a cone in there, it’s basically like you're slicing out 1/4 of the sphere?

Answer. The short answer is no. First of all, I assume you mean that we are trying to
find the volume enclosed by the cone z = a+/x? + y? where a,b are constants and z < b.
In this case, if you want to find the volume using spherical coordinates, recall that ¢ =
cos H(z/\/x? + y2 + 22). So, if we are on the surface of the cone, we have z? + y* = 2%/a?,
so ¢ = cos 1 (2/4/22(1 + 1/a?)) = cos™}(1/4/1 + 1/a?) = cos~!(a/v/a? + 1). (Note that we
used z > 0.) So, in the case that a = 1, we have ¢ = cos™'(1/v/2) = 7/4. However,
for different values of a, ¢ # w/4. So, if you want to evaluate the volume using spherical
coordinates, your limits on ¢ would generally not have to be from 0 to /4. Also, note that
in this case, the volume is probably easier to compute using cylindrical coordinates (see the
homework solutions for details).

Question. If we can’t calculate 3D flux integrals, how do we calculate flux of 3D things in
real life?

Answer. I'm not sure I understand this question. We have discussed how we can compute
the flux of a vector field F': R* — R? through a two-dimensional surface S. What does it
mean to compute the flux of a vector field F': R?® — R? through a three-dimensional object?
This question seems to have no answer. (If you do not see why, just think about it for a
while, or try yourself to make such a definition.) A simpler question has a similar problem.
What does it mean to compute the flux of a vector field F': R? — R? through a domain D
in the plane? Once again, this question seems to have no answer.

The definition of flux requires that we define a unit normal vector. For a two-dimensional
surface S sitting in R?, we can define (exactly two) unit normal vectors to S. For a curve
C sitting in R?, we can define (exactly two) unit normal vectors to C. In both cases, we
can define a notion of flux. In general, if you want to define flux, you need to have some
definition of a unit normal vector, which usually requires that your surface (or curve) has
one less dimension than the ambient space.
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It is possible to define flux of a vector field F': R* — R* through a three-dimensional
“surface” S in R*, but this is beyond what we will cover in this class, and I will not make
this statement precise.

Question. (From a student): I was wondering if you could explain these topics through
more conceptually and maybe provide some examples.

e line integrals

e surface integrals

o flux

e some simple steps to parametrize a path

Answer. Any integral is essentially a sum of a bunch of values of a function. Since an integral
is a limit of Riemann sums, and a Riemann sum is a sum of a bunch of values of a function,
we can therefore intuitively think of an integral as a sum of a bunch of values of a function.
A line integral is an integral of a function f on a line. So, we can think of a line integral
as the sum of a bunch of values of a function on that line. For example, [, o fds integrates
a function f on a curve C, and fc F - Tds integrates the function F'- T on a line, where F'
is a vector field and 7' is a unit tangent vector to a curve C. Similarly, a surface integral is
an integral of a function f on a surface. So, we can think of a surface integral as the sum of
a bunch of values of a function on that surface. For example, [, ¢ fdS integrates a function
f on a surface S, and [[ F - e,dS integrates the function F - e, on the surface S, where F
is a vector field and e,, is a unit normal vector to S. The integral [, o I+ e,dS is also called
a flux integral of a surface. We can also interpret this integral as the amount of flow of the
vector field across S in the direction e,. For more specific examples, see the Examples in
the lecture notes here.

I'm not sure if there is a single method to parameterize a path. You should be able to do
standard parameterizations, e.g. parameterizing a line, a circle, an ellipse (going in both
directions in each case). Most examples will be variations of these, as we have seen on the
homework, or a parametrization will be given in the problem. For example, if you have
looked at Homework 8, Exercise 6, the parametrization is kind of tricky, so it is given as
part of the problem.

Question. How do we know when to use Green’s and when to just compute the line integral?

Can you give some examples of complicated surface integral parametrizations? (I had trouble
with some of the midterm questions)

Answer. For the first question, I'm not sure there is a general method, and sometimes you
just have to try both. Sometimes the boundary curve might be really complicated, or it
might involve several different pieces (e.g. a square). In that case, it might be better to
use Green’s Theorem, since integrating on the inside of a square is easier than integrating
four separate line integrals on the boundary of the square. So there could be different things
going on. If the line integral looks easy enough to do, then using Green’s Theorem would
not be necessary.


http://www.math.ucla.edu/~heilman/teach/c3.pdf

3

For the second question, first just note that these other practice exams often have different
(i.e. longer) time constraints, so they can ask questions that will take longer in total then
our shorter fifty minute exam.

Now, let’s first go through the things we did in class: a few different parametrizations of the
sphere; a general parametrization for a surface of the form z = f(z, y); a few parametrizations
of the cone and double cone; the cylinder; the parabolic cylinder. In the practice exams, you
may have run into the following examples.

