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1. Review

Here are some theorems from last time that we will need below.

Corollary 1.1. Let V be a vector space over a field F. Assume that B is a finite basis of
V , and B has exactly d elements. Then

(f) Any set of linearly independent elements of V is contained in a basis of V .

Theorem 1.2. Let V be a finite-dimensional vector space over a field F. Let W be a
subspace of V . Then W is also finite-dimensional, and dim(W ) ≤ dim(V ). Moreover, if
dim(W ) = dim(V ), then W = V .

Theorem 1.3 (Existence and Uniqueness of Basis Coefficients). Let {u1, . . . , un} be
a basis for a vector space V over a field F. Then for any vector u ∈ V , there exist unique
scalars α1, . . . , αn ∈ F such that

u =
n∑
i=1

αiui.

2. Linear Transformations

The general approach to the foundations of mathematics is to study certain spaces, and
then to study functions between these spaces. In this course we follow this paradigm. Up
until now, we have been studying properties of vector spaces. Vector spaces have a linear
structure, and so it is natural to deal with functions between vector spaces that preserve
this linear structure. That is, we will concern ourselves with linear transformations between
vector spaces. For finite-dimensional spaces, it will turn out that linear transformations
can be represented by the action of a matrix on a vector. However, for infinite-dimensional
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spaces, this representation doesn’t quite hold anymore. (Though, thinking by the way of
analogy allows many results for infinite-dimensional linear transformations to nearly follow
from the finite-dimensional case.) In any case, we can get a good deal of mileage by simply
talking about abstract linear transformations, without addressing matrices at all. We will
begin this approach below.

Definition 2.1. Let V and W be vector spaces over a field F. We call a function T : V → W
a linear transformation from V to W if, for all v, v′ ∈ V and for all α ∈ F,

(a) T (v + v′) = T (v) + T (v′). (T preserves vector addition.)
(b) T (αv) = αT (v). (T preserves scalar multiplication.)

Exercise 2.2. Let T : V → W be a linear transformation. Show that T (0) = 0.

Example 2.3. Define T (v) := 0. Then T is linear. This T is known as the zero transfor-
mation.

Example 2.4. Define T : V → V by T (v) := v. Then T is linear.

Example 2.5. Define T : R→ R by T (x) := x2. Then T is not linear.

Example 2.6. Let a, b, c, d ∈ R. Define T : R2 → R2 by

T

(
x
y

)
:=

(
a b
c d

)(
x
y

)
.

Then T is linear.

Example 2.7. Define T : C∞(R)→ C∞(R) by T (f) := df/dt. Then T is linear.

Example 2.8. Define T : C∞(R)→ C∞(R) by T (f) :=
∫ 1

0
f(t)dt. Then T is linear.

Remark 2.9. The set L(V,W ) of all linear transformations from V → W is itself a vector
space over F. We write L(V ) := L(V, V ). Given linear transformations S, T : V → W , we
define S + T so that, for all v ∈ V , (S + T )(v) := S(v) + T (v). Also, for any α ∈ F, we
define αT so that, for all v ∈ V , (αT )(v) := α(T (v)).

3. Null spaces, range, coordinate bases

Definition 3.1 (Null Space). Let V,W be vector spaces over a field F. Let T : V → W
be a linear transformation. The null space of T , denoted N(T ), is defined as

N(T ) := {v ∈ V : T (v) = 0}.

Remark 3.2. N(T ) is also referred to as the kernel of T . Note that N(T ) is a subspace of
V , so its dimension can be defined.

Definition 3.3 (Nullity). Let V,W be vector spaces over a field F. Let T : V → W be a
linear transformation. The nullity of T , denoted nullity(T ), is defined as

dim(N(T )).

Theorem 3.4. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Then T is injective if and only if N(T ) = {0}.
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Proof. Suppose T is injective. We will show that N(T ) = {0}. Note that T (0) = 0 by
Exercise 2.2, so {0} ⊆ N(T ). It now suffices to show that N(T ) has only one element, which
we prove by contradiction. Suppose there exist v, v′ ∈ N(T ) such that v 6= v′. Since T is
injective, T (v) 6= T (v′). But v, v′ ∈ N(T ) imply 0 = T (v) = T (v′), a contradiction. We
conclude that N(T ) has only one element, as desired.

Now, suppose N(T ) = {0}. We will show that T is injective. Let v, v′ ∈ V such that
T (v) = T (v′). By linearity of T , T (v − v′) = T (v) − T (v′) = 0, so v − v′ ∈ N(T ). Since
N(T ) = {0}, v − v′ = 0, so that v = v′, proving the injectivity of T . �

Definition 3.5 (Range). Let T : V → W be a linear transformation. The range of T ,
denoted R(T ), is defined as

R(T ) := {T (v) : v ∈ V }.

Remark 3.6. Note that R(T ) is a subspace of W , so its dimension can be defined.

Definition 3.7 (Rank). Let V,W be vector spaces over a field F. Let T : V → W be a
linear transformation. The rank of T , denoted rank(T ), is defined as

dim(R(T )).

Exercise 3.8. Let T : V → W be a linear transformation. Prove that N(T ) is a subspace
of V and that R(T ) is a subspace of W .

