
1: INTRODUCTION

STEVEN HEILMAN

1. Applications of Calculus

It seemed a limbo of painless patient consciousness through which souls of
mathematicians might wander, projecting long slender fabrics from plane to
plane of ever rarer and paler twilight, radiating swift eddies to the last verges
of a universe ever vaster, farther and more impalpable.

James Joyce, A Portrait of the Artist as a Young Man.

The ability of Calculus to describe the world serves as one of the great triumphs of math-
ematics. Below, we will briefly describe some of the applications of Calculus. Some of these
applications will be discussed in the second half of this course, and others may be found in
your future endeavors.

In economics, there are many quantities that one would like to optimize. For example,
one may want to minimize the cost of producing certain goods. In general, one often wants
to do something in the best way possible. We will describe one way of doing something
in the best way in the section on optimization. Many of the ideas that appear in this
calculus class reappear in stochastic calculus. In stochastic calculus, one wants to better
understand stock prices, which are modeled as random functions.

In physics, many models of the real world use solutions of differential equations.
These equations involve the slopes and shape of functions, and their solutions describe the
behavior of many physical systems. For example, the famous Navier-Stokes equations of fluid
dynamics are expressed in this language. Solutions of the Navier-Stokes equations show us
how water behaves, though these equations really just state Newton’s second law. Also,
Einstein’s Theory of General Relativity uses a version of Calculus, though geometry
is needed here as well.

In mathematics itself, the fundamental concepts of Calculus reappear in many places,
some of which have already been described above. Also, Calculus serves as the foundation of
probability, which itself serves as the foundation of statistics. For example, to prove that
a large number of numerical data samples have the distribution of a bell curve, one can use
tools from Calculus. As another example, we can repeat Calculus for a single real variable
by using a single complex variable, and we get the beautiful subject of Complex analysis.

For a complete understanding of biology, you need to understand Calculus. For example,
suppose someone is given an intravenous drug which is administered at a certain rate. If we
know the volume of fluid in the body, the concentration of the administered drug, and the
rate of flow of the drug into the body, then we can use Calculus to model the concentration
of drug in the person’s body. These calculations are done using differential equations. If one
wants to fully understand how MRIs and CT-scans work, one needs multivariable calculus.
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Many of the concepts in multivariable calculus originate in single variable calculus, though
there are some new things that are needed.

Using differential equations, one can derive some of the equations for chemical concentra-
tions that were used in our high school chemistry classes. Also, the ideas of Calculus are
used in more advanced chemistry subjects, including quantum mechanics.

Even though computer science often deals with discrete problems, many of the ideas of
Calculus arise in computer science, and sometimes these ideas arise in unexpected ways. For
example, the methods used to encode music onto CDs and MP3s use Calculus, with some
additional tools from Fourier analysis. These same tools compress image and video data
for JPEGs and MPEGs, respectively.

The acts of thinking rigorously and using logic in our reasoning should become common
in this course. We want to transmit one of the great intellectual achievements of humanity,
just as we pass down great literature, art and philosophy to future generations.

2. A Brief History of Calculus

The rudiments of Calculus can be traced through many ancient cultures including those of
Greece, China and India. Calculus in its modern form is generally attributed to Newton and
Leibniz in the late 1600s. Newton was mainly motivated by applying Calculus to physics.
However, Leibniz invented most of the notation we use today. Even though this topics is
now taught in high school and college, it is still over 300 years old. In this course, perhaps
we will try to give you glimpses of what happened in the ensuing centuries.

3. The Calculus Paradigm

Mathematics before Calculus usually involves algebra, trigonometry and some planar ge-
ometry. The concepts in Calculus are very different from concepts that are learned before,
so the following “paradoxes” are meant to help in understanding the new concepts. These
paradoxes are known as Zeno’s Paradoxes.

Paradox 3.1. In a footrace, suppose a slower runner is in front of a quicker runner. When
the quicker runner reaches any point in the race, the slower runner was already at that point
in the past. Therefore, the quicker runner can never overtake the slower runner.

