
4: OPTIMIZATION

STEVEN HEILMAN

1. Optimization and Derivatives

Nothing takes place in the world whose meaning is not that of some maximum
or minimum.

Leonhard Euler

At this stage, Euler’s statement may seem to exaggerate, but perhaps the Exercises in
Section 4 and the Problems in Section 5 may reinforce his views. These problems and
exercises show that many physical phenomena can be explained by maximizing or minimizing
some function. We therefore begin by discussing how to find the maxima and minima of a
function. In Section 2, we will see that the first and second derivatives of a function play
a crucial role in identifying maxima and minima, and also in drawing functions. Finally,
in Section 3, we will briefly describe a way to find the zeros of a general function. This
procedure is known as Newton’s Method. As we already see in Algorithm 1.2(1) below,
finding the zeros of a general function is crucial within optimization.

We now begin our discussion of optimization. We first recall the Extreme Value Theorem
from the last set of notes. In Algorithm 1.2, we will then describe a general procedure for
optimizing a function.

Theorem 1.1. (Extreme Value Theorem) Let a < b. Let f : [a, b]→ R be a continuous
function. Then f achieves its minimum and maximum values. More specifically, there exist
c, d ∈ [a, b] such that: for all x ∈ [a, b], f(c) ≤ f(x) ≤ f(d).

Algorithm 1.2. A procedure for finding the extreme values of a differentiable function
f : [a, b]→ R.

(1) Find x ∈ (a, b) with f ′(x) = 0.
(2) Compare the values of f(a), f(b) and f evaluated at x ∈ (a, b) with f ′(x) = 0.
(3) Choose the largest and smallest values of f from part (2).

We now prove that step (3) of Algorithm 1.2 finds the extreme values of f on [a, b].

Proof. This proof is similar to the proof of Rolle’s Theorem. By the Extreme Value Theorem,
let x0, x1 ∈ [a, b] such that f(x0) ≤ f(x) ≤ f(x1) for all x ∈ [a, b]. We want to show that
x0, x1 were found in Step (2). Since the function f was evaluated at a and b in Step (2), it
remains to check the case that x0, x1 ∈ (a, b).

If f = 0 everywhere there is nothing to prove, so we assume otherwise. That is, assume
f(x1) > f(x0). Let h > 0 so that h is less than the minimum of |x1 − a| /2, |x1 − b| /2,
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|x0 − a| /2, and |x0 − b| /2. By our choice of x1, we have f(x1 + h) ≤ f(x1) and f(x1− h) ≤
f(x1). Therefore, by the Squeeze Theorem,

0 ≥ lim
h→0+

f(x1 + h)− f(x1)

h
= f ′(x1) = lim

h→0+

f(x1)− f(x1 − h)

h
≥ 0.

We conclude that f ′(x1) = 0, so x1 as found in Step (1) of Algorithm 1.2. Similarly, by our
choice of x0, we have f(x0 +h) ≥ f(x0) and f(x0−h) ≥ f(x0). So, by the Squeeze Theorem,

0 ≥ lim
h→0+

f(x0)− f(x0 − h)

h
= f ′(x0) = lim

h→0+

f(x0 + h)− f(x0)

h
≥ 0.

So, f ′(x0) = 0, and x0 as found in Step (1) of Algorithm 1.2. So, in any case, we have found
the extreme values of f on [a, b] in part (3) of Algorithm 1.2. �

Remark 1.3. Algorithm 1.2 can be remembered concisely as follows. First, check the
interior for f ′ = 0. Then check the boundary for f . Here the interior refers to (a, b) and the
boundary refers to the individual points a, b. It is very important to check the boundary.
For example, consider f(x) = x on the interval [0, 1]. Then f ′(x) = 1, so f has no critical
numbers on (0, 1). And f has its minimum value at x = 0 and its maximum value at x = 1.

Remark 1.4. For a differentiable function f : [a, b]→ R, if f ′(x) = 0 for x ∈ (a, b), then x is
not necessarily a maximum or minimum value of f on [a, b]. Consider for example f(x) = x3

on [−1, 1]. Then f ′(x) = 3x2, and f ′(x) = 0 for x = 0. However, f(0) = 0, f(1) = 1 and
f(−1) = −1, so x = 0 is not an extreme value of f on [−1, 1].