Theorem 3.9 (Dimension Theorem/ Rank-Nullity Theorem). Let V,W be vector
spaces over a field F. Let T : V → W be linear. If V is finite-dimensional, then

nullity(T ) + rank(T ) = dim(V ).

Proof. Since V is finite dimensional, and N(T ) ⊆ V is a subspace, N(T ) is finite dimensional
by Theorem 1.2. In particular, a basis {v1, . . . , vk} for N(T ) exists, by the definition of finite-
dimensionality. So, the set {v1, . . . , vk} ⊆ V is linearly independent. By Corollary 1.1(f), the
set {v1, . . . , vk} is therefore contained in a basis for V . (Since V is finite-dimensional, a basis
for V exists, so we can apply Corollary 1.1.) So, we have a basis {v1, . . . , vk, u1, . . . , um} for
V . That is, nullity(T ) = k and dim(V ) = k +m. It remains to show that rank(T ) = m.

We now show that rank(T ) = m. To show this, it suffices to show that {Tu1, . . . , Tum} is
a basis for R(T ). Let us therefore show that {Tu1, . . . , Tum} is a linearly independent set.
We prove this by contradiction. Suppose {Tu1, . . . , Tum} is not a linearly independent set.
Then there exist α1, . . . , αm ∈ F which are not all equal to zero, such that

m∑
i=1

αiTui = 0.

Since T is linear, we can rewrite this as

T

(
m∑
i=1

αiui

)
= 0.

That is,
∑m

i=1 αiui ∈ N(T ). Since {v1, . . . , vk} is a basis for N(T ), there exist scalars
β1, . . . , βk ∈ F such that

m∑
i=1

αiui =
k∑
i=1

βivi.
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That is,
m∑
i=1

αiui −
k∑
i=1

βivi = 0. (∗)

Since the set {v1, . . . , vk, u1, . . . , um} is a basis for V , this set is linearly independent. So all
the coefficients in (∗) are zero. In particular, α1 = · · · = αm = 0. But we assumed that some
αi was nonzero. Since we have achieved a contradiction, we conclude that {Tu1, . . . , Tum}
is a linearly independent set.

It now remains to show that {Tu1, . . . , Tum} is a spanning set of R(T ). Let w ∈ R(T ).
We need to show that w is a linear combination of {Tu1, . . . , Tum}. Since w ∈ R(T ), there
exists u ∈ V such that T (u) = w. Since {v1, . . . , vk, u1, . . . , um} is a basis for V , there exist

scalars γ1, . . . , γk, δ1, . . . , δm ∈ F such that u =
∑k

i=1 γivi +
∑m

i=1 δiui. Applying T to both
sides of this equation, and recalling that vi ∈ N(T ) for all i ∈ {1, . . . , k}, we get

T (u) = T

(
k∑
i=1

γivi +
m∑
i=1

δiui

)
= T

(
m∑
i=1

δiui

)
=

m∑
i=1

δiT (ui). (∗∗)

Since w = T (u), we have just expressed w as a linear combination of {Tu1, . . . , Tum}, as
desired. We conclude that {Tu1, . . . , Tum} is a spanning set for R(T ), so that rank(T ) = m,
as desired. �

Lemma 3.10. Let V and W be finite-dimensional vector spaces over a field F. Assume that
dim(V ) = dim(W ). Let T : V → W be linear. Then T is one-to-one if and only if T is onto.

Proof. We only prove the forward implication. Suppose T is one-to-one. Then N(T ) = {0}
by Theorem 3.4. By the Dimension Theorem (Theorem 3.9), rank(T ) = dim(V ). Since
dim(V ) = dim(W ), rank(T ) = dim(W ). Since R(T ) is a subspace of W , and dim(R(T )) =
dim(W ), we conclude that R(T ) = W by Theorem 1.2. So, T is onto, as desired. �

Exercise 3.11. Prove the reverse implication of Lemma 3.10.

Exercise 3.12. Define T : C(R)→ C(R) by Tf(x) :=
∫ x
0
f(t)dt. Note that T is linear and

one-to-one, but not onto, since there does not exist f ∈ C(R) such that T (f)(x) = 1 for all
x ∈ R. Define S : P (R) → P (R) by Sf := df/dt. Note that S is linear and onto, but S
is not one-to-one, since S maps the constant function 1 to the zero function. How can you
reconcile these facts with Lemma 3.10?

4. Linear Transformations and Bases

We will now isolate a few facts related to the main steps of the proof of the Dimension
Theorem. These facts will be useful for us in our later discussion of isomorphism.

Theorem 4.1. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Assume that {v1, . . . , vn} spans V . Then {Tv1, . . . , T vn} spans R(T ).

Proof. Let w ∈ R(T ). We need to express w as a linear combination of {Tv1, . . . , T vn}. Since
w ∈ R(T ), there exists v ∈ V such that T (v) = w. Since {v1, . . . , vn} spans V , there exist
scalars α1, . . . , αn ∈ F such that v =

∑n
i=1 αivi. Applying T to both sides of this equality,
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and then using linearity of T ,

T (v) = T

(
n∑
i=1

αivi

)
=

n∑
i=1

αiT (vi).