Paradox 3.2. Suppose I want to walk through a doorway, and I am standing a meter away
from the door. At some point I am at a half meter away from the door, then at another
point I am at a quarter of a meter away, then at another point I am at an eighth a meter
away, and so on. Therefore, I can never make it through the doorway.

Paradox 3.3. Suppose I shoot at arrow at a target. At any given moment, the arrow
occupies a fixed position in space. However, in order for an object to move, it cannot sit in
one place. So, the arrow must have no motion at all. The arrow is motionless.

The first two paradoxes are somewhat similar. In the first paradox, we know from empirical
observation that a quicker runner can overtake a slower runner. And in order to resolve the
paradox, we need to note that the total time that the quicker runner remains behind the
slower runner is finite. Similarly, in the second paradox, I know that it only takes a finite
amount of time to pass through a door. Paradox 3.2 seems to occur since I am subdividing
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the one meter that I travel into an infinite number of smaller steps. Zeno seems to object,
saying that an infinite number of subdivisions cannot occur.

In mathematical terms, Zeno objects to the assertion 1
2

+ 1
4

+ 1
8

+ · · · = 1, because there
does not appear to be a rigorous way to think about an infinite sum of numbers. By using a
limit, we can actually speak rigorously about an infinite sum of numbers, thereby resolving
the paradox.

The third paradox is a bit different from the other two. Zeno is really questioning the
meaning of an instant of time. How can we rigorously discuss the instantaneous speed of
an object? In Chapter 2 of the textbook, we will use limits to define derivatives, and these
derivatives give a rigorous meaning to instantaneous velocity, thereby resolving the paradox.

4. The Notion of a Limit

Let f : R→ R, and let x, a, L ∈ R. Intuitively, we say that f has limit L as x approaches
a, if f(x) gets closer and closer to L as x gets closer and closer to a. More rigorously,

Definition 4.1. Fix a ∈ R and let x be a variable. We write limx→a f(x) = L if the following
occurs.

For all ε > 0, there exists δ(ε) > 0, such that:

if 0 < |x− a| < δ(ε), then |f(x)− L| < ε.
(1)

So, no matter how close I want f to be to L, I can always choose a small region around a
that is so small such that f is really close to L.

The limit may at first look a bit silly1, since for a polynomial, we can just plug in the
function value and the result agrees with the limit. So why are we defining a limit anyway?
First of all, we need to define limits to define derivatives, and derivatives are one of the
extremely important concepts in Calculus. Second of all, there are some subtleties to the
definition that may not yet be apparent.

For example, limx→a f(x) does not depend on the value of the function f at a. To see
this, note that the definition of a limit only states a condition about 0 < |x− a|. As a
more important issue, the limit of a function may not always exist. This issue is important
because we will see that the derivatives of some functions may not exist. So, there may be
no reasonable way to talk about the instantaneous speed of certain trajectories.

If the limit of a function does not exist, we sometimes write DNE. Here are three important
examples where a limit does not exist. Since we would like to think about the rate of change
of many functions, it is important to understand the cases when we cannot talk about the
rate of change of certain functions, i.e. when certain limits fail to exist. In order to better
understand the definition of the limit (1), we will apply this definition to the examples below.

Example 4.2. (A jump discontinuity) Define H : R→ R by the formula

H(x) =

{
0, x < 0

1, x ≥ 0

Claim: limx→0H(x) DNE, limx→0− H(x) = 0 and limx→0+ H(x) = 1.

1Historically, the definition (1) was invented over a century after Newton and Leibniz invented Calculus.
The approach of Newton and Leibniz was not quite rigorous by modern standards.
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Proof of Claim. Let x < 0, and let ε > 0. Using (1), I need to find δ such that: −δ < x < 0
implies |H(x)− 0| < ε. But I can just choose δ = 1. Since x < 0, H(x) = 0, so |H(x)− 0| =
0 < ε. We conclude that limx→0− H(x) = 0.

Now, let x > 0, and let ε > 0. I need to find δ such that: 0 < x < δ implies |H(x)− 1| < ε.
I can just choose δ = 1 again. Since x > 0, H(x) = 1, so |H(x)− 1| = 0 < ε. We conclude
that limx→0+ H(x) = 1.