Remark 1.5. If we only know that the function f is continuous, then we can change Algo-
rithm 1.2 by replacing Step (1) with the following

(1’) Find x ∈ (a, b) such that f ′(x) = 0, or such that f ′(x) does not exist.
For example, consider f(x) = |x| on [−1, 1]. The minimum value of f on [−1, 1] occurs at

x = 0. However, f ′(0) does not exist.

Definition 1.6. Let f : (a, b) → R be a continuous function. We say that x ∈ (a, b) is a
critical number of f if one of the two following things occurs: f ′(x) = 0, or f ′(x) does not
exist.

Definition 1.7. Let f : (a, b) → R be a continuous function. We say that x ∈ (a, b) is a
local maximum of f if there is a δ(x) > 0 such that: if y ∈ (a, b) satisfies |y − x| < δ(x),
then f(x) ≥ f(y). We say that x ∈ (a, b) is a local minimum of f if there is a δ(x) > 0
such that: if y ∈ (a, b) satisfies |y − x| < δ(x), then f(x) ≤ f(y).

2. Shapes of Curves/ Derivative Tests

By examining the first and second derivatives of a function, we can say a lot about the
properties of that function. In the previous section, we saw that the zeros of the first
derivative tell us most of the information about the maximum and minimum values of a
given function. To see what else the derivatives tell us, see the MIT JAVA Applet, graph
features. Below, we will describe several tests on the first and second derivatives that allow
us to find several properties of a function, as in this Applet.

Proposition 2.1. (Constant Test) Let f : (a, b) → R be a differentiable function. If
f ′(x) = 0 for all x ∈ (a, b), then f is a constant function.
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Proposition 2.2. Let f, g : (a, b) → R be differentiable functions. If f ′(x) − g′(x) = 0 for
all x ∈ (a, b), then there is a c ∈ R such that f − g = c.

Proposition 2.3. (Increasing/Decreasing Test) Let f : (a, b)→ R be differentiable.

(1) If f ′(x) > 0 for all x ∈ (a, b), and if x, y ∈ (a, b) with x < y, then f(x) < f(y).
(2) If f ′(x) < 0 for all x ∈ (a, b), and if x, y ∈ (a, b) with x < y, then f(x) > f(y).
(3) If f ′(x) ≥ 0 for all x ∈ (a, b), and if x, y ∈ (a, b) with x < y, then f(x) ≤ f(y).
(4) If f ′(x) ≤ 0 for all x ∈ (a, b), and if x, y ∈ (a, b) with x < y, then f(x) ≥ f(y).

Proposition 2.4. (First Derivative Test) Let c ∈ (a, b) be a critical number for a con-
tinuous function f : (a, b)→ R. Assume that f is differentiable on (a, c) and on (c, b).

(1) If f ′(x) > 0 on (a, c), and if f ′(x) < 0 on (c, b), then f has a local maximum at x = c.
(2) If f ′(x) < 0 on (a, c), and if f ′(x) > 0 on (c, b), then f has a local minimum at x = c.
(3) If f ′(x) > 0 on (a, c) ∪ (c, b), or if f ′(x) < 0 on (a, c) ∪ (c, b), then f does not have a

local maximum or a local minimum at x = c.

Proposition 2.5. (Concavity Test) Let f : (a, b)→ R be a twice differentiable function.

(1) If f ′′(x) > 0 on (a, b), then f is concave up. That is, if y(x) = ax + b denotes a
tangent line to f , then f(x) ≥ y(x) for all x ∈ (a, b).

(2) If f ′′(x) < 0 on (a, b), then f is concave down. That is, if y(x) = ax + b denotes a
tangent line to f , then f(x) ≥ y(x) for all x ∈ (a, b).

Proposition 2.6. (Second Derivative Test) Let f : (a, b) → R be a twice differentiable
function. Let c ∈ (a, b). Assume that f ′(c) and f ′′(c) exist. Assume also that f ′(c) = 0, and
that f ′′ is continuous near c.

