Department of Teaching and Learning, Steinhardt School of Culture, Education, & Human Development Department of Mathematics, Courant Institute of Mathematical Sciences

> MTHED-UE-1049: Mathematical Proof and Proving (MPP) MATH-UA-125: Introduction to Mathematical Proofs

Homework No. 2

This homework should be submitted just before the beginning of class, on Feruary 13th, 2012. Please write in a black ink pen, so it is clear and easy to read! Write your name in Capital letters on the top of each page and number the pages.

- 1. Let $A = \{x \in R, x > 3 \text{ or } x < 2\}$, $B = \{x \in R, x \le 3 \text{ and } x > -1\}$, $C = \{x \in R, x^2 > 4\}$, $D = \{x \in R, x < 2 \text{ and } x^2 > 9\}$, R = X (the universal set).
 - (a) What are: A^c ? $A \cup A^c$? B^c ? $B \cup B^c$
 - (b) What are: $A \cup B$? $A \cap B$?
 - (c) Describe *C* in a way that is easy to represent on a number line.
 - (d) Sketch a representation of *C* on a number line.
 - (e) What is C^c ?
 - (f) Describe D in a way that is easy to represent on a number line.
 - (g) Sketch a representation of *D* on a number line.
 - (h) What are: $A \cap D$? $A \cup D$?
- 2. For what values of $x, x \in R$, is the following (open) statement true?

$$\frac{x^2 - 9}{x + 3} = x - 3$$

Explain your answer.

3. Is the following statement true?

"For every $y, y \in R$, there exists an $x, x \in R$, such that: $x^2 = y$ "

Explain your answer.

4. For what values of x and y, $x, y \in R$, is the following (open) statement true?

$$x^2 = y$$

Explain your answer.

- 5. Examine the following statement: "If *n* is an even number, then $(n^2 3n + 1)$ is positive".
 - (a) Give an example that contradicts the statement;
 - (b) Give an example that does not contradict the statement;
 - (c) Is the given statement true? Explain your answer.
 - (d) What is the negation of this statement?
 - (e) Is the negation true? Explain your answer.
- 6. Examine the following statement ($x, y \in R$): "If x < 2, then y > -3".
 - (a) What would be a counterexample to this statement?
 - (b) What is the contrapositive of this statement?
 - (c) What is the negation of this statement?
 - (d) Is the negation true? Explain your answer.
- 7. Examine the following statement ($x \in R$): "If $x^2 + 1 < 0$, then $-x^2 3 < 0$ ".
 - (a) Is the premise true?
 - (b) Is the conclusion true?
 - (c) Is the statement true? Explain your answer.
- 8. Examine the following statement ($x \in R$): "If $x^2 + 1 < 0$, then $-x^2 3 > 0$ ".
 - (a) Is the premise true?
 - (b) Is the conclusion true?
 - (c) Is the statement true? Explain your answer.