Now, if limx→0H(x) exists, then limx→0+ H(x) = limx→0− H(x). Taking the contraposi-
tive: if limx→0+ H(x) 6= limx→0− H(x), then limx→0H(x) does not exist. Since limx→0+ H(x) 6=
limx→0− H(x), we conclude that limx→0H(x) does not exist. �

Example 4.3. (A singularity) Define f : R→ R by the formula

f(x) =

{
1/x, x 6= 0

0, x = 0

Claim: limx→0 f(x) DNE, limx→0+ f(x) =∞ and limx→0− f(x) = −∞.

Proof of Claim. We will first show that limx→0 f(x) does not exist. We argue by contradic-
tion. Suppose L ∈ R and limx→0 f(x) = L. We now apply the definition (1). Let ε = 1.
Then there exists δ > 0 such that: 0 < |x| < δ implies |f(x)− L| < 1. Let x′ be the
minimum of δ/2 and 1/(|L| + 2). Since 0 < x′ ≤ 1/(|L| + 2), we have 1/x′ ≥ |L| + 2. Also,
|x′| < δ and f(x′) = (1/x′) ≥ |L| + 2. But then |f(x′)− L| ≥ 2 > 1, contradicting the fact
that |f(x)− L| < 1. Since we have achieved a contradiction, we conclude that limx→0 f(x)
does not exist.

We now show: for all N > 0, there exists δ(N) > 0 such that: 0 < x < δ(N) implies
f(x) > N . Let N > 0, and define δ(N) = 1/N . Let 0 < x < δ(N) = 1/N . Then 1/x > N ,
so f(x) = 1/x > N , as desired. From (1), limx→0 f(x) does not exist. However, we have
shown that f becomes arbitrarily large as x → 0+. We express this behavior of f with the
following notation.

lim
x→0+

f(x) =∞.

Also, for all N < 0, there exists δ(N) < 0 such that: δ(N) < x < 0 implies f(x) < N .
Let N < 0, and define δ(N) = 1/N . Let 1/N = δ(N) < x < 0. Then 1/x < N , so
f(x) = 1/x < N , as desired. We express this behavior of f with the following notation.

lim
x→0−

f(x) = −∞.

�

Example 4.4. (Infinite oscillation) Define f : R→ R so that

f(x) =

{
cos(1/x), x 6= 0

0, x = 0

Claim: limx→0 f(x) DNE.

Proof of Claim. We will show that limx→0 f(x) does not exist. We argue by contradiction.
Suppose L ∈ R and limx→0 f(x) = L. We now apply the definition (1). Let ε = 1/2. Then
there exists δ > 0 such that: 0 < |x| < δ implies |f(x)− L| < 1/2. Let n be a positive integer
such that 0 < 1/n < δ. Let x1 = 1/(2πn) and let x2 = 1/(π + 2πn). Since 0 < 1/(2π) < 1,
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we see that 0 < 1/(π + 2πn) < 1/(2πn) < 1/n < δ. That is, 0 < |x1| < δ and 0 < |x2| < δ.
Applying (1), we conclude that

|f(x1)− L| < 1/2, and |f(x2)− L| < 1/2.

Now, by the definition of f , we have f(x1) = cos(2πn) = 1, and f(x2) = cos(π+2πn) = −1.
So, L satisfies |1− L| < 1/2 and |−1− L| < 1/2. That is, L satisfies

1/2 < L < 3/2, and − 3/2 < L < −1/2.

Since no such L exists, we have achieved a contradiction. We conclude that limx→0 f(x) does
not exist. �

5. Calculating Limits

In order to manipulate limits, we need to be able to apply some simple operations to them.
The following statements summarize some ways that we can manipulate limits.

Operations on Limits:
Let L,M, a ∈ R. Assume that limx→a f(x) exists and limx→a g(x) exists. Let L =

limx→a f(x) and let M = limx→a g(x). Then

(a) limx→a(f(x) + g(x)) = (limx→a f(x)) + (limx→b g(x)) = L+M .
(b) limx→a(f(x)− g(x)) = (limx→a f(x))− (limx→b g(x)) = L−M .
(c) limx→a[(f(x))(g(x))] = (limx→a f(x))(limx→b g(x)) = LM .