(1) If f ′′(c) > 0, then f has a local minimum at c.
(2) If f ′′(c) < 0, then f has a local maximum at c.

Remark 2.7. To remember the difference between concave up and concave down, consider
f(x) = x2 and g(x) = −x2. Then f ′′(x) = 2, and f lies above its tangent lines. And
g′′(x) = −2, and g lies below its tangent lines. These two examples are also good to keep in
mind for the Second Derivative Test.

Our analysis of the derivative tests is mostly based on the Mean Value Theorem, which
we recall from the previous set of notes.

Theorem 2.8. (Mean Value Theorem) Let f : [a, b]→ R be continuous function that is
differentiable on (a, b). Then there exists c with c ∈ (a, b) and

f ′(c) =
f(b)− f(a)

b− a
.

Proof of the Constant Test, Proposition 2.1. Let x, y ∈ (a, b) with x < y. From the Mean
Value Theorem, Theorem 2.8, there exists c ∈ (x, y) such that f ′(c) = (f(y)− f(x))/(y−x).
Since f ′(c) = 0, we must therefore have f(x) = f(y), so that f is constant �

Proof of Proposition 2.2. Apply Proposition 2.1 to f − g. �

Proof of the Increasing/Decreasing Test, Proposition 2.3. (1) Let x, y ∈ (a, b) with x < y.
From the Mean Value Theorem, Theorem 2.8, there exists c ∈ (x, y) such that f ′(c) =
(f(y)− f(x))/(y − x). Since f ′(c) > 0, we must therefore have f(x) < f(y).
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(2) Let x, y ∈ (a, b) with x < y. From the Mean Value Theorem, Theorem 2.8, there exists
c ∈ (x, y) such that f ′(c) = (f(y)− f(x))/(y − x). Since f ′(c) < 0, we must therefore have
f(x) > f(y).

(3) Let x, y ∈ (a, b) with x < y. From the Mean Value Theorem, Theorem 2.8, there exists
c ∈ (x, y) such that f ′(c) = (f(y)− f(x))/(y − x). Since f ′(c) ≥ 0, we must therefore have
f(x) ≤ f(y).

(4) Let x, y ∈ (a, b) with x < y. From the Mean Value Theorem, Theorem 2.8, there exists
c ∈ (x, y) such that f ′(c) = (f(y)− f(x))/(y − x). Since f ′(c) ≤ 0, we must therefore have
f(x) ≥ f(y). �

Proof of the First Derivative Test, Proposition 2.4. (1) Apply Algorithm 1.2 to find x ∈
[a, b] such that f achieves its maximum at x. From this algorithm, we know that x = a,
or x = b, or x is a critical number. By our assumptions, x = c is the only critical number
of f . So, it remains to show that f(c) > f(a) and f(c) > f(b). The assertion f(c) > f(a)
follows from the Increasing Test, Proposition 2.3(1). The assertion f(c) > f(b) follows from
the Decreasing Test, Proposition 2.3(2).

(2) Apply Algorithm 1.2 to find x ∈ [a, b] such that f achieves its minimum at x. From
this algorithm, we know that x = a, or x = b, or x is a critical number. By our assumptions,
x = c is the only critical number of f . So, it remains to show that f(c) < f(a) and
f(c) < f(b). The assertion f(c) < f(a) follows from the Decreasing Test, Proposition 2.3(2).
The assertion f(c) < f(b) follows from the Increasing Test, Proposition 2.3(1).

(3) Assume that f ′ > 0 on (a, c) ∪ (c, b). Let x ∈ (a, c) and let y ∈ (c, b). We claim
that f(x) < f(c) < f(y). Therefore, c is a not a local maximum or a local minimum. The
assertion f(x) < f(c) follows from the Increasing Test, Proposition 2.3(1). The assertion
f(c) < f(y) also follows from the Increasing Test, Proposition 2.3(1).