Since w = T (v), we have expressed w as a linear combination of {Tv1, . . . , T vn}, as desired.
�

Theorem 4.2. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation which is one-to-one. Assume that {v1, . . . , vn} is linearly independent. Then
{T (v1), . . . , T (vn)} is also linearly independent.

Proof. We argue by contradiction. Assume that {T (v1), . . . , T (vn)} is linearly dependent.
Then there exist scalars α1, . . . , αn ∈ F not all equal to zero such that

∑n
i=1 αiT (vi) = 0.

Applying linearity of T , this equation says T (
∑n

i=1 αivi) = 0. Since T is one-to-one, we must
have

n∑
i=1

αivi = 0.

However, the set {v1, . . . , vn} is linearly independent, so we must have α1 = · · · = αn = 0.
But at least one αi must be nonzero, a contradiction. We conclude that {T (v1), . . . , T (vn)}
is linearly independent, as desired. �

Corollary 4.3 (Bijections Preserve Bases). Let V,W be vector spaces over a field F.
Let T : V → W be a linear transformation which is one-to-one and onto. Assume that
{v1, . . . , vn} is a basis for V . Then {T (v1), . . . , T (vn)} is a basis for W . And therefore,
dim(V ) = dim(W ) = n.

Proof. Since {v1, . . . , vn} is a basis for V , {v1, . . . , vn} spans V . So, from Theorem 4.1,
{T (v1), . . . , T (vn)} spans R(T ). Since T is onto, R(T ) = W , so {T (v1), . . . , T (vn)} spans W .
It remains to show that {T (v1), . . . , T (vn)} is linearly independent. Since {v1, . . . , vn} is a
basis for V , {v1, . . . , vn} is linearly independent. So, from Theorem 4.2, {T (v1), . . . , T (vn)}
is linearly independent, as desired. �

As we now show, if T : V → W is linear and T is defined only on a basis of V , then this is
sufficient to define T over all vectors in V . We phrase this theorem as a combined existence
and uniqueness statement.

Theorem 4.4 (Rigidity of Linear Transformations). Let V,W be vector spaces over a
field F. Assume that {v1, . . . , vn} is a basis for V . Let {w1, . . . , wn} be any vectors in W .
Then there exists a unique linear transformation T : V → W such that T (vi) = wi for all
i ∈ {1, . . . , n}.

Proof. We first prove that T exists. Let v ∈ V . From Theorem 1.3, there exist unique scalars
α1, . . . , αn ∈ F such that v =

∑n
i=1 αivi. Suppose we define a map

T (
n∑
i=1

αivi) :=
n∑
i=1

αiwi. (∗)

Observe that T : V → W is a map. In particular, since the scalars α1, . . . , αn ∈ F depend
uniquely on v, T is well-defined. We now check that T (vi) = wi for all i ∈ {1, . . . , n}. Note
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that

vi = 1 · vi +
∑

1≤j≤n : j 6=i

0 · vj.

So, plugging this formula into (∗) shows that T (vi) = wi.
We now need to verify that T is linear. Let α ∈ F. We first verify that T (αv) = αT (v).

T (αv) = T

(
n∑
i=1

(ααi)vi

)
=

n∑
i=1

ααiwi , by (∗)

= α(
n∑
i=1

αiwi) = αT (v) , by (∗).

So, T (αv) = αT (v) for all v ∈ V and for all α ∈ F. Let v′ ∈ V . We now verify that
T (v+v′) = T (v)+T (v′). There exist unique scalars β1, . . . , βn ∈ F such that v′ =

∑n
i=1 βivi.

We now check

T (v + v′) = T

(
n∑
i=1

(αi + βi)vi

)
=

n∑
i=1

(αi + βi)wi , by (∗)

=
n∑
i=1

αiwi +
n∑
i=1

βiwi = T (v) + T (v′) , by (∗).

In conclusion, the map T defined by (∗) is in fact a linear transformation.
We now finish the proof by showing that T is unique. Suppose some other linear trans-

formation T ′ : V → W satisfies T (vi) = wi for all i ∈ {1, . . . , n}. Then (T − T ′)(vi) = 0 for
all i ∈ {1, . . . , n}. So, for any v ∈ V , once we write v =

∑n
i=1 αivi, we have by linearity of

(T − T ′)

(T − T ′)(v) = (T − T ′)(
n∑
i=1

αivi) =
n∑
i=1

αi(T − T ′)(vi) = 0.

That is, T − T ′ = 0, so T = T ′, as desired. �

5. Matrix Representation, Matrix Multiplication

Definition 5.1 (Ordered Basis). Let V be a finite-dimensional vector space over a field
F. An ordered basis for V is a an ordered set (v1, . . . , vn) of elements of V such that
{v1, . . . , vn} is a basis of V .

Example 5.2. One ordered basis for R2 is ((1, 0), (0, 1)).

Definition 5.3 (Coordinate Vector). Let β = (v1, . . . , vn) be an ordered basis for V , and
let v ∈ V . From Theorem 1.3, there exist unique scalars such that v =

∑n
i=1 αivi. The

scalars α1, . . . , αn are referred to as the coordinates of v with respect to β. We then define
the coordinate vector of v relative to β by

[v]β :=

α1
...
αn


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Example 5.4. Let v := (3, 4). If β = ((1, 0), (0, 1)). Then v = 3(1, 0) + 4(0, 1), so

[v]β =

(
3
4

)
.

