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1. Review

Theorem 1.1 (Dimension Theorem/ Rank-Nullity Theorem). Let V,W be vector
spaces over a field F. Let T : V → W be linear. If V is finite-dimensional, then

nullity(T ) + rank(T ) = dim(V ).

Theorem 1.2. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Assume that {v1, . . . , vn} spans V . Then {Tv1, . . . , T vn} spans R(T ).

Remark 1.3. Let A be an m× ` matrix, let B be an n×m matrix. Then LBLA = LBA.

Corollary 1.4. An m × n matrix A is invertible if and only if the linear transformation
LA : Fn → Fm is invertible. Also, (LA)−1 = LA−1.

2. Row Operations

We begin our discussion of row operations on matrices with some examples.

Example 2.1 (Type 1: Interchange two Rows). For example, we can swap the first
and third rows of the matrix 1 2

3 5
0 8


to get 0 8

3 5
1 2

 .

Define

E :=

0 0 1
0 1 0
1 0 0

 .
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Note that

E

1 2
3 5
0 8

 =

0 0 1
0 1 0
1 0 0

1 2
3 5
0 8

 =

0 8
3 5
1 2

 .

Remark 2.2. E as defined above is invertible. In fact, E = E−1. In general, if E is the
n× n matrix that swaps two rows of an n× n matrix A, then EA is A with those two rows
swapped. So EEA = A for all n× n matrices A, so EE = In, i.e. E is invertible.

Example 2.3 (Type 2: Multiply a row by a nonzero scalar). For example, let’s
multiply the second row of the following matrix by 2.1 2

3 5
0 8

 .

We then get 1 2
6 10
0 8

 .

Define

E :=

1 0 0
0 2 0
0 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 2 0
0 0 1

1 2
3 5
0 8

 =

1 2
6 10
0 8


Remark 2.4. E as defined above has inverse1 0 0

0 1/2 0
0 0 1

 .

In general, suppose E corresponds to multiplying the ith row of a given matrix by α ∈ F,
α 6= 0. Then E is a matrix with ones on the diagonal, except for the ith entry on the diagonal,
which is α. And all other entries of E are zero. Then, we see that E−1 exists and is a matrix
with ones on the diagonal, except for the ith entry on the diagonal, which is α−1. And all
other entries of E−1 are zero. In particular, E is invertible.

Example 2.5 (Adding one row to another). Let’s add two copies of the first row of the
following matrix to the third row. 1 2

3 5
0 8

 .

We then get 1 2
3 5
2 12

 .
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Define

E :=

1 0 0
0 1 0
2 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 1 0
2 0 1

1 2
3 5
0 8

 =

1 2
3 5
2 12

 .

Remark 2.6. E as defined above has inverse 1 0 0
0 1 0
−2 0 1

 .

That is, adding 2 copies of row one to row three is inverted by adding −2 copies of row one
to row three. In a similar way, a general row addition operator is seen to be invertible.

Remark 2.7 (Summary of Row Operations). The three row operations (Type 1, Type
2, and Type 3) are all invertible.

Remark 2.8 (Solving Systems of Linear Equations). Let A be an m × n matrix, let
x ∈ Rn be a variable vector, and let b ∈ Rm be a known vector. Consider the system of
linear equations

Ax = b.

Let E be any elementary row operation. Since E is invertible, finding a solution x to the
system Ax = b is equivalent to finding the solution x to the system EAx = Eb. By applying
many elementary row operations, you have seen in a previous course how to solve the system
Ax = b. That is, you continue to apply elementary row operations E1, . . . , Ek such that
E1 · · ·EkA in in row-echelon form, and you then solve E1 · · ·EkAx = E1 · · ·Ekb. A matrix
B is in row-echelon form if each row is either zero, or its left-most nonzero entry is 1, with
zeros below the 1.

Remark 2.9 (Inverting a Matrix). Let A be an invertible n× n matrix. You learned in
a previous course an algorithm for inverting A using elementary row operations. Below, we
will prove that this algorithm works.

Remark 2.10 (Column Operations). In the above discussion, we could have also used
column operations instead of row operations. Column operations would then correspond to
multiplying the matrices E on the right side, rather than the left side. The invertibility of
column operations would therefore still hold.

3. Rank of a Matrix

Let T : V → W be a linear transformation between two vector spaces. Recall that the
rank of T , denoted by rank(T ), is the dimension of R(T ), the range of T .

Lemma 3.1. Let V,W be finite-dimensional vector spaces over a field F. Assume that
dim(V ) = dim(W ) = n. Let T : V → W be a linear transformation. Then T is invertible if
and only if T has rank n.
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Proof. Suppose T is invertible. Then T is one-to-one. By the Dimension Theorem (Theorem
1.1), T has rank n.