We now consider the case f ′ < 0 on (a, c)∪(c, b). Let x ∈ (a, c) and let y ∈ (c, b). We claim
that f(x) > f(c) > f(y). Therefore, c is a not a local maximum or a local minimum. The
assertion f(x) > f(c) follows from the Decreasing Test, Proposition 2.3(2). The assertion
f(c) > f(y) also follows from the Decreasing Test, Proposition 2.3(2). �

Proof of the Concavity Test, Proposition 2.5. (1) Fix x ∈ (a, b) and let x < y < b. Since
f ′′(x) > 0, the Increasing Test, Proposition 2.3(1), shows that f ′(x) is increasing on (a, b).
By the Mean Value Theorem, Theorem 2.8, there exists c ∈ (x, y) such that f ′(c) = (f(y)−
f(x))/(y−x). Since f ′ is increasing on (a, b), f ′(c) > f ′(x), so (f(y)−f(x))/(y−x) > f ′(x),
so f(y)− f(x) > f ′(x)(y− x), so f(y) > f ′(x)(y− x) + f(x). The left side of this inequality
is f(y), and the right side of this inequality is the tangent line of f at x. So, f is concave
up on (x, b). Since x ∈ (a, b) is arbitrary, f is concave up on (a, b).

(2) This proof is essentially identical to that of (1). �

Proof of the Second Derivative Test, Proposition 2.6. (1) Since f ′′ is continuous near c, the
definition of continuity says that there exists a, b such that c ∈ (a, b) and such that f ′′(x) > 0
for all x ∈ (a, b). Then the Concavity Test, Proposition 2.5, says that f(c+h) ≥ f ′(c)h+f(c)
for c+ h ∈ (a, b). Since f ′(c) = 0, we have f(c+ h) ≥ f(c), so c is a local minimum of f .

(2) This proof is essentially identical to that of (1).
�

The connection between the second derivative and the shape of the function may not be
entirely clear. Perhaps the following proposition will make this connection more concrete.
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Proposition 2.9. Let f : R→ R be a twice differentiable function. Then

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2

In words, f ′′(x) measures the change between f(x) and its two “neighbors.”

Proof. From Problem 1 of the third set of notes,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x)− f(x− h)

h
. (∗)

Let g(x) = (f(x+ h)− f(x))/h. Then

g(x)− g(x− h′)
h′

=
f(x+h)−f(x)

h
− f(x+h−h′)−f(x−h′)

h

h′

=
f(x+ h) + f(x− h′)− f(x)− f(x+ h− h′)

hh′

Fix x and let ε > 0. By the definition of the limit, there exists δ1(ε) > 0 such that:

if 0 < |h′| < δ1(ε), then

∣∣∣∣g(x)− g(x− h′)
h′

− g′(x)

∣∣∣∣ < ε/2.

Note that g′(x) = (f ′(x+ h)− f ′(x))/h. So there exists δ2(ε) > 0 such that:

if 0 < |h| < δ2(ε), then |g′(x)− f ′′(x)| < ε/2.

Let δ(ε) be the minimum of δ1(ε) and δ2(ε). Let h = h′ with 0 < |h| < δ(ε). Then∣∣∣∣f(x+ h) + f(x− h)− 2f(x)

h2
− f ′′(x)

∣∣∣∣ =

∣∣∣∣g(x)− g(x− h)

h
− f ′′(x)

∣∣∣∣
=

∣∣∣∣g(x)− g(x− h)

h
− g′(x) + g′(x)− f ′′(x)

∣∣∣∣
≤
∣∣∣∣g(x)− g(x− h)

h
− g′(x)

∣∣∣∣+ |g′(x)− f ′′(x)|

< ε/2 + ε/2 = ε

Since ε > 0 is arbitrary, letting h→ 0 shows that (∗) holds. �

3. Newton’s Method

From Algorithm 1.2, we see that most of the work of optimizing a function involves finding
x such that f ′(x) = 0. In practice, the function f ′(x) is sometimes too complicated, and
the equation f ′(x) = 0 may be difficult to solve for x. Thankfully, Newton came up with a
general method for finding the zeros of general differentiable functions. This procedure does
not work all the time, but it works enough of the time that it is quite useful. It is used by
your calculator, for example, whenever you try to find the zeros of a function.

Algorithm 3.1. Newon’s Method, a general way to find the roots of a differentiable
function f : R→ R.