If β′ = ((1,−1), (1, 1)), then v = (−1/2)(1,−1) + (7/2)(1, 1), so

[v]β
′
=

(
−1/2
7/2

)
.

If β′′ = ((3, 4), (0, 1)), then v = 1(3, 4) + 0(0, 1)

[v]β
′′

=

(
1
0

)
.

Definition 5.5 (Matrix Representation). Let V,W be finite-dimensional vector spaces.
Let β = (v1, . . . , vn) be an ordered basis for V , and let γ = (w1, . . . , wm) be an ordered basis
for W . Let T : V → W be linear. Then, for each j ∈ {1, . . . , n}, there exist unique scalars
a1j, . . . , amj ∈ F by Theorem 1.3 such that

T (vj) =
m∑
i=1

aijwi.

We therefore define the matrix representation of T with respect to the bases β and γ by

[T ]γβ =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn

 .

Remark 5.6. Note that the jth column of [T ]γβ is exactly [T (vj)]
γ, so that

[T ]γβ = ([T (v1)]
γ, [T (v2)]

γ, . . . , [T (vn)]γ).

So, if we have an arbitrary v ∈ V , and we write v uniquely as v =
∑n

j=1 bjvj where b1, . . . , bn ∈
F, then by linearity, Tv =

∑n
j=1 bjT (vj). That is,

Tv =
n∑
j=1

m∑
i=1

bjaijwi =
m∑
i=1

(
n∑
j=1

bjaij)wi

If we also express Tv in the basis γ, so that Tv =
∑m

i=1 ciwi where c1, . . . , cm ∈ F, then we
equate like terms to get ci =

∑n
j=1 bjaij for all 1 ≤ i ≤ m. In matrix form, this becomes

 c1
...
cm

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn


b1...
bn

 .

Or, using our ordered basis notation,

[Tv]γ = [T ]γβ[v]β.
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Remark 5.7. The important point here is that a linear transformation T : V → W has
a meaning that does not depend on any ordered basis. However, when we view T from
different perspectives (i.e. we examine [T ]γβ for different ordered bases β, γ), then T may
look very different. One of the major goals of linear algebra is to take a T and view it from
the “correct” basis, so that [T ]γβ takes a rather simple form, and therefore T becomes easier

to understand. For example, if we could find ordered bases β, γ such that [T ]γβ becomes a
diagonal matrix, then this would be really nice, since diagonal matrices are fairly easy to
understand, and therefore we would better understand T . Unfortunately, we cannot always
find bases such that [T ]γβ becomes diagonal, but in certain cases this can be done.

Remark 5.8. If we have a linear transformation T : V → W , then specifying ordered bases
β, γ gives a matrix representation [T ]γβ. Conversely, if we have a matrix representation [T ]γβ,
then we know how T acts on an ordered basis. So, by Theorem 4.4, we can recover T : V → W
from the matrix representation [T ]γβ.

Example 5.9. Let T : R2 → R2 be the linear transformation that takes any vector (x, y) ∈
R2 and rotates this vector counterclockwise around the origin by an angle π/2. Note that
this description of T does not make use of any ordered basis. Let us find two different matrix
representations of T . We first use β = γ = ((1, 0), (0, 1)). In this case, note that T (1, 0) =
(0, 1) and T (0, 1) = (−1, 0). So, T (1, 0) = 0(1, 0) + 1(0, 1) and T (0, 1) = −1(1, 0) + 0(0, 1),
and

[T ]γβ =

(
0 −1
1 0

)
.

We will now find a matrix representation of T that is the identity matrix. Let β :=
((1, 0), (0, 1)) and let γ := ((0, 1), (−1, 0)). Then T (1, 0) = 1(0, 1) + 0(−1, 0) and T (0, 1) =
0(0, 1) + 1(−1, 0), so

[T ]γβ =

(
1 0
0 1

)
.

Recall that, in Remark 2.9, we noted that the set L(V,W ) of all linear transformations
from V → W is itself a vector space over F. Given linear transformations S, T : V → W , we
defined S + T so that, for all v ∈ V , (S + T )(v) := S(v) + T (v). Also, for any α ∈ F, we
defined αT so that, for all v ∈ V , (αT )(v) := α(T (v)). We can also define the product, or
composition, or linear transformations as follows.

Definition 5.10 (Product/Composition). Let U, V,W be vector spaces over a field F.
Let S : V → W and let T : U → V be linear transformations. We define the product or
composition ST : U → W by the formula

ST (u) := S(T (u)) ∀u ∈ U.

Exercise 5.11. Using the linearity of S and T , show that ST : U → W is a linear transfor-
mation.

Definition 5.12 (Matrix Multiplication). Let A be an m × ` matrix, and let B be an
n ×m matrix. That is, A is a collection of scalars arranged into m rows and ` columns as
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follows

A =


A11 A12 · · · A1`

A21 A22 · · · A2`
...

... · · · ...
Am1 Am2 · · · Am`

 .

