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MIT 18.01SC Fall 2010 Practice Final

1. Question 1

Compute the following derivatives
(a) f ′(x) where f(x) = x3ex.
From the product rule, f ′(x) = x3ex + 3x2ex.
(b) f (7)(x) where f(x) = sin(2x).
f ′(x) = 2 cos(2x), f ′′(x) = −4 sin(2x), f ′′′(x) = −8 cos(2x), f (4)(x) = 16 sin(2x), f (5)(x) =

32 cos(2x), f (6)(x) = −64 sin(2x), f (7)(x) = −128 cos(2x).

2. Question 2

(a) Find the tangent line to y = 3x2 − 5x+ 2 at x = 2.
y′(x) = 6x − 5, so y′(2) = 7. Also, y(2) = 4, so the tangent line has equation (y − 4) =

7(x− 2).
(b) Show that the curve defined by xy3 + x3y = 4 has no horizontal tangent.
For (x, y) with xy3 + x3y = 4, we have 3xy2y′ + y3 + x3y′ + 3x2y = 0, so y′(3xy2 + x3) =
−3x2y − y3. We prove that no horizontal tangent occurs by contradiction. Assume that
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y′(x) = 0. Then −3x2y − y3 = 0, so −3x3y − xy3 = 0. Since xy3 + x3y = 4, adding our
two equations shows that −2x3y = 4. Since xy3 + x3y = 4, x 6= 0, so our previous equality
says y = −2x−3. Substituting this equality into xy3 + x3y = 4 gives −8x−8 − 2 = 4, so
x−8 = −3/4. However, no x satisfies x−8 = −3/4, since x−8 > 0, but −3/4 < 0. Since we
have achieved a contradiction, we conclude that y′(x) is never zero.

3. Question 3

(a) We compute
d

dx

(
x

x+ 1

)
from the definition of the derivative.

Let f(x) = x/(x+ 1), and let x 6= −1, h ∈ R. Then

f(x+ h)− f(x)

h
=

x+h
x+h+1

− x
x+1

h
=

(x+ h)(x+ 1)− x(x+ h+ 1)

h(x+ h+ 1)(x+ 1)

=
x2 + x+ hx+ h− x2 − xh− x

h(x+ h+ 1)(x+ 1)

=
h

h(x+ h+ 1)(x+ 1)
=

1

(x+ h+ 1)(x+ 1)
.

So,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1

(x+ h+ 1)(x+ 1)

=
1

limh→0(x+ h+ 1)(x+ 1)
=

1

(x+ 1)2
.

(b) Compute lim
x→
√
3

tan−1(x)− π/3
x−
√

3
.

Since tan−1(
√

3) = π/3, L’Hopital’s rule applies. We therefore have

lim
x→
√
3

tan−1(x)− π/3
x−
√

3
= lim

x→
√
3

1

1 + x2
=

1

4
.

4. Question 4

Describe the graph of the function y(x) =
x

x2 + 1
.

First, note that y(−x) = (−x)/(x2 + 1) = −(x/(x2 + 1)) = −y(x), so y is an odd function.
We now check the derivative of y. Observe

y′(x) =
x2 + 1− 2x2

(x2 + 1)2
=
−x2 + 1

(x2 + 1)2
.

Suppose x satisfies y′(x) = 0. Then x2 = 1, so x = 1,−1. Since y′(x) is a continuous function
on (−∞,∞), it therefore only touches the x-axis twice. For −∞ < x < −1, y′(x) < 0, so y
is decreasing on this interval. For −1 < x < 1, y′(x) > 0, so y is increasing on this interval.
And for 1 < x <∞, y′(x) < 0, so y is decreasing on this interval.

We now check the second derivative of y. Observe

y′′(x) =
(x2 + 1)2(−2x)− (1− x2)2(x2 + 1)2x

(x2 + 1)4
=

2x(−(x2 + 1)− 2(1− x2))
(x2 + 1)3

=
2x(x2 − 3)

(x2 + 1)3
.
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Suppose y′′(x) = 0. Then x = −
√

3, 0,
√

3. Since y′′(x) is a continuous function on (−∞,∞),
it therefore only touches the x-axis three times. For −∞ < x < −

√
3, y′′(x) < 0, so y is

concave down on this interval. For −
√

3 < x < 0, y′′(x) > 0, so y is concave up on this
interval. For 0 < x <

√
3, y′′(x) < 0, so y is concave down on this interval. And for√

3 < x <∞, y′′(x) > 0, so y is concave up on this interval. In conclusion, x = −
√

3, 0,
√

3
are all inflection points of y.

Lastly, we check the asymptotes of y. Since y is continuous on (−∞,∞), it has no vertical
asymptotes. Also,

lim
x→∞

x

x2 + 1
= lim

x→∞

1

x+ 1/x
= 0.

lim
x→−∞

x

x2 + 1
= lim

x→−∞

1

x+ 1/x
= 0.