(d) If M 6= 0, then limx→a
f(x)
g(x)

= limx→a f(x)
limx→b g(x)

= L
M

.

(e) If α ∈ R and L > 0, then limx→a((f(x))α) = Lα

To get an idea for why these things are true, we will prove property (a). Intuitively, if we
take x to be close to a, then f(x) will be close to L. Then, if we take x even closer to a if
necessary, g(x) will be close to M . So, for x very close to a, f(x) + g(x) is close to L + M .
This intuition can be turned into a proof.

Exercise 5.1. Try to prove property (c) by adapting the proof below.

Proof of (a). Let L,M, a ∈ R. Assume that limx→a f(x) exists and limx→a g(x) exists. Let
L = limx→a f(x) and let M = limx→a g(x). We consider the function f(x) + g(x). Let ε > 0.
We need to find δ > 0 such that 0 < |x− a| < δ implies |f(x) + g(x)− L−M | < ε. Apply
the definition (1) to f with ε1 = ε/2 to find 0 < δ1 such that:

0 < |x− a| < δ1 implies |f(x)− L| < ε/2.

Apply again the definition (1) to g with ε2 = ε/2 to find 0 < δ2 such that:

0 < |x− a| < δ2 implies |g(x)−M | < ε/2.

We choose δ to be the minimum of δ1 and δ2. Then 0 < |x− a| < δ implies 0 < |x− a| < δ1
and 0 < |x− a| < δ2. So, 0 < |x− a| < δ implies |f(x)− L| < ε/2 and |g(x)−M | < ε/2.
Applying the triangle inequality,

|f(x) + g(x)− L−M | = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M | < ε/2 + ε/2 = ε

So, the δ we have chosen satisfies the desired condition of the definition (1) for the function
f(x) + g(x). We conclude that L+M = limx→a(f(x) + g(x)), as desired. �
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6. Continuity

Definition 6.1. Let f : R→ R let a ∈ R. We say that f is continuous at a if the following
three conditions are satisfied

(i) limx→a f(x) exists
(ii) a is in the domain of f

(iii) limx→a f(x) = f(a)

We say that a function f is continuous if f is continuous on all points of its domain.

Intuitively, f is continuous at a if f does not “jump around too much” around a. In order
to better understand continuity, we will give two more equivalent definitions of continuity.
The first one is really just an application of the definition (1). Fix a ∈ R and let x be a
variable. The function f is continuous at a if and only if the following condition is satisfied

For all ε > 0, there exists δ(ε) > 0 such that:

if |x− a| < δ(ε), then |f(x)− f(a)| < ε
(2)

Unlike in (1), note that (2) allows for x such that |x− a| = 0, i.e. we can take x = a.
Our third equivalent way of defining continuity may appear a bit strange. However, we

will need this formulation to prove the Intermediate Value Theorem.

Definition 6.2. Let a, b, c, d ∈ R with c < d, a < b, and let f : (a, b) → R. Then the set
f−1(c, d) ⊆ R is defined by

f−1(c, d) = {x ∈ R : f(x) ∈ (c, d)}
Lemma 6.3. Let a, b ∈ R, and let f : (a, b)→ R. The following conditions are equivalent

(i) f is continuous.
(ii) For any open interval (c, d) with c, d ∈ R, c < d, the set f−1(c, d) is a union of open

intervals.

Proof. We first prove that (i) implies (ii). Assume that f is continuous. Let c, d ∈ R with
c < d. Fix x ∈ f−1(c, d). By Definition 6.2, f(x) ∈ (c, d). To prove (ii), it suffices to show
that x is contained in some interval (x−A, x+A) such that (x−A, x+A) ⊆ f−1(c, d), and
(x− A, x + A) ⊆ (a, b). Let ε be the minimum of |f(x)− c| /2 and |f(x)− d| /2. Applying
the definition (2) to f at x, there exists δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.
Let A > 0 be the minimum of δ/2, |x− a| /2 and |x− b| /2. Then (x − A, x + A) ⊆ (a, b).
Also, since 0 < A < δ/2, if z ∈ (x − A, x + A), then |f(x)− f(z)| < ε. By our choice of ε,
the previous inequality implies that (x−A, x+A) ⊆ f−1(c, d). We conclude that (ii) holds.

