## MTHED-UE-1049: Mathematical Proof and Proving (MPP) MATH-UA-125: Introduction to Mathematical Proofs

## Homework No. 9

This homework should be submitted just <u>before the beginning of class</u>, on April 16<sup>th</sup>, 2012. You should bring to class a copy of the homework that you submit, or at least notes that can remind you of what you did, in order to participate in class discussions.

1. A sequence is defined (explicitly) by  $a_n = \frac{n \cdot (n+1)}{2}$  ,  $\forall n \in N$  .

What is  $\,a_{n\!+\!1}\,?\,\,a_{n\!-\!1}\,?\,\,a_{n\!+\!5}\,?\,\,a_{2n\!-\!1}\,?$  Simplify the expressions you get.

2. A sequence is defined (explicitly) by  $a_n = \frac{3^{2n-1}}{4^n}$  ,  $\forall n \in N$  .

What is  $\,a_{{}_{n+1}}$  ?  $\,a_{{}_{n-1}}$  ?  $\,a_{{}_{n+5}}$  ?  $\,a_{{}_{2n-1}}$  ? Simplify the expressions you get.

- 3. A sequence is defined (explicitly) by  $\sigma_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$ ,  $\forall n \in \mathbb{N}$ .
  - 3.1 What is  $\sigma_{n+1}$ ?  $\sigma_{n+2}$ ?
  - 3.2 Find:  $\sigma_{n+1} \sigma_n$ .
- 4. A sequence is defined recursively by: (i)  $a_1=1$  and (ii)  $a_n=3\cdot a_{n-1}$  ,  $\forall n\in N$  .

Conjecture a formula for  $a_n$  and verify that your formula is correct.

5. A sequence is defined recursively by: (i)  $b_1 = 3$  and (ii)  $b_n = 3 \cdot b_{n-1}$ ,  $\forall n \in \mathbb{N}$ .

Conjecture a formula for  $b_n$  and verify that your formula is correct.

- 6. Are the two sequences defined in problems 4 and 5 (above) the same? Explain your answer.
- 7. Based on what we did in class, write a proof of the following statement:

$$\forall n \in \mathbb{N}, 1+3+5\cdots(2n-1)=n^2.$$

Make sure that you write the Given and the RTP, and that you explain all steps.