Now, suppose T has rank n. Then, by the Dimension Theorem, N(T ) = {0}, so T is
one-to-one. Also, R(T ) is again a subspace of W of the same dimension as W , so we must
have R(T ) = W , so T is onto. Since T is both one-to-one and onto, T is invertible. �

Lemma 3.2. Let V,W be finite-dimensional vector spaces over a field F. Let T : V → W be
an invertible linear transformation. Let U ⊆ V be a subspace. Then dim(U) = dim(T (U)).

Proof. Since U ⊆ V is a subspace, U is a vector space. So, for each u ∈ U , define the map
TU : U → W by

TU(u) := T (u).

Since T is linear, TU is linear. Since T is one-to-one, TU is one-to-one, so N(TU) = {0}. So,
the Dimension Theorem (Theorem 1.1) implies that dimR(TU) = dim(U). Since R(TU) =
TU(U) = T (U), we are done. �

Lemma 3.3 (Isomorphisms Preserve Rank). Let U, V,W,X be vector spaces over a
field F. Let T : V → W be a linear transformation. Let S : U → V be an invertible linear
transformation, and let P : W → X be an invertible linear transformation. Then

rank(T ) = rank(PT ) = rank(TS) = rank(PTS).

Proof. We begin with the first equality. By the definition of range, R(T ) = T (V ), and
R(PT ) = PT (V ). So,

R(PT ) = PT (V ) = P (T (V )) = P (R(T )).

So, rank(PT ) = dim(P (R(T ))). Since P is invertible, dim(P (R(T ))) = dim(R(T )) by
Lemma 3.2. So, rank(PT ) = rank(T).

We now prove that rank(T ) = rank(TS). Since S : U → V is invertible, S is onto. So,
S(U) = V . By the definition of range,

R(TS) = TS(U) = T (S(U) = T (V ).

So, R(TS) = T (V ) = R(T ), so rank(T ) = rank(TS).
Finally, the equality rank(PTS) = rank(TS) follows by applying the first equality to

T ′ := TS. �

Definition 3.4 (Rank of a Matrix). Let A be a matrix. Then the rank of A is defined
as rank(LA).

Lemma 3.5. The rank of a matrix A is equal to the dimension of the space spanned by the
columns of A.

Proof. Suppose A is an m × n matrix. Let (e1, . . . , en) be the standard basis of Fn. Since
this basis spans Fn, the vectors {LA(e1), . . . , LA(en)} span R(LA) by Theorem 1.2. But for
each i ∈ {1, . . . , n}, LA(ei) is the ith column of A. �

Remark 3.6. Suppose V and W are finite dimensional vector spaces. Let α, γ be ordered
bases for V and let β, δ be ordered bases for W . Let T : V → W be a linear transforma-
tion. Recall that any two matrix representations [T ]βα and [T ]δγ are related by the identity

[T ]δγ = [IW ]δβ[T ]βα[IV ]αγ . Also, two vector spaces of the same dimension are isomorphic. So,
to compute the rank of T , it suffices to find any matrix representation A of T , and then to
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compute the rank of A. By Lemma 3.3, isomorphisms preserve rank, so any matrix repre-
sentation A suffices. And we can compute the rank of A by row-reducing it into row-echelon
form, and then applying the following lemma.

Lemma 3.7. Let A be a matrix in row-echelon form. Then the rank of A is equal to the
number of nonzero rows of A.

Proof. Since A is in row-echelon form, there exists a positive integer k such that, each of
the first k rows of A has one nonzero entry, while all subsequent rows of A are zero. So, the
span of the columns of A are contained in the k-dimensional subspace

{



x1
...
xk
0
...
0


: x1, . . . , xk ∈ F}. (∗)

So, by Lemma 3.5, rank(A) ≤ k. We now show that in fact rank(A) = k, as desired.
By Lemma 3.5, it suffices to show that the span of the columns of A contains the subspace

(∗). To show this, let v be in the subspace (∗). Then, as a column vector, we have v =
(v1, . . . , vk, 0, . . . , 0), vi ∈ F for all i ∈ {1, . . . , k}. Consider the ith row of A where 1 ≤ i ≤ k.
Since A is in row-echelon form, the ith row first has several zeros, then a 1, then other entries
afterwards. So, for each i ∈ {1, . . . , k}, there exists j(i) such that the j(i)th column of A has
a 1 in the ith row, and then zeros below that. So, beginning with i = k, we can subtract vk
copies of the j(k)th column of A from v, giving a vector with only (k − 1) nonzero entries.
Then, setting i = k − 1, we can subtract copies of the j(k − 1)st column of A to get a
vector with only (k − 2) nonzero entries. We continue in this way, and eventually we have
eliminated all nonzero entries of v. That is, we have found an expression for v in terms of
the columns j(1), . . . , j(k) of A. So, rank(A) = k, as desired.

