Homework No. 6

This homework should be submitted just before the beginning of class, on March 26 ${ }^{\text {th }}, 2012$. You should bring a copy of your homework to class, in order to participate in class discussion around your homework.
Please read carefully thefollowing instructions:
This homework is based on questions from the midterm exam and on your responses to them.
For three problems $(1,6,7)$ we offer a skeleton of a proof, and you are required to add all the missing parts, including the Given, the RTP, and the justification for each step.

For two problems $(2,3)$ we offer a full proof. For these problems we provide a sample of responses that have flaws, inaccuracies, and/or redundancy. You need to point to all the flaws, inaccuracies and redundant (unnecessary) steps in the responses and explain why you regard them as such.

1. Let $n \in \mathbb{Z}$. Prove that if $5 n-7$ is even then n is odd.

Given:
RTP:

A skeleton of a proof:

$$
\begin{aligned}
& 5 n-7=2 k \\
& 5 n=2 k+7 \\
& o d d \times n=o d d \\
& n=o d d
\end{aligned}
$$

6. Let $x, y \in Z$.
(a) Prove that $\left(x^{2}-y^{2}\right)$ is divisible by 4 if x and y are of the same parity (i.e., either both x and y are even or both x and y are odd).

Given:
RTP:

A skeleton of a proof:

$$
\begin{aligned}
& x+y=2 n \\
& x-y=2 k \\
& x^{2}-y^{2}=4 n k \\
& \frac{x^{2}-y^{2}}{4}=n k
\end{aligned}
$$

7. (a) Prove that for any two positive numbers x, y, their arithmetic mean is larger than or equal to their geometric mean, i.e.: $\sqrt{x \cdot y} \leq \frac{x+y}{2}$

Given:
RTP:
A skeleton of a proof:

$$
\begin{aligned}
& (x-y)^{2} \geq 0 \\
& x^{2}+y^{2}-2 x y \geq 0 \\
& x^{2}+y^{2}+2 x y \geq 4 x y \\
& (x+y)^{2} \geq 4 x y \\
& \frac{x+y}{2} \geq \sqrt{x y}
\end{aligned}
$$

(b) When are these two means equal? That is, under what conditions does $\sqrt{x \cdot y}=\frac{x+y}{2}$ for positive numbers x and y ? Prove your claim.

Given:

RTP:
A skeleton of a proof:

$$
\begin{aligned}
& \frac{x+y}{2}=\sqrt{x y} \\
& x+y=2 \sqrt{x y} \\
& x^{2}+y^{2}+2 x y=4 x y \\
& (x-y)^{2}=0 \\
& x=y
\end{aligned}
$$

2. Let $x, y \in R$. Prove that $|x \cdot y|=|x| \cdot|y|$.

Given: $x, y \in R$
RTP: $|x \cdot y|=|x| \cdot|y|$
A Proof: We use the following definition of the Absolute Value of a real number r :

$$
|r|=\left\{\begin{array}{r}
r, \text { if } r \geq 0 \\
-r, \text { if } r \leq 0
\end{array}\right.
$$

There are 3 cases we need to check :
Case1: $x \geq 0, y \geq 0$; Case 2: $x \geq 0, y \leq 0$; Case 3 : $x \leq 0, y \leq 0$

Case1:

$\left.\begin{array}{l}x \geq 0 \Rightarrow|x|=x \\ y \geq 0 \Rightarrow|y|=y\end{array}\right\} \Rightarrow|x| \cdot|y|=x \cdot y$
$x \geq 0, y \geq 0 \Rightarrow x \cdot y \geq 0 \Rightarrow|x \cdot y|=x \cdot y$
\Downarrow
$|x \cdot y|=|x| \cdot|y|$

Case 2 :

$\left.\begin{array}{l}x \geq 0 \Rightarrow|x|=x \\ y \leq 0 \Rightarrow|y|=-y\end{array}\right\} \Rightarrow|x| \cdot|y|=x \cdot(-y)=-(x \cdot y)$
$x \geq 0, y \leq 0 \Rightarrow x \cdot y \leq 0 \Rightarrow|x \cdot y|=-(x \cdot y)$
\Downarrow
$|x \cdot y|=|x| \cdot|y|$

Case 3 :

$\left.\begin{array}{l}x \leq 0 \Rightarrow|x|=-x \\ y \leq 0 \Rightarrow|y|=-y\end{array}\right\} \Rightarrow|x| \cdot|y|=(-x) \cdot(-y)=x \cdot y$
$x \leq 0, y \leq 0 \Rightarrow x \cdot y \geq 0 \Rightarrow|x \cdot y|=x \cdot y$
\Downarrow
$|x \cdot y|=|x| \cdot|y|$

Q.E.D.

SAMPLE RESPONSES FOR PROBLEM 2 :

Response 2.1:

Case 1

Let $x=-a$ and $y=-b$

$$
\begin{gathered}
|-a \cdot-b|=|-a| \cdot|-b| \\
a \cdot b=a \cdot b
\end{gathered}
$$

Case 2

Let $x=-a$ and $y=b$
$|-a \cdot b|=|-a| \cdot|b|$
$a \cdot b=a \cdot b$

Case 3

Let $x=a$ and $y=b$
$|a \cdot b|=|a| \cdot|b|$
$a \cdot b=a \cdot b$

Response 2.2:

RTP: $|x \cdot y|=|x| \cdot|y|$
Proof:
$\Rightarrow(x y)^{2}=x^{2} \cdot y^{2} \quad($ squareboth sides and get rid of the absolute value)
$\Rightarrow \sqrt{(x y)^{2}}=\sqrt{x^{2} \cdot y^{2}}$ (take square root to get rid of squared)
$\Rightarrow x y=\sqrt{x^{2}} \cdot \sqrt{y^{2}}$
$\Rightarrow x y=x \cdot y$

Response 2.3:

Given: $x, y \in R$
RTP: $\quad|x \cdot y|=|x| \cdot|y|$
Proof: When you multiply x and y, depending on what they are equal to, you may get a positive or negative answer. The absolute value of $x \cdot y$ will ensure that the answer is positive.