We now prove that (ii) implies (i). Let ε > 0 and let x ∈ (a, b). We need to find δ > 0
such that |x− y| < δ implies |f(x)− f(y)| < ε. From (ii), the set f−1(f(x)− ε, f(x) + ε) is
a union of open intervals. So, since x ∈ f−1(f(x) − ε, f(x) + ε), we can find c, d ∈ R with
c < d such that x ∈ (c, d) and (c, d) ⊆ f−1(f(x)− ε, f(x) + ε). Since x ∈ (c, d), we can find
δ > 0 such that (x− δ, x+ δ) ⊆ (c, d). Then

(x− δ, x+ δ) ⊆ (c, d) ⊆ f−1(f(x)− ε, f(x) + ε).

That is, |x− y| < δ implies f(y) ∈ (f(x) − ε, f(x) + ε). That is, |x− y| < δ implies
|f(x)− f(y)| < ε. Since we have found our desired δ, we conclude that f is continuous, and
the proof of (i) is complete.

Since (i) implies (ii), and (ii) implies (i), we conclude that (i) and (ii) are equivalent. �
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7. A Proof of the Intermediate Value Theorem

The Intermediate Value Theorem is the first “real” theorem that we have seen in this
course. Its statement may have some intuition behind it, but it may not be immediately
obvious how to prove it. For this reason, and to deepen our understanding of the subject
matter, we present a proof of the theorem. At the heart of the argument is the following
Lemma, which asserts that, in some sense, open intervals are connected. The proof of the
intermediate value theorem then proceeds by showing that a continuous function must map
a connected set to another connected set.

Lemma 7.1. Let a, b ∈ R, a < b. Then the open interval (a, b) cannot satisfy (a, b) = C∪D,
where C ∩D = ∅, C 6= ∅, D 6= ∅, and C,D are each unions of open intervals.

Proof. We argue by contradiction. Let C,D be unions of open intervals such that C∩D = ∅,
C 6= ∅, D 6= ∅, and (a, b) = C ∪D. Let c ∈ C and d ∈ D. Without loss of generality, c < d.
Since C is a union of open intervals, there exists ε > 0 such that (c − ε, c + ε) ⊆ C. Let c′

be the least upper bound of the set {z ∈ R : [c, z) ⊆ C}. Note that c′ ≤ b. Since there exists
ε > 0 such that (c− ε, c+ ε) ⊆ C, we conclude that c′ > c.

We now split into two cases. In each case, we will achieve our desired contradiction.
Case 1. c′ < b. Since C is a union of open intervals, c′ /∈ C. (If c′ ∈ C, then there exists

ε′ > 0 such that (c′ − ε′, c′ + ε′) ⊆ C. This follows since C is a union of open intervals. But
this containment contradicts the definition of c′.) Since c′ /∈ C and (a, b) = C∪D with c′ < b
and a < c < c′, we conclude that c′ ∈ D. But since D is a union of open intervals, there
exists ε′ > 0 such that (c− ε′, c + ε′) ⊆ D. But this containment contradicts the definition
of c′.

Case 2. c′ = b. Since we assumed that c < d and d ∈ D ⊆ (a, b), we have c < d < b, but
b = c′, so c < d < c′. But this inequality contradicts the definition of c′.

In any case, we have found a contradiction. We conclude that no such C,D exist, and
therefore the Lemma holds, as desired. �

Theorem 7.2. (Intermediate Value Theorem) Let a, b ∈ R, a < b. Let f : [a, b] → R
be continuous. Then f achieves every value between f(a) and f(b). That is, for every y ∈ R
in between f(a) and f(b), there exists x ∈ [a, b] such that f(x) = y.

Proof. We argue by contradiction. First, without loss of generality, assume that f(a) ≤ f(b).
(If this is not the case, replace f with −f .) Now, assume for the sake of contradiction that
y ∈ [f(a), f(b)], but there does not exist x ∈ [a, b] such that f(x) = y. Since f(a) ∈
[f(a), f(b)] and f(b) ∈ [f(a), f(b)], we may assume that y ∈ (f(a), f(b)).

