MTHED-UE-1049: Mathematical Proof and Proving (MPP)
MATH-UA-125: Introduction to Mathematical Proofs

Homework No. 5

This homework should be submitted just before the beginning of class, on March $19^{\text {th }}, 2012$. Please write in a black ink pen, so it is clear and easy to read! Use white paper!! Write your name in Capital letters on the top of each page and number the pages.

1. In class we proved the 'triangle Inequality', that is, for any real numbers a, b the following inequality holds: $|a+b| \leq|a|+|b|$. You may use this inequality to prove the following:

Prove that for any real numbers a, b the following inequality holds: $|a|-|b| \leq|a+b|$.
2. Which mean is larger? The Arithmetic Mean of a and $b: \frac{a+b}{2}$, or the Geometric Mean of a and $b: \sqrt{a \cdot b}$? Prove your claim real numbers a, b that satisfy $0<a<b$.
3. Definitions:
$\frac{1}{\frac{1}{2} \cdot\left(\frac{1}{a}+\frac{1}{b}\right)}$ is called the Harmonic Mean of a and b (you can also write it as $\frac{2 \cdot a b}{a+b}$. Why?)
$\sqrt{\frac{a^{2}+b^{2}}{2}}$ is called the Root Mean Square of a and b.
$\frac{b^{2}+a^{2}}{b+a}$ is called the Contraharmonic Mean of a and b.
Which is the largest mean (of the five)? Which is the smallest? Can you order them from smallest to largest? How? Explore and formulate conjectures; try to prove or disprove some of your conjectures for real numbers a, b that satisfy $0<a<b$.
4. If $\frac{a}{b}$ and $\frac{c}{d}$ are positive fractions such that $0<\frac{a}{b}<\frac{c}{d}$, is $\frac{a+c}{b+d}$ an intermediate value?

In other words, is $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$?
Prove your claim.

