Math 32B Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due February 6, at the beginning of class.

Assignment 5

Exercise 1. Let s(t) = (x(t), y(t), z(t)) be a continuously differentiable parametrization of a curve γ in Euclidean space \mathbb{R}^3 , where $t \in [0,T]$ for some T>0. This same curve can be parameterized by $r(t) = (x(t^2), y(t^2), z(t^2))$ where $t \in [0, \sqrt{T}]$. Let $f: \mathbf{R}^3 \to \mathbf{R}$ be a function. Show that $\int_{\gamma} f ds = \int_{\gamma} f dr$. That is, the value of the integral of f on γ does not depend on the parametrization. However, this fact is not necessarily true for line integrals of vector fields!

Exercise 2. Find the line integral of the function f(x,y,z) = x + y + z over the straight line segment from (1,2,3) to (0,-1,1).

Exercise 3. Let C be the curve in the plane that lies in the set $x^2 + y^2 = 4$ with $x \ge 0$ and $y \geq 0$, and so that C has endpoints (2,0) and (0,2). Compute the line integral of $f(x,y) = x^2 - y$ over C

Exercise 4. Sketch the following vector fields F in the plane by considering $-3 \le x \le 3$ and $-3 \le y \le 3$.

- F(x,y) = (0,x)
- $F(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ $F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$

Exercise 5.

- Let F(x,y)=(x,y) be a vector field in the plane. Find a function $G\colon \mathbf{R}^2\to \mathbf{R}$ such that $\nabla G = F$.
- Let $F(x,y,z)=(yz^2,xz^2,2xyz)$ be a vector field on Euclidean space ${\bf R}^3$. Find a function $G \colon \mathbf{R}^3 \to \mathbf{R}$ such that $\nabla G = F$.

Exercise 6. Let $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ be continuous functions. Define the vector field

$$F(x, y, z) = (f(x), g(y), h(z)).$$

Find a function $G: \mathbf{R}^3 \to \mathbf{R}$ such that $F = \nabla G$. (Hint: consider the function G(x, y, z) = $\int_0^x f(t)dt$. What is ∇G ? Can you modify this example so that $\nabla G = F$?)

Exercise 7. Let $s(t) = (3 + 5t^2, 3 - t^2, t)$ be a parametrization of the curve C, where $0 \le t \le 2$. Let $F(x,y,z) = (z^2,x,y)$ be a vector field. Compute the line integral $\int_C F \cdot T \, ds$. **Exercise 8.** Let s(t) be a parametrization of the curve C which travels in a straight line from (0,0,0) to (1,4,4). Let F(x,y,z)=(x-y,y-z,z) be a vector field on Euclidean space \mathbf{R}^3 . Compute the line integral $\int_C F \cdot T \, ds$. Compute also the line integral $\int_C F \cdot T \, dr$, where r(t) is a parametrization of the straight line from (1,4,4) to (0,0,0).

Exercise 9. Let $F(x,y) = (x+y, -x^2-y^2)$ be a vector field in the plane. Let C denote the triangle with vertices (1,0), (0,1) and (-1,0). Compute the flux of the vector field F that is emanating outward across the triangle C.

Exercise 10. Let $F(x,y) = (x^2, y^2)$ be a vector field in the plane. Let C be the straight line segment between (3,0) and (0,3). Compute the flux of the vector field F moving upwards across C.

Exercise 11. Let $f: \mathbf{R}^3 \to \mathbf{R}$ be a function on Euclidean space \mathbf{R}^3 . Let C be a curve in Euclidean space, which is parametrized by a function s. Assume that $f(x, y, z) \ge p$ for some real number p, for all points (x, y, z) in C. Define

$$I = \int_C f \, ds$$

Which of the following things is true? Explain your reasoning.

- \bullet $I \geq p$.
- I > pL, where L is the length of C.