(1) The bottom sheet of the two-sheeted hyperboloid 22 + y? = 22 — 1. This example falls
into the category of a surface defined by z = f(z,y) (if you solve for z in the right way),
so we know how to do this one. That is, we could solve for z to get z = £/22 +y?2 + 1,
so we use the parameterization G(z,y) = (z,y, —\/22 + y?> + 1). (We chose the minus sign
on the z-component since we want to parametrize the bottom part of the paraboloid.) Al-
ternatively, if you notice that you are summing two squares, you can use a variation on
polar coordinates with the parametrization G(r,0) = (rcos@,rsinf, —/1 + r?). Note that

(rcosf)? + (rsinf)? = (—v/1+1r2)? — 1.

(2) The curve z = siny rotated about the y-axis. Rotating about the y-axis means that
the distance from the y-axis is fixed, and if the point has fixed y-coordinate, then we are
rotating around in the zz-plane. So, if we have a point (0, y,sin(y)) in the curve, then the
point (z,y,z) is also in the curve, where (z,y, z) is supposed to have distance sin(y) from
the y-axis. That is, we need 2% + 22 = sin*(y). So, we can parametrize all such points by
(z,y,2) = ((siny)cosf,y, (siny)sinf) with 0 < § < 2m, since then 22 + 22 = sin*(y), as
desired. That is, we can use the parametrization G(y,0) = ((siny) cos8, y, (siny) sin ).

Anyway, there are kind of an infinite number of examples, so maybe I could just give some
general advice. Probably the first thing you want to do is you might have some equation
for your surface, and e.g. you can try to solve for one variable (maybe z), so that you can
write z = f(x,y) and then use the parametrization G(x,y) = (z,y, f(x,y)). This is basically
one of the few general procedures you can do, but it will work for almost all problems. If it
does not work, maybe you could try to split up your surface into different pieces over which
this method works. For example, the sphere z2 4+ y? + 22 = 1 can be parametrized by using
one parametrization for the top of the sphere G(z,y) = (z,y, /1 — 22 — y?) and one for the

bottom of the sphere H(x,y) = (x,y, —/1 — 22 — y?).

Also, sometimes things get easier maybe if you use the trick that I mentioned above about
the sum of two squares, i.e. if there is some rotational symmetry (as in example (2)), then
this should clue you in that maybe you should use sin and cos somewhere. Sometimes
this isn’t necessary, but it just makes things simpler. For example, you can use a single
parametrization to parametrize the unit sphere as G(z,6) = (cos0v/1 — 22 sin0v/1 — 22, z)
where 0 < 6§ < 27 and —1 < z < 1. These are some of the only tricks that I know, but they
are probably enough to cover any examples you come across.

Question. I know if you reverse direction with vector field line integrals, it matters. The
parametrization you do matters for vector fields as well. But does this also matter for flux
integrals because you're integrating over a vector field in that too? Also how can you every
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get a definitive answer if changing your parametrizations gives you a different answer every
time?

Also in HW#6 problem #6, why do you have to use two line integrals? The vector field is
conservative why can’t you just use the two endpoints?

Answer. Reversing the direction of fCF - T'ds changes the sign of the integral, basically
because T reverses its direction. On the other hand, |, o I’ - ends does not change sign when
you reverse the direction, as long as e, is still pointing in the same direction. That is what
occurs for reversing the direction. However, except for the direction in the case of | cF-T,
the details of the parametrization do not change the outcome of the integral. This was the
point of Homework 5, Exercise 1. I would encourage you to look closely at exactly what
this Exercise says, since it should answer your question. The same goes for flux integrals
on surfaces. The parametrization you choose for the surface does not change the answer, as
long as the normal vector points in the desired direction.

For homework 6 exercise 6, yes, I agree you can use the endpoints; this was what was done
in part (b). Part (a) was just meant to emphasize that part (b) is the simpler way of doing
things.

Question. To figure out the normal vector to a line in order to compute the flux integral,
do I just think about what dot product n(t).s‘(t) = 0 ? In other words, is there no algebraic
way to solve for the normal vector? What if it is hard to find a vector in which the dot
product will be 07

Answer. Suppose s: [a,b] — R? parametrizes a curve in the plane. We write s(t) =
(z(t),y(t)). Using our definition of the flux integral, we have [, F-e,ds = = F(s(t))n(t)dt,

t=a
where n(t) is normal to the curve s, and n(t) has the same length as s'(¢). So, we choose
either n(t) = (—y/(t),2/(t)), or n(t) = (y'(t), —2'(t)), according to the desired direction of the

normal. So, this is certainly an algebraic formula for n, and it also satisfies n(t) - s'(t) = 0.

Question. I noticed sometimes the question is worded ”find a potential function” or "find
the potential function” for gradients. Can we leave out the C when it says find a potential
function because C can be zero and it is a possible function to have no constant at the end?
and when it says find the potential function, we would have to put C because that represents
every possible potential function?

Answer. This distinction is not important to me. You can take or leave the constant C'. In
Calc 2, the constant C' is emphasized just so everyone remembers that the derivative of any
constant function is zero, but since we all remember that, I don’t care about the constant C'
anymore.

Question. Do we need to know proofs of things on the exams?

Answer. It is not necessary to know the proofs, I just think the proofs can help us remember
various things, and understand why certain things are true, so this is why I am going through
some of them in class. Moreover, some of the ideas that I am presenting will return in later
courses, if you take certain other courses.