Then the n× ` matrix BA is defined, so that the (k, i) entry of BA is given by

(BA)ki :=
m∑
j=1

BkjAji. 1 ≤ k ≤ n, 1 ≤ i ≤ `

Definition 5.13. The n× n identity matrix In is defined by

In =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 .

Note that the composition of two linear transformations evidently has a natural definition
in Definition 5.10. On the other hand, matrix multiplication in Definition 5.12 may have
appeared somewhat unnatural at first sight. So, perhaps surprisingly, we now show that
the composition of linear transformations exactly defines the matrix multiplication to which
we are accustomed. Put another way, the matrix multiplication in Definition 5.12 is a
realization, in coordinates, of the composition of two linear transformations.

Theorem 5.14 (Equivalence of Composition and Matrix Multiplication). Suppose
U, V,W are vector spaces over a field F. Let S : V → W and let T : U → V be linear trans-
formations. Assume that U is `-dimensional and it has an ordered basis α = (u1, . . . , u`).
Assume that V is m-dimensional and it has an ordered basis β = (v1, . . . , vm). Assume that
W is n-dimensional and it has an ordered basis γ = (w1, . . . , wn). Then

[ST ]γα = [S]γβ[T ]βα.

Proof. We first apply Definition 5.5 to T . Then there exist scalars {aji}1≤j≤m,1≤i≤` such
that, for each 1 ≤ i ≤ `,

T (ui) =
m∑
j=1

ajivj. (1)

That is,

[T ]βα =


a11 a12 · · · a1`
a21 a22 · · · a2`
...

... · · · ...
am1 am2 · · · am`

 . (2)

We now apply Definition 5.5 to S. Then there exist scalars {bkj}1≤k≤n,1≤j≤m such that,
for each 1 ≤ j ≤ m,

S(vj) =
n∑
k=1

bkjwk. (3)
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That is,

[S]γβ =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

... · · · ...
bn1 bn2 · · · bnm

 . (4)

Applying S to both sides of (1) and using linearity of S,

S(T (ui)) = S

(
m∑
j=1

ajivj

)
=

m∑
j=1

ajiS(vj)

=
m∑
j=1

aji

n∑
k=1

bkjwk , by (3).

Changing the order of summation, we get

ST (ui) =
n∑
k=1

(
m∑
j=1

bkjaji

)
wk. (5)

So, for each 1 ≤ k ≤ n and 1 ≤ i ≤ `, define

cki :=
m∑
j=1

bkjaji. (6)

Then (5) becomes

ST (ui) =
n∑
k=1

ckiwk. (7)

That is, using the definitions of α and γ,

[ST ]γα =


c11 c12 · · · c1`
c21 c22 · · · c2`
...

... · · · ...
cn1 cn2 · · · cn`

 . (8)

Finally, we use (2) and (4), and then perform the matrix multiplication

[S]γβ[T ]βα =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

... · · · ...
bn1 bn2 · · · bnm



a11 a12 · · · a1`
a21 a22 · · · a2`
...

... · · · ...
am1 am2 · · · am`

 . (9)

Then the matrix multiplication in (9), defined in Definition 5.12, agrees with the matrix in
(8), because of (6). That is, [ST ]γα = [S]γβ[T ]βα, as desired. �
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5.1. Matrices as Linear Transformations. We showed in Theorem 5.14 that composing
two linear transformations is equivalent to using matrix multiplication. We now belabor this
point by beginning with a matrix, and then using the theory of linear transformations to
prove associativity of matrix multiplication. We could prove that matrix multiplication is
associative by taking three matrices and then writing out all the relevant terms. However, the
“coordinate-free” approach below ends up being a bit more elegant. This proof strategy is
part of a larger paradigm, in which “coordinate-free” proofs end up being more enlightening
that coordinate-reliant proofs.

Definition 5.15. Consider the vector space Fn over the field F. The standard basis for
Fn is defined as

(e1, . . . , en) = ((1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)).

Definition 5.16. Let A be an m × n matrix of scalars in a field F. Define LA : Fn → Fm

by the formula
LA(u) := Au, ∀u ∈ Fn.

Here we think of vectors in Fn and Fm as column vectors. Note that LA is linear.

Lemma 5.17. Let α be the standard basis of Fn and let β be the standard basis of Fm.
Let A ∈ Mm×n(F). Then [LA]βα = A. Let T : Fn → Fm be a linear transformation. Then
L[T ]βα

= T .

Proof. Let u ∈ Fn be a column vector. That is, there exist α1, . . . , αn ∈ Fn such that

u =

α1
...
αn

 .

That is, u =
∑n

i=1 αiui. That is,

u = [u]α, ∀u ∈ Fn. (∗)
Similarly,

v = [v]β, ∀ v ∈ Fm. (∗∗)
From Remark 5.6,

[LA(u)]β = [LA]βα[u]α.

Applying (∗) and (∗∗), we get
LA(u) = [LA]βαu.

Since LA(u) = Au, we get
Au = [LA]βαu. ∀u ∈ Fn

Using u = ei for any i ∈ {1, . . . , n} shows that the ith column of A is equal to the ith column
of [LA]βα. So, [LA]βα = A, as desired.