5. Question 5

A rectangular poster is designed with 50 in2 of printed type, 4 inch margins on the top
and bottom, and 2 inch margins on the left and right side. Find the dimensions of the poster
that minimize the amount of paper used.

Suppose the poster has width W and height H, both in inches. It is given that (W −
4)(H − 8) = 50, and we want to minimize the area of the poster WH for W > 4 and H > 8.
Since (W − 4)(H − 8) = 50, H = 8 + 50/(W − 4). So, we need to minimize the function
f(W ) = W (8 + 50/(W − 4)) for W ≥ 4. The function f(W ) is a differentiable function for
W > 4, so we apply the closed interval method. We first check for critical numbers of f .
Observe

f ′(W ) = W
−50

(W − 4)2
+ 8 +

50

W − 4
.

Suppose f ′(W ) = 0. Then W (−50) + 8(W − 4)2 + 50(W − 4) = 0, so −50W + 8(W 2− 8W +
16) + 50W −200 = 0, so 8W 2−64W −72 = 0, so W 2−8W −9 = 0, so (W −9)(W + 1) = 0.
So, for W > 4, the only critical point occurs at W = 9.

So, to minimize f , it suffices to check f at the endpoints of the interval (−4,∞), and
at the point W = 9. Note that limW→4 f(W ) = ∞, limW→∞ f(W ) = ∞, and f(9) =
9(8 + 10) = 162 < ∞. So, the absolute minimum of the function f occurs when W = 9.
Since (W − 4)(H − 8) = 50, we also have H = 18. So, the most efficient poster has width 9
in and height 18 in.

6. Question 6

A highway patrol plane is flying 1 mile above a long, straight road, with constant ground
speed of 120 mph. Using radar, the pilot detects a car ahead whose distance from the plane
is 1.5 miles and decreasing at a rate of 136 mph. How fast is the car traveling along the
highway?

Let x denote the distance along the road between the plane and the car. From the
Pythagorean Theorem, the distance from the plane to the car is f =

√
x2 + 1. It is given

that df/dt = −136. From implicit differentiation

df

dt
=
df

dx

dx

dt
=

x√
x2 + 1

dx

dt
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Since f = 1.5 = 3/2 =
√

1 + x2, we conclude that x =
√

5/2. So, for x =
√

5/2, dx/dt =
−136(3/2)(2/

√
5) = −136(3/

√
5). Note that dx/dt is the rate of change of the ground

distance between the plane and the car. That is, dx/dt is the ground speed of the car,
relative to the plane. So, to get the ground speed of the car, we need to add the ground
speed of the plane. That is, the ground speed of the car is 120 − 136(3/

√
5) ≈ −62.5. So,

the car is moving towards the plane with a ground speed of 62.5 mph.

7. Question 7

(a) Evaluate lim
n→∞

n∑
i=1

2

n

√
1 +

2i

n
.

Let f(x) =
√

1 + x. For n ≥ 1, suppose we partition the interval [0, 2] into intervals of
length 2/n. Then the Riemann sum evaluated at the right endpoint of each rectangle has
value

S =
n∑
i=1

2

n

√
1 +

2i

n
.

Since f is continuous on [0, 2], any Riemann sum of rectangles with width decreasing to zero

approaches
∫ 2

0
f(x)dx. In this case, this means that

lim
n→∞

n∑
i=1

2

n

√
1 +

2i

n
=

∫ 2

0

√
1 + x dx.

Finally, using the fundamental theorem of calculus, we have∫ 2

0

√
1 + x dx =

∫ 2

0

d

dx
(2/3)(1 + x)3/2 = (2/3)(1 + x)3/2|x=2

x=0 =
2

3
(33/2 − 1).

(b) Evaluate lim
h→0

1

h

∫ 2+h

2

sin(x2)dx.

From the Fundamental theorem of calculus,

lim
h→0

1

h

∫ 2+h

2

sin(x2)dx = sin(22) = sin(4).

8. Question 8

(a) Compute

∫ π/4

0

tan(x) sec2(x)dx.

Let f(u) = u, and let g(x) = tan(x). So, by changing variables, we have∫ π/4

0

tan(x) sec2(x)dx =

∫ π/4

0

f(g(x))g′(x)dx

=

∫ g(π/4)

g(0)

f(u)du =

∫ 1

0

udu = (1/2)u2|u=1
u=0 = 1/2.

(b) Compute
∫ 2

1
x ln(x)dx.
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For x > 0, note that (d/dx)(x2 ln(x)) = x + 2x ln(x). Using this equality and the Funda-
mental theorem of calculus,∫ 2

1

x ln(x)dx =

∫ 2

1

(−x/2)dx+

∫ 2

1

(d/dx)(x2 ln(x))dx = [−x2/4]x=2
x=1 + [x2 ln(x)]x=2

x=1

= −1 + 1/4 + 4 ln(2).