Example:

$|5 \cdot 6|=30 ;|5| \cdot|6|=30$
$|-5 \cdot-6|=30 ;|-5| \cdot|-6|=30$
$|5 \cdot-6|=30 ;|5| \cdot|-6|=30$
$|-5 \cdot 6|=30 ;|-5| \cdot|6|=30$

When you put absolute value brackets around x and y separately, this makes both x and y positive factors, which must result in the same positive value that $|x \cdot y|$ gives you.
3. (a) Prove that $n^{3}-3 n^{2}-9 \geq 0$ for $n \geq 6, n \in N$.
(b) Does this inequality hold for $n>6, n \in N$? Why?
(c) Does this inequality hold for $n \geq 10, n \in N$? Why?
(d) Does this inequality hold for $n \geq 4, n \in N$? Why?
(e) Does this inequality hold for $n \geq 2, n \in N$? Why?

Part (a):

Given: $n \geq 6, n \in N$
RTP: $n^{3}-3 n^{2}-9 \geq 0$
A Proof:
$n^{3}=n \cdot n^{2}$ (follows from the definition of a power of $\left.n\right) \Rightarrow n^{3}-3 n^{2}-9=n \cdot n^{2}-3 n^{2}-9=(n-3) \cdot n^{2}-9$
$n \geq 6$ (given)
\Downarrow
$n-3 \geq 6-3=3, n^{2} \geq 36$
\Downarrow
$(n-3) \cdot n^{2}-9 \geq 3 \cdot 36-9 \geq 0$
\Downarrow
$n^{3}-3 n^{2}-9 \geq 0$
Q.E.D.

Part (b):

Yes. $n>6, n \in N$ is included in $n \geq 6, n \in N$, and we proved the inequality for $n \geq 6, n \in N$.

Part (c):

Yes. $n \geq 10, n \in N$ is included in $n \geq 6, n \in N$, and we proved the inequality for $n \geq 6, n \in N$.

Part (d):

Yes. For $n=4, n^{3}-3 n^{2}-9=7 \geq 0$ and for $n=5, n^{3}-3 n^{2}-9=41 \geq 0$.
We proved the inequality for $n \geq 6, n \in N$ and showed that it holds for $n=4$ and for $n=5$, thus it holds for $n \geq 4, n \in N$.

Part (e):

No. For $n=3$ the inequality does not hold: $n^{3}-3 n^{2}-9=-9<0$.

SAMPLE RESPONSES FOR PROBLEM 3:

Response 3.1:

(a) Let $n=6$.

$$
\begin{gathered}
6^{3}-3 \cdot 6^{2}-9 \geq 0 \\
99 \geq 0
\end{gathered}
$$

(c) Let $n=10$.

$$
\begin{gathered}
10^{3}-3 \cdot 10^{2}-9 \geq 0 \\
691 \geq 0
\end{gathered}
$$

(d) Let $n=4$.

$$
\begin{gathered}
4^{3}-3 \cdot 4^{2}-9 \geq 0 \\
7 \geq 0
\end{gathered}
$$

Response 3.2:

(a) Given: $n \geq 6$.

Prove: $n^{3}-3 n^{2}-9 \geq 0$
$n^{3}-3 n^{2} \geq 9$ (add 9 to both sides)
$n^{2}(n-3) \geq 9\left(\right.$ factor out $\left.^{2}\right)$
$6^{2}(6-3) \geq 9$ (substitute 6 for n, because 6 is the lowest possible number for n, so if it ' $s \geq$, then any number above 6 will be \geq also)
$36 \cdot(3) \geq 9$
(c) Yes, because the inequality is true when $n \geq 6$, so it will only get bigger, the larger n is.

Response 3.3:

(a) $n^{3}-3 n^{2}-9 \geq 0$ for $n \geq 6$.

Proving by using the contrapositive of the statement:
The contrapositive is $n<6$ for $n^{3}-3 n^{2}-9<0$.

$$
\begin{aligned}
& n<6, n \in N \Rightarrow n \cdot n^{2}<6 n^{2} \Rightarrow n^{3}<6 n^{2} \Rightarrow n^{3}-6 n^{2}<0 \\
& \Rightarrow n^{3}-6 n^{2}+3 n^{2}<3 n^{2} \Rightarrow n^{3}-3 n^{2}<3 n^{2} \Rightarrow n^{3}-3 n^{2}-9<3 n^{2}-9 \\
& \Rightarrow n^{3}-3 n^{2}-9<3\left(n^{2}-1\right) \Rightarrow n^{3}-3 n^{2}-9<3(n-1)(n+1)
\end{aligned}
$$

(d) For $n \geq 4$?

No, the inequality doesn't hold for $n \geq 4$ because 5 is not in the original statement. However, values for $n \geq 4$ will still make the inequality greater than 0 .