Now, let T : Fn → Fm be a linear transformation. From Remark 5.6, for any u ∈ Fn,

[T (u)]β = [T ]βα[u]α.

Applying (∗) and (∗∗),
T (u) = [T ]βαu = L[T ]βα

(u). ∀u ∈ Fn.

Therefore, T = L[T ]βα
, as desired. �
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Lemma 5.18. Let U, V,W,X be vector spaces over a field F. Let T : U → V , S : V → W ,
R : W → X be three linear transformations. Then R(ST ) = (RS)T .

Proof. We are required to show that, for all u ∈ U , R(ST )(u) = (RS)T (u). We repeatedly
apply Definition 5.10 as follows.

R(ST )(u) = R(ST (u)) = R(S(T (u))) = RS(T (u)) = (RS)T (u).

�

Note that Lemma 5.18 was proven in a coordinate-free manner. We now combine Lem-
mas 5.17 and 5.18 to prove associativity of matrix multiplication, a statement that uses
coordinates.

Corollary 5.19. Let A be an m× ` matrix, let B be an n×m matrix, and let C be a k× n
matrix. Then C(BA) = (CB)A.

Proof. From Lemma 5.18,

LC(LBLA) = (LCLB)LA. (10)

Let α, β, γ, δ be the standard bases for F`,Fm,Fn and Fk, respectively. Applying Theorem
5.14 twice to the left side of (10),

[LC(LBLA)]δα = [LC ]δγ[LBLA]γα = [LC ]δγ([LB]γβ[LA]βα)

= C(BA) by Lemma 5.17. (11)

Applying Theorem 5.14 twice to the right side of (10),

[(LCLB)LA]δα = [LCLB]δβ[LA]βα = ([LC ]δγ[LB]γβ)[LA]βα

= (CB)A by Lemma 5.17. (12)

Combining (10), (11) and (12) completes the proof. �

The following facts are proven in a similar manner.

Remark 5.20. Let A be an m× ` matrix, let B be an n×m matrix. Then LBLA = LBA.

Proof. Let α, β, γ be the standard bases for F`,Fm and Fn respectively. Applying Theorem
5.14 then Lemma 5.17,

[LBLA]γα = [LB]γβ[LA]βα = BA.

Taking L of both sides and applying Lemma 5.17 to the left side shows that LBLA = LBA. �

Remark 5.21. Let A be an n×m matrix, let B be an n×m matrix. Then LA+B = LA+LB.

Proof. Let α, β be the standard bases for Fm and Fn, respectively. Applying Lemma 5.17,

[LA + LB]βα = [LA]βα + [LB]βα = A+B.

Taking L of both sides and applying Lemma 5.17 to the left side shows that LA + LB =
LA+B. �
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6. Invertibility, Isomorphism

We now introduce the concept of invertibility. As will become clear, the invertibility of a
linear transformation is closely related to our ability to find a “nice” matrix representation
of the linear transformation.

Definition 6.1 (Inverse). Let V,W be vector spaces over a field F. Let T : V → W be a
linear transformation. We say that a linear transformation S : W → V is the inverse of T
if TS = IW and ST = IV . We say that T is invertible if T has an inverse, and we denote
the inverse by T−1, so that TT−1 = IW and T−1T = IV .

Remark 6.2. If T is the inverse of S, then S is the inverse of T .

If an inverse of T exists, then it is unique, as we now show.

Lemma 6.3. Let V,W be vector spaces over a field F. Let T : V → W be a linear transfor-
mation. Let S : W → V be an inverse of T , and let S ′ : W → V be an inverse of T . Then
S = S ′.

Proof. Using the definition of inverse,

S = SIW = S(TS ′) = (ST )S ′ = IV S
′ = S ′.

�

Lemma 6.4. Let V,W be vector spaces over a field F. Let T : V → W be a linear transfor-
mation. If T has an inverse S : W → V , then T must be one-to-one and onto.

Proof. We first show that T is one-to-one. Suppose v, v′ ∈ V satisfy T (v) = T (v′). Applying
S to both sides, ST (v) = ST (v′). That is, v = v′, so T is one-to-one, as desired.

We now show that T is onto. Let w ∈ W . We need to find v ∈ V such that T (v) = w.
Define v := Sw. Then T (v) = TS(w) = w, as desired. �

Example 6.5. The zero transformation T : R2 → R2 defined by T = 0 is not onto, so T is
not invertible.

We now prove the converse of Lemma 6.4

Lemma 6.6. Let V,W be vector spaces over a field F. Let T : V → W be a linear trans-
formation. Suppose T is one-to-one and onto. Then there exists a linear transformation
S : W → V that is the inverse of T .