�

Theorem 3.8. Let A be an m × n matrix of rank r. Then, there exist a finite number of
elementary row and column operations which, when applied to A, produce the matrix(

Ir×r 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
.

Proof. We first use row reduction to put A into row-echelon form. So, after this row reduc-
tion, the first r rows of A have some zeros, and then a 1 with zeros below this 1. And the
remaining m − r rows are all zero. (In case r = 0, then we are done, so we may assume
that r > 0.) Now, the first row of A has some zeros, then a 1 with zeros below this 1. So,
by adding copies of the column that contains the entry 1 to each column to the right, the
remaining entries of the first row can be made to be zero. And we still keep our matrix in
row-echelon form. Now, the second row of A has some zeros, then a 1 with zeros above and
below this 1. So, by adding copies of the column that contains this entry 1 to each column
to the right, the remaining entries of the second row can be made to be zero. And once
again, our matrix is still in row-echelon form. We then continue this procedure. The first r
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rows then each have exactly one entry of 1, and all remaining entries in the matrix are zero.
By swapping columns as needed, A is then put into the required form, as desired. �

Corollary 3.9 (A Factorization Theorem). Let A be an m× n matrix of rank r. Then,
there exists an m×m matrix B and an n×n matrix C such that B is the product of a finite
number of elementary row operations, C is the product of a finite number of elementary
column operations, and such that

A = B

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
C.

Proof. Let A be an m× n matrix of rank r. From Theorem 3.8, there exist a finite number
of elementary row operations E1, . . . , Ej and elementary column operations F1, . . . , Fk such
that

E1 · · ·EjAF1 · · ·Fk =

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
. (∗)

From Remarks 2.7 and 2.10, the matrices E1, . . . , Ej and F1, . . . , Fk are invertible, with
inverses that are also elementary row and column operations, respectively. So, multiplying
on the left of each side of (∗) by B := E−1j · · ·E−11 , and then multiplying on the right of each

side of (∗) by C := F−1k · · ·F
−1
1 , we deduce the theorem. �

Lemma 3.10. Let A be an m× n matrix. Let B be an m×m invertible matrix, and let C
be an n× n invertible matrix. Then

rank(A) = rank(BA) = rank(AC) = rank(BAC).

Proof. Since B is invertible, LB is invertible with inverse LB−1 , by Corollary 1.4. So, applying
Remark 1.3 and Lemma 3.3,

rank(LA) = rank(LBA) = rank(LAC) = rank(LBAC).

Definition 3.4 then completes the proof. �

Definition 3.11 (Transpose). Let A be an m × n matrix with entries Aij, 1 ≤ i ≤ m,
1 ≤ j ≤ n. Then the transpose At of A is defined to be the n × m matrix with entries
(At)ij := Aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Exercise 3.12. Let A be an m× n matrix. Let B be an `×m matrix. Show that (BA)t =
AtBt.

Remark 3.13. If A is an n × n invertible matrix, then I tn = (AA−1)t = (A−1)tAt, so At is
also invertible.

Lemma 3.14. Let A be an m× n matrix with rank r. Then At also has rank r.

Proof. From Theorem 3.9, there exists an invertible m×m matrix B and an invertible n×n
matrix C such that

A = B

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
C.

Taking the transpose of both sides and applying Exercise 3.12,

At = Ct

(
Ir×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
Bt.

From Remark 3.13, Ct and Bt are invertible. So, Lemma 3.10 implies that At has rank r. �
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Corollary 3.15. The rank of a matrix is equal to the dimension of the span of its rows.

Proof. Apply Lemma 3.5 and Lemma 3.14. �

Lemma 3.16. Let V be an n-dimensional vector space, and let W be an m-dimensional
vector space. Let T : V → W be a linear transformation. Let α, β be finite bases for V,W
respectively. Then rank(T ) = rank([T ]βα).

Proof. Let v ∈ V,w ∈ W . The coordinate maps φα : V → Fn and φβ : W → Fm defined by
φα(v) := [v]α, φβ(w) := [w]β are isomorphisms. Also, the map L[T ]βα

: Fn → Fm is a linear

transformation. Beginning with the identity

[T (v)]β = [T ]βα[v]α,

we then rewrite this as
φβ(T (v)) = L[T ]βα

φα(v).