(1) Choose any point x0 ∈ R.
(2) Compute the tangent line of f at x0: y(x) = f ′(x0)(x− x0) + f(x0).

5



(3) Find x1 such that y(x1) = 0. This is the intersection of the tangent line y(x) with
the x-axis. Note that x1 satisfies

x1 = x0 −
f(x0)

f ′(x0)
.

(4) Return to step (2), but replace x0 with x1. At the nth iteration of the algorithm,
compute the tangent line of f at xn in step (2), and then find an xn+1 in step (3)
which is a zero of the tangent line. So, in general we iterate the following equation.

xn+1 = xn −
f(xn)

f ′(xn)
.

Remark 3.2. To see an illustration of Newton’s Method, see the UMN Applet, Newton
Example 1. In many examples, it only takes a few iterations of the algorithm to get a good
approximation for a zero of f .

Remark 3.3. If we ever find a point in step (2) where f ′ = 0, the algorithm will be unable to
continue. Actually, if we repeatedly encounter points where f ′ is close to zero, then Newton’s
Method will not work very well. For an illustration, see the UMN Applet, Newton Example
2. There are a few ways to adjust the function f or the starting value x0 to deal with these
issues, so that a suitable modification of Algorithm 3.1 can find the zeros of many functions.

4. Selected Exercises from the Textbook

Exercise 4.1. Find two numbers whose difference is 100 and whose product is a minimum.

Exercise 4.2. Suppose 1200 cm2 of material is available to make a box with a square base
and an open top. Find the largest possible volume of the box.

Exercise 4.3. Find the point on the line y = 2x+ 3 that is closest to the origin.

Exercise 4.4. Suppose we have a circular piece of paper with center C and radius R. Let
A,B be two points on the boundary of the circle. A cone-shaped paper drinking cup is made
from the circular piece of paper by cutting out a sector CAB and joining the edges CA and
CB. Find the maximum capacity of such a cup.

C

R

A
B
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Exercise 4.5. Let v1 be the velocity of light in air and let v2 be the velocity of light in
water. Suppose a light ray travels from point A in the air to a point B in the water. Let C
be the point where the light ray first hits the water. At this point, the light bends, and then
continues in a straight line. According to Fermat’s Principle, the ray of light has traveled
along the path ACB that minimizes the elapsed travel time between the points A and B. Let
θ1 be the angle of incidence and let θ2 be the angle of refraction. From Fermat’s Principle,
derive Snell’s Law:

sin θ1
sin θ2

=
v1
v2

As the light travels from A, θ1 is the angle that the ray makes with a vertical line. Also, as
the light hits B, θ2 is the angle that the ray makes with a vertical line.

A

C

B

θ1

θ2

Exercise 4.6. For a fish swimming at a speed v relative to the water, the energy expenditure
per unit of time is proportional to v3. It is believed that migrating fish try to minimize the
total energy required to swim a fixed distance. If the fish are swimming against a current
of speed u (u < v), then the time required to swim a distance L is L/(v − u), and the total
energy E required to swim the distance L is given by

E(v) = av3
L

v − u

Here a is an arbitrary constant.

(a) Determine the value of v that minimizes E.
(b) Sketch the graph of E.

Note: This result has been verified experimentally. Migrating fish swim against a current at
a speed 50% greater than the speed of the current.
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5. Selected Problems

Problem 5.1. (Branching angles for blood vessels and pipes, Thomas’ Calculus, p.
552) When a smaller pipe branches off from a larger one in a flow system, we may want it
to run off at an angle that is best from some energy-saving point of view. We might require,
for instance, that energy loss due to friction can be minimized along the section AOB shown
in Figure 1. In this problem, the pipe AC is fixed, and the point B is fixed. The point O
is variable. So, we know that the larger pipe AC branches at O into the smaller pipe OB.
We just allow the point O to vary. A law due to Poiseuille states that the loss of energy due
to friction in nonturbulent fluid flow is proportional to the length of the path. This energy
loss is also inversely proportional to the fourth power of the radius of the pipe. Let k be a
constant, let d1 be the length of AO, let d2 be the length of OB, let θ be the angle BOC, let
R be the radius of the pipe AC, and let r be the radius of the pipe OB. Then the energy
loss along AO is (kd1)/R

4, and the energy loss along OB is (kd2)/r
4. We are required to

minimize the energy loss along the path AOB. So, we need to minimize

L = k
d1
R4

+ k
d2
r4

A

C

B

d1

d2

d2 cos θ

a

θ

O

Figure 1.

