MTHED-UE-1049: Mathematical Proof and Proving (MPP) MATH-UA-125: Introduction to Mathematical Proofs

Homework No. 9

This homework should be submitted just before the beginning of class, on April $16^{\text {th }}, 2012$. You should bring to class a copy of the homework that you submit, or at least notes that can remind you of what you did, in order to participate in class discussions.

1. A sequence is defined (explicitly) by $a_{n}=\frac{n \cdot(n+1)}{2}, \forall n \in N$.

What is a_{n+1} ? a_{n-1} ? a_{n+5} ? $a_{2 n-1}$? Simplify the expressions you get.
2. A sequence is defined (explicitly) by $a_{n}=\frac{3^{2 n-1}}{4^{n}}, \forall n \in N$.

What is a_{n+1} ? a_{n-1} ? a_{n+5} ? $a_{2 n-1}$? Simplify the expressions you get.
3. A sequence is defined (explicitly) by $\sigma_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}, \forall n \in N$.
3.1 What is σ_{n+1} ? σ_{n+2} ?
3.2 Find: $\sigma_{n+1}-\sigma_{n}$.
4. A sequence is defined recursively by: (i) $a_{1}=1$ and (ii) $a_{n}=3 \cdot a_{n-1}, \forall n \in N$.

Conjecture a formula for a_{n} and verify that your formula is correct.
5. A sequence is defined recursively by: (i) $b_{1}=3$ and (ii) $b_{n}=3 \cdot b_{n-1}, \forall n \in N$.

Conjecture a formula for b_{n} and verify that your formula is correct.
6. Are the two sequences defined in problems 4 and 5 (above) the same? Explain your answer.
7. Based on what we did in class, write a proof of the following statement:
$\forall n \in N, 1+3+5 \cdots(2 n-1)=n^{2}$.
Make sure that you write the Given and the RTP, and that you explain all steps.