Since this equality holds for all v ∈ V , we therefore have

φβT = L[T ]βα
φα.

Since φβ is invertible, we then get

T = φ−1β L[T ]βα
φα.

So, applying Lemma 3.10 and Definition 3.4,

rank(T ) = rank(φ−1β L[T ]βα
φα) = rank(L[T ]βα

) = rank([T ]βα).

�

Exercise 3.17. Show that an m× n matrix has rank at most min(m,n).

3.1. Inverting a Matrix.

Lemma 3.18. Let A be an n×n matrix. Then A is invertible if and only if it is the product
of elementary row and column operations.

Proof. Suppose A is a product of elementary row and column operation matrices. From
Remarks 2.7 and 2.10, A is a product of invertible matrices, so A is invertible.

Now, suppose A is invertible. Then LA : Fn → Fn is invertible (with inverse LA−1). In
particular, LA is onto, so rank(LA) = n. By Definition 3.4, rank(A) = n. Applying our Fac-
torization Theorem (Theorem 3.9), there exists a finite number of elementary row operations
E1, . . . , Ej and elementary column operations F1, . . . , Fk such that A = E1 · · ·EjF1 · · ·Fk,
as desired. �

Remark 3.19. Suppose A is an invertible matrix, and we have elementary row operations
E1, . . . , Ej such that

E1 · · ·EjA = In.

Multiplying both sides by A−1 on the right,

E1 · · ·EjIn = A−1.

So, to compute A−1 from A, it suffices to find row operations that turn A into the identity.
And we then apply these operations to In to give A−1. This is the algorithm for computing
the inverse A−1 that you learned in a previous class.
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4. The Determinant

There are a lot of nice things to say about the determinant, but we do not have sufficient
time to discuss these things. We will therefore just state some facts about the determinant
without proof, and then prove other things as consequences of these preliminary facts.

Let A ∈ F. Then det(A) := A.
Let A be a 2× 2 matrix. That is, there exist a, b, c, d ∈ F such that

A =

(
a b
c d

)
.

We then define det(A) so that

det(A) := det

(
a b
c d

)
= ad− bc.

Let A be a 3× 3 matrix. That is, there exist a, b, c, d, e, f, g, h, i ∈ F such that

A = det

a b c
d e f
g h i

 .

We now define det(A) inductively so that

det(A) := a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
.

Definition 4.1. More generally, if A is an n× n matrix, then for each i, j ∈ {1, . . . , n}, let
Aij denote the (n− 1)× (n− 1) matrix formed by removing the ith row and jth column from
A. Then, for any i ∈ {1, . . . , n}, define

det(A) :=
n∑
j=1

(−1)i+jAij det(Aij)

If A has columns v1, . . . , vn, we write det(A) = det(v1, . . . , vn) to emphasize that the deter-
minant is a function of the columns of A.

Remark 4.2 (Properties of the Determinant). Let v1, . . . , vn ∈ Fn.

(a) For all α ∈ F, for all w ∈ Fn, for all i ∈ {1, . . . , n}

det(v1, . . . , vi−1, vi + αw, vi+1, . . . , vn)

= det(v1, . . . , vn) + α det(v1, . . . , vi−1, w, vi+1, . . . , vn). (Multilinear)

(b) For all i, j ∈ {1, . . . , n} with i 6= j,

det(v1, . . . , vi, . . . , vj, . . . , vn) = − det(v1, . . . , vj, . . . , vi, . . . , vn). (Alternating)

(c) det(In) = 1. (Normalized)
(d) For all n× n matrices A,B, we have det(AB) = det(A) det(B).
(e) For all n× n matrices A, we have det(A) = det(At).

Theorem 4.3. Suppose we have two functions F,G that map v1, . . . , vn ∈ Fn to F, both
satisfying properties (a), (b) and (c) above. Then F = G.
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Proof. Define D(v1, . . . , vn) := F (v1, . . . , vn)−G(v1, . . . , vn). We will show that D = 0. Since
F,G both satisfy properties (a), (b), D satisfies properties (a), (b). Since F,G both satisfy
property (c), we have D(In) = 0. Since D satisfies property (b) and D(e1, . . . , en) = 0, if
(ej(1), . . . , ej(n)) is any permutation of the standard basis (e1, . . . , en), we have

D(ej(1), . . . , ej(n)) = 0. (∗)
Let vi ∈ Fn, and write vi =

∑n
j=1 αijej, αik ∈ F for all i, j ∈ {1, . . . , n}. Repeatedly applying

property (a),

D(v1, . . . , vn) = D(
n∑
j=1

α1jej, v2, . . . , vn)