To review, AC = a and BC = b are fixed. By the definitions of our constants, we have

d1 + d2 cos θ = a, and d2 sin θ = b.

So, d2 = b/ sin θ and d1 = a − d2 cos θ = a − b cos θ/ sin θ. We can therefore express L as a
function of θ as follows

L = L(θ) = k

(
a− b cos θ

sin θ

R4
+

b

r4 sin θ

)
.

(a) Show that the critical number of θ for which dL/dθ = 0 is given by

θc = cos−1
(
r4

R4

)
.

(b) If the ratio of the pipe radii is r/R = 5/6, estimate (in degrees) the optimal branching
angle given in part (a).
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The analysis used here can also be used to explain the angles at which arteries branch in an
animal’s body.

Problem 5.2. Show that a degree 3 polynomial has at most three real roots. What can you
say about the degree n case?

Problem 5.3. (Minimizing Costs, Thomas’ p. 284) A cabinetmaker uses mahogany to
produce 5 furnishings each day. Each delivery of one container of wood costs $5000, and
storage of that material is $10 per day per unit stored, where a unit is the amount of
material needed by her to produce 1 furnishing. How much material should be ordered each
time and how often should the material be delivered to minimize her average daily cost in
the production cycle between deliveries?

Problem 5.4. (Ordering products for a store, continued) (Thomas’ Calculus, p. 290)
One of the formulas for inventory management says that the average weekly cost of ordering,
paying for, and holding merchandise is

A(q) =
km

q
+ cm+

hq

2
,

where q is the quantity you order when things run low (shoes, radios, brooms, or whatever
the item might be); k is the cost of placing an order (the cost is the same, no matter how
often you make an order); c is the cost of one item (a constant); m is the number of items
sold each week (a constant); and h is the weekly holding cost per item (a constant that takes
into account things such as space, utilities, insurance, and security).

(a) Your job, as the inventory manager for your store, is to find the quantity that will
minimize A(q). What is it?

(b) Shipping costs sometimes depend on order size. When they do, it is more realistic
to replace k by k + bq, the sum of k and a constant multiple of q. What is the most
economical quantity to order now?

Problem 5.5. (How we cough, Thomas’ Calculus, p. 290) When we cough, the trachea
(windpipe) contracts to increase the velocity of the air going out. This raises the question of
how much it should contract to maximize the velocity of air, and whether the trachea really
contracts that much when we cough.

Let r0 be the rest radius of the trachea in centimeters, and let c be a positive constant
whose value depends in part on the length of the trachea. Under reasonable assumptions
about how the air near the wall is slowed by friction, the average air flow velocity v can be
modeled by the equation

v = c(r0 − r)r2 cm/sec,
r0
2
≤ r ≤ r0.

Show that v is greatest when r = (2/3)r0. That is, the velocity is greatest when the
trachea is about 33% contracted. The remarkable fact is that X-ray photographs confirm
that the trachea contracts about this much during a cough.

Problem 5.6. (An inequality for positive integers, Thomas’ Calculus p. 290) Let
a, b, c, d be positive integers. Show that

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)

abcd
≥ 16.
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Problem 5.7. (Challenge problem) Create an optimization problem where the optimum
does not exist.

Problem 5.8. (Challenge problem) Suppose a farmer has 100 feet of fence, and she wants
to maximize the area that is enclosed by the fence. What shape should she build the fence?
If you can come up with the best shape, can you prove that it is the best? If you cannot
prove that it is the best, can you at least give an intuitive argument that your shape is the
best?

This question has ancient roots and many applications. The Greeks knew the answer, but
a rigorous proof was not known until the 1800s.

Courant Institute, New York University, New York NY 10012
E-mail address: heilman@cims.nyu.edu
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