Proof. We first have to somehow define a linear transformation S : W → V that inverts T .
Given any w ∈ W , since T is bijective, there exists a unique v ∈ V such that w = T (v). So,
define

S(w) := v. (∗)
Since v uniquely depends on w, the map S : W → V defined in this way is well-defined.
We now show that S is linear. Let w,w′ ∈ W . Since T is bijective, there exist unique
v, v′ ∈ V such that T (v) = w and T (v′) = w′. In particular, by the definition (∗), S(w) = v
and S(w′) = v′. Since T is linear, T (v + v′) = w + w′. So, by the definition (∗), we have
S(w + w′) = v + v′ = S(w) + S(w′). Now, let α ∈ F. Since T (v) = w and T is linear,
T (αv) = αT (v) = αw. By the definition (∗), S(αw) = αv. Since v = S(w), we therefore
have S(αw) = αS(w), as desired. So, S is linear.
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It remains to show that S inverts T . Applying T to both sides of (∗), note that TS(w) =
T (v) = w, so TS = IW . Also, substituting w = T (v) into (∗), we get S(T (v)) = v, so that
ST = IV , as desired. �

Combining Lemmas 6.4 and 6.6, we see that a linear transformation T : V → W is invert-
ible if and only if T is one-to-one and onto. Invertible linear transformations are also known
as isomorphisms.

Definition 6.7 (Isomorphism). Two vector spaces V,W over a field F are said to be
isomorphic if there exists an invertible linear transformation T : V → W from one space
to the other.

The notion of isomorphism allows us to reason about two vector spaces being the same
(if they are isomorphic) or not the same (if they are not isomorphic). Many parts of mathe-
matics, or science more generally, are concerned with classifying things according to whether
they are they same or not the same. Within the context of vector spaces, this notion of
isomorphism is most appropriate, since it asks for the linear structure of the vector space to
be preserved. Within other mathematical contexts, different notions of isomorphism appear,
though they all generally ask for the structures at hand to be preserved by a certain map.

Lemma 6.8. Two finite-dimensional vectors spaces V,W over a field F are isomorphic if
and only if dim(V ) = dim(W ).

Proof. Suppose V,W are isomorphic. Then there exists an invertible linear transformation
T : V → W . By Lemma 6.4, T is one-to-one and onto. In particular, nullity(T ) = 0. By the
Dimension Theorem (Theorem 3.9), rank(T ) = dim(V ). Since T is onto, rank(T ) = dim(W ).
Therefore, dim(V ) = dim(W ), as desired.

We now prove the reverse implication. Assume that dim(V ) = dim(W ) = n for some
n ∈ N. Let {v1, . . . , vn} be a basis for V , and let {w1, . . . , wn} be a basis for W . By
Theorem 4.4, there exists a linear transformation T : V → W such that T (vi) = wi for all
i ∈ {1, . . . , n}. By Theorem 4.1, {w1, . . . , wn} spans R(T ). Since {w1, . . . , wn} also spans
W , we have R(T ) = W , so that T is onto. By Lemma 3.10 (using dim(V ) = dim(W )), T is
also one-to-one. So, T is an isomorphism, and V,W are isomorphic, as desired. �

Remark 6.9. If V has an ordered basis β = (v1, . . . , vn), then the coordinate map φβ : V →
Fn defined by

φβ(v) := [v]β

is a linear transformation. It is also an isomorphism. Note that φβ is one-to-one by Theorem
1.3, and φβ is onto since, if we are given the coordinate vector [v]β = (α1, . . . , αn), then
φβ(
∑n

i=1 αivi) = [v]β. So, φβ is an isomorphism by Lemma 6.6. The book calls φβ the
standard representation of V with respect to β.

If we only care about linear transformations for finite-dimensional vector spaces over R,
then Lemma 6.8 and Theorem 5.14 show that it suffices to discuss real matrices and the
vector spaces Rn, n ∈ N. However, our effort in developing the theory of linear transforma-
tions was not a waste of time. For example, the notion of isomorphism from Definition 6.7
is not very meaningful for infinite-dimensional vector spaces. For another example, when
we introduce norms and inner products, the notion of isomorphism from Definition 6.7 be-
comes less meaningful, and finer properties of linear transformations become more relevant.
Nevertheless, we will mostly discuss real matrices and Rn for the rest of the course.
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6.1. Invertibility and Matrices.

Definition 6.10 (Inverse Matrix). Let A be an m × n matrix. We say that A has an
inverse B if B is an n×m matrix such that AB = Im and such that BA = In. If A has an
inverse, we say that A is an invertible matrix, and we write B = A−1.

We now continue to emphasize the relation between linear transformations and matrices,
as in Theorem 5.14 and Remark 5.6.

Theorem 6.11. Let V,W be vector spaces over a field F. Assume that α is an ordered
basis for V with n elements, and assume that β is an ordered basis for W with m elements.
Then a linear transformation T : V → W is invertible if and only if [T ]βα is invertible. Also,
[T−1]αβ = ([T ]βα)−1

Proof. Suppose T : V → W has an inverse T−1 : W → V . Then TT−1 = IW and T−1T = IV .
So, applying Theorem 5.14,

[T ]βα[T−1]αβ = [TT−1]ββ = [IW ]ββ = Im.

[T−1]αβ [T ]βα = [T−1T ]αα = [IV ]αα = In.

So, [T−1]αβ is the inverse of [T ]βα, so that [T ]βα is an invertible matrix.

We now prove the reverse implication. Suppose [T ]βα is invertible. Then there exists
an n × m matrix B such that B[T ]βα = In and [T ]βαB = Im. Write α = (v1, . . . , vn),
β = (w1, . . . , wm). We would like to have a linear transformation S : W → V such that
S(wi) =

∑n
k=1Bkivk for all i ∈ {1, . . . ,m}. If such an S exists, then [S]αβ = B. Such a linear

transformation exists by Theorem 4.4. Therefore,

[IV ]αα = In = B[T ]βα = [S]αβ [T ]βα = [ST ]αα.