9. Question 9

Calculate

∫
x2√

9− x2
dx.

Let −3 ≤ a, b ≤ 3. We use the substitution x = 3 sin(θ), so dx = 3 cos(θ)dθ. Alternatively,
let f(θ) = 9 sin2(θ), and let g(x) = sin−1(x/3). Then for −3 ≤ x ≤ 3, f(g(x)) = x2, and
g′(x) = (1/3)(1− x2/9)−1/2 = (9− x2)−1/2, so a change of variables says that∫ b

a

x2√
9− x2

dx =

∫ b

a

f(g(x))g′(x) =

∫ g(b)

g(a)

f(θ)dθ =

∫ sin−1(b/3)

sin−1(a/3)

9 sin2(θ)dθ

Since sin2(θ) = (1− cos(2θ))/2, we have∫ sin−1(b/3)

sin−1(a/3)

9 sin2(θ)dθ =

∫ sin−1(b/3)

sin−1(a/3)

(9/2)(1− cos(2θ))dθ

= (9/2)(sin−1(b/3)− sin−1(a/3)) +

∫ sin−1(b/3)

sin−1(a/3)

(9/4)
d

dθ
(− sin(2θ))dθ

= (9/2)(sin−1(b/3)− sin−1(a/3))

+ (9/4)(− sin(2 sin−1(b/3))− (− sin(2 sin−1(a/3))))

=

∫ b

a

d

dx

(
(9/2) sin−1(x/3)− (9/4) sin(2 sin−1(x/3))

)
dx.

In the last line, we used the Fundamental theorem of calculus.
In conclusion,∫

x2dx√
9− x2

= (9/2) sin−1(x/3)− (9/4) sin(2 sin−1(x/3)) + C.

For convenience, we simplify this expression further. From the double angle formula, sin(2y) =
2 sin(y) cos(y). So, for x with −3 ≤ x ≤ 3,

sin(2 sin−1(x/3)) = 2 sin(sin−1(x/3)) cos(sin−1(x/3)) = (2/3)x
√

1− x2/9.

In conclusion, ∫
x2dx√
9− x2

= (9/2) sin−1(x/3)− (1/2)x
√

9− x2 + C.
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10. Question 10

11. Question 11

The integral
∫ 5

1
(ex/x)dx has no elementary derivative. Use the trapezoid rule with two

trapezoids and the following table of approximate values to estimate this definite integral.

x 1 2 3 4 5
ex/x 2.7 3.7 6.7 13.6 29.7

∫ 5

1

ex

x
dx ≈ (3− 1)

f(3) + f(1)

2
+ (5− 3)

f(5) + f(3)

2
≈ 6.7 + 2.7 + 6.7 + 29.7

12. Question 12

The rate of radioactive decay dm/dt of a mass m of Radium-226 is proportional to the
amount m of Radium present at time t. Suppose we begin with 100 milligrams of Radium
at time t = 0.

(a) Given that the half life of Radium-226 is roughly 1600 years, find a formula for the
mass of Radium that remains after t years.

It is given that m(t) = Ae−kt with m(0) = 100, and m(1600) = 50. So m(t) = 100e−kt, and
m(1600) = 100e−1600k = 50, so log(100)− 1600k = log(50), so 1600k = log(100)− log(50) =
log(2), so k = log(2)/1600. In summary,

m(t) = 100e− log(2)t/1600 = 100 · 2−t/1600.
(b) Find the amount of Radium remaining after 1000 years. Use the approximation

2−10/16 ≈ .65.
m(1000) = 100 · 2−10/16 ≈ 65.

13. Question 13

14. Question 14

15. Question 15

Prove or disprove the following statement. For all x > 0,
x

1 + x2
< tan−1(x) < x.

For x > 0, we want to know whether or not x
1+x2

< tan−1(x) < x.

Let F (x) = tan−1(x)− x
1+x2

. Then

F ′(x) =
1

1 + x2
− (1 + x2)− x(2x)

(1 + x2)2
=

1

1 + x2
− 1− x2

(1 + x2)2
=

1 + x2 − 1 + x2

(1 + x2)2
=

2x2

(1 + x2)2
.

For x > 0, F ′(x) > 0. So, F achieves its minimum on [0,∞) at x = 0. Since F (0) = 0, we
conclude that F (x) > 0 for all x > 0. That is, tan−1(x) > x

1+x2
for all x > 0.
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Let G(x) = x− tan−1(x). Then

G′(x) = 1− 1

1 + x2
=

1 + x2 − 1

1 + x2
=

x2

1 + x2
.

For x > 0, G′(x) > 0. So, G achieves its minimum on [0,∞) at x = 0. Since G(0) = 0, we
conclude that G(x) > 0 for all x > 0. That is, x > tan−1(x) for all x > 0.

In conclusion, the original statement is true.

Courant Institute, New York University, New York NY 10012
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