MTHED-UE-1049: Mathematical Proof and Proving (MPP) MATH-UA-125: Introduction to Mathematical Proofs

Homework No. 7

This homework should be submitted just <u>before the beginning of class</u>, on April 2nd, 2012. You should bring to class a copy of the homework that you submit, in order to participate in class discussion.

1. We proved in class that $\sqrt{2}$ is an irrational number. The proof was an indirect proof by contradiction. It starts by assuming that $\sqrt{2} = \frac{n}{m}$, where $\frac{n}{m}$ is a <u>reduced fraction</u> (i.e., n and m are integers that are <u>relatively prime</u>, $m \neq 0$).

Explain in your own words why we made this assumption, and why it is not enough to assume that n and m are integers for which $m \neq 0$.

- 2. Prove that $\sqrt{3}$ is an irrational number.
- 3. Prove that there is no smallest positive real number.
- 4. Here are two definitions regarding a (binary) operation¹:

Let S be a set of elements, and * an operation that is defined for any two elements of S.

- i. The operation * is called **commutative** if for all $a,b \in S$, a*b=b*a.
- ii. The operation * is called <u>associative</u> if for all $a,b \in S$, (a*b)*c = a*(b*c).
- (a) Give an example of a set **S** and an operation on **S** that is both commutative and associative.
- (b) Give an example of a set **S** and an operation on **S** that is neither commutative nor associative.
- (c) Can you think of an example of an operation that is commutative but not associative? Explain.
- (d) Can you think of an example of an operation that is associative but not commutative? Explain.
- (e) Here are a few operations. For each one, you need to determine whether it is commutative and whether it is associative. Prove all your claims:

(e.1)
$$a*b = \frac{a+b}{2}$$
 for $a,b \in R$.

(e.2)
$$a * b = a^b \text{ for } a, b \in N$$
.

(e.3)
$$a*b=b \text{ for } a,b \in Q.$$

A (binary) operation on a (nonempty) set S maps each ordered pair of elements of S to one and only one element of S. In other words, given $a,b\in S$, an operation * is defined so that $a*b\in S$. For example, division is a (binary) operation on the set of all non-zero rational numbers. However, it is not a (binary) operation on the set of integers. Can you explain why?