Now, since (f(a), y) and (y, f(b)) are disjoint sets, f−1(f(a), y) and f−1(y, f(b)) are disjoint
sets. Since f is continuous at a, (a, b) ∩ [f−1(f(a), y)] 6= ∅. Since f is continuous at b,
(a, b)∩[f−1(y, f(b))] 6= ∅. Since f : (a, b)→ R is continuous, Lemma 6.3 says that f−1(f(a), y)
and f−1(y, f(b)) are each unions of open intervals. Since there does not exist x ∈ [a, b] such
that f(x) = y, we conclude that

(a, b) =
(
f−1(f(a), y)

)
∪
(
f−1(y, f(b))

)
But this equality contradicts Lemma 7.1. Since we have achieved a contradiction, we conclude
that some x exists such that f(x) = y, as desired. �
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8. Selected Exercises

The following exercises from the textbook are intended to sharpen your knowledge of the
details of the above concepts.

Exercise 8.1. Evaluate the following limit and justify each step by indicating the appropri-
ate limit law.

lim
u→−2

√
u4 + 3u+ 6

Exercise 8.2. Evaluate the following limit, if it exists. If it does not exist, explain why it
does not exist.

lim
t→0

(
1

t
− 1

t2 + t

)
Exercise 8.3. Evaluate the following limit, if it exists. If it does not exist, explain why it
does not exist.

lim
x→0

x√
1 + 3x− 1

Exercise 8.4. Is there a real number a such that the following limit exists?

lim
x→−2

3x2 + ax+ a+ 3

x2 + x− 2

If so, find the value of a and the value of the limit.

9. Selected Problems

The following problems are intended to deepen your understanding of the concepts dis-
cussed above. In the future we will try to include problems that are based upon applications
of Calculus.

Problem 9.1. Are the following statements true or false?

(a) If limx→5 f(x) = 0 and limx→5 g(x) = 0, then limx→5
f(x)
g(x)

does not exist.

(b) If x is a real number, then
√
x2 = x

(c) If limx→5 f(x) = 2 and limx→5 g(x) = 0, then limx→5
f(x)
g(x)

does not exist.

(d) If f is continuous at 5 and f(5) = 2, then limx→2 f(4x2 − 11) = 2.
(e) If f(x) > 1 for all x 6= 0 and limx→0 f(x) exists, then limx→0 f(x) > 1.

Problem 9.2. Fix x ∈ R, and let f(x) = x2. Calculate the following limit

lim
h→0

f(x+ h)− f(x)

h
.

The fraction (f(x+h)−f(x))/h is known as a difference quotient. The limit of this difference
quotient will come up again in Chapter 2.

Problem 9.3. Let f, g : R→ R and let a ∈ R. Is it always true that limx→a(f(x) + g(x)) =
(limx→a f(x)) + (limx→a g(x))?

Problem 9.4. Does there exist a function f : R→ R that is discontinuous everywhere? In
other words, is there a function f : R → R such that: for every x ∈ R, f is not continuous
at x?
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Problem 9.5. Show that the function f(x) = x3 − x− 1 has a zero between −1 and 2.

Problem 9.6. Let x, y ∈ R. Draw the following set and describe it in words:

{(x, y) ∈ R2 : lim
t→∞

(|x|t + |y|t) < 4}.

10. Appendix: Notation

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers

N = {1, 2, 3, 4, 5, . . .}, the set of natural numbers

Q = {. . . , 1/2,−2/3, 0, . . .} = {m/n : m,n ∈ Z, n 6= 0}, the set of rational numbers

R = {. . . , 1/2, π,
√

3,−.24534,−1, 4, 7.2, . . .}, the set of real numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Remark 10.1. In the book, there are several expressions of the form

f(x) =
cos 2x− x

x2

When the cosine is written without parentheses in the argument, it is usually understood
that the very first thing that is written after the cosine (in this case 2x) is the argument
of the cosine. The next minus or plus sign that appears is assumed to occur outside of the
parentheses (that have been omitted). That is, the expression above can be equivalently
written as follows

f(x) =
cos(2x)− x

x2
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