[IW ]ββ = Im = [T ]βαB = [T ]βα[S]αβ = [TS]ββ.

So, T is invertible, as desired. �

Corollary 6.12. An m × n matrix A is invertible if and only if the linear transformation
LA : Fn → Fm is invertible. Also, (LA)−1 = LA−1.

Proof. Let α be the standard basis for Fn and let β be the standard basis for Fm. Then

[LA]βα = A. (∗)

So, by Theorem 6.11, LA is invertible if and only if A is invertible. Also, from Theorem 6.11,

[L−1A ]αβ = ([LA]βα)−1 = A−1 = [LA−1 ]αβ , by (∗).

Therefore, L−1A = LA−1 . �

Corollary 6.13. Let A be an m× n matrix. If A is invertible, then m = n.

Proof. Apply Corollary 6.12 and Lemma 6.8. �

Unfortunately, not all matrices are invertible. For example, the zero matrix is not invert-
ible.
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7. Change of Coordinates

Suppose we have two finite ordered bases β, β′ for the same vector space V . Let v ∈ V .
We would like a way to relate [v]β to [v]β

′
. Using Remark 5.6 and that IV v = v for all v ∈ V ,

we have

[IV ]β
′

β [v]β = [v]β
′
.

That is, to relate [v]β to [v]β
′
, it suffices to compute [IV ]β

′

β

Example 7.1. Let β = ((2, 0), (1,−1)), and let β′ = ((0, 1), (2, 1)) be two ordered bases of
R2. Then

IV (2, 0) = (2, 0) = −1(0, 1) + 1(2, 1).

IV (1,−1) = (1,−1) = −(3/2)(0, 1) + (1/2)(2, 1).

So

[IV ]β
′

β =

(
−1 −3/2
1 1/2

)
.

So, we can verify that [IV ]β
′

β [v]β = [v]β
′
. For example, choosing v = (3, 2), note that

[v]β =

(
5/2
−2

)
, [v]β

′
=

(
1/2
3/2

)
,

(
−1 −3/2
1 1/2

)(
5/2
−2

)
=

(
1/2
3/2

)
.

Similarly, note that [IV ]ββ′ is the inverse of [IV ]β
′

β , so

[IV ]ββ′ =

(
1/2 3/2
−1 −1

)
.

Exercise 7.2. Show that [IV ]β
′

β is invertible, with inverse [IV ]ββ′ .

Lemma 7.3. Let V be a finite-dimensional vector space over a field F. Let β, β′ be two

bases for V . Let T : V → V be a linear transformation. Define Q := [IV ]β
′

β . (From Theorem

6.11, Q is invertible.) Then [T ]ββ and [T ]β
′

β′ satisfy the following relation

[T ]β
′

β′ = Q[T ]ββQ
−1.

Proof. We first write T = IV TIV . Taking the matrix representation of both sides and then
applying Theorem 5.14,

[T ]β
′

β′ = [IV TIV ]β
′

β′ = [IV ]β
′

β [TIV ]ββ′ = [IV ]β
′

β [T ]ββ[IV ]ββ′ .

From Theorem 6.11, [IV ]ββ′ = ([IV ]β
′

β )−1, completing the proof. �

Definition 7.4 (Similarity). Two n×n matrices A,B are said to be similar if there exists
an invertible n× n matrix Q such that A = QBQ−1.

Remark 7.5. In the context of Lemma 7.3, [T ]β
′

β′ is similar to [T ]ββ.
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8. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers. Let F be a field.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

C(R) denotes the set of all continuous functions from R to R

Pn(R) denotes the set of all real polynomials in one real variable of degree at most n

P (R) denotes the set of all real polynomials in one real variable

Mm×n(F) denotes the vector space of m× n matrices over the field F

In denotes the n× n identity matrix

8.1. Set Theory. Let V,W be sets, and let f : V,W be a function. Let X ⊆ V , Y ⊆ W .

f(X) := {f(v) : v ∈ V }.
f−1(Y ) := {v ∈ V : f(v) ∈ Y }.

The function f : V → W is said to be injective (or one-to-one) if: for every v, v′ ∈ V , if
f(v) = f(v′), then v = v′.

The function f : V → W is said to be surjective (or onto) if: for every w ∈ W , there
exists v ∈ V such that f(v) = w.

The function f : V → W is said to be bijective (or a one-to-one correspondence) if:
for every w ∈ W , there exists exactly one v ∈ V such that f(v) = w. A function f : V → W
is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if there exists a bijection from V
onto W .

The identity map I : X → X is defined by I(x) = x for all x ∈ X. To emphasize that
the domain and range are both X, we sometimes write IX for the identity map on X.

17



Let V,W be vector spaces over a field F. Then L(V,W ) denotes the set of linear trans-
formations from V to W , and L(V ) denotes the set of linear transformations from V to
V .

UCLA Department of Mathematics, Los Angeles, CA 90095-1555
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