=
n∑
j=1

α1jD(ej, v2, . . . , vn)

=
n∑

j1=1

α1j1D(ej1 ,
n∑
j=1

α2jej, . . . , vn)

=
n∑

j1=1

n∑
j2=1

α1j1α2j2D(ej1 , ej2 , . . . , vn)

= · · · =
n∑

j1=1

· · ·
n∑

jn=1

α1j1 · · ·αnjnD(ej1 , . . . , ejn)

And the final quantity is zero, by (∗), as desired. �

Theorem 4.3 can be used to show that various different definitions of the determinant all
agree. Given some formula that should be equal to the determinant, it suffices to prove
that this formula satisfies properties (a), (b) and (c). For example, consider the following
determinant formula you learned in Calc 3, for vectors v1, v2, v3 ∈ R3:

det(v1, v2, v3) = v1 · (v2 × v3).
Here · denotes the dot product, and × denotes the cross product. You could write the right
side in coordinates to verify that it agrees with the left side. Or, you could verify that the
right side satisfies properties (a), (b) and (c), and then apply Theorem 4.3, instead giving a
coordinate-free proof of the desired identity.

As another application of Theorem 4.3, we can show that property (d) of Remark 4.2
holds.

Theorem 4.4. Assume that the determinant function satisfies properties (a), (b) and (c)
from Remark 4.2. Then the determinant function satisfies property (d). For all n × n
matrices A,B, we have det(AB) = det(A) det(B).

Proof. Suppose det(A) 6= 0. For v1, . . . , vn ∈ Fn, define

F (v1, . . . , vn) := det(Av1, . . . , Avn)/ det(A).

Note that F then satisfies properties (a), (b) and (c). So, we have by Theorem 4.3 that
F (B) = det(AB)/ det(A) = det(B). So, det(AB) = det(A) det(B), as desired.
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In the case det(A) = 0, define

F (v1, . . . , vn) := det(v1, . . . , vn) + det(Av1, . . . , Avn).

Once again, F satisfies properties (a), (b) and (c), so F (B) = det(B) = det(B) + det(AB).
So, det(AB) = 0 = det(A) det(B). In any case, det(AB) = det(A) det(B), as desired. �

Theorem 4.5. Let A be an n×n matrix. Then A is invertible if and only if det(A) 6= 0. If
A is invertible, then det(A−1) = (det(A))−1.

Proof. Suppose A has rank r. From the Factorization Theorem (Theorem 3.9), A is the
product of elementary row and column operations, and also a diagonal matrix D with r ones
on the diagonal. If r < n, then det(D) = 0, so det(A) = 0 as well from property (d) of
Remark 4.2. We have shown that, if A has rank less than n, then det(A) = 0. Taking the
contrapositive, if det(A) 6= 0, then A has rank n. From Lemma 3.1, A is invertible if and
only if A has rank n. So, if det(A) 6= 0, then A is invertible.

We now prove the converse. Suppose A is invertible. From property (d) of Remark 4.2,
1 = det(In) = det(AA−1) = det(A) det(A−1). So, det(A) must be nonzero. �

Corollary 4.6. For any n× n matrix A, det(A) = det(At).

Proof. Suppose A has rank r. From the Factorization Theorem (Theorem 3.9), there exist
elementary row operations E1, . . . , Ej and elementary column operations F1, . . . , Fk, and
there exists a diagonal matrix D with r ones on the diagonal such that

A = E1 · · ·EjDF1 · · ·Fk (∗).

Taking the transpose of (∗),

At = F t
k · · ·F t

1DE
t
j · · ·Et

1. (∗∗)

From Theorem 4.4 applied to (∗)

det(A) = det(E1) · · · det(Ej) det(D) det(F1) · · · det(Fk).

By checking Type 1, 2 and 3 matrices from Examples 2.1, 2.3 and 2.5 directly, we see that
det(E) = det(Et) for any elementary row or column operation E. So, applying Theorem 4.4
to (∗∗),

det(At) = det(F t
k) · · · det(F t

1) det(D) det(Et
j) · · · det(Et

1)

= det(E1) · · · det(Ej) det(D) det(F1) · · · det(Fk) = det(A).

�

5. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers. Let F be a field.
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Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

C(R) denotes the set of all continuous functions from R to R

Pn(R) denotes the set of all real polynomials in one real variable of degree at most n

P (R) denotes the set of all real polynomials in one real variable

Mm×n(F) denotes the vector space of m× n matrices over the field F

In denotes the n× n identity matrix

5.1. Set Theory. Let V,W be sets, and let f : V → W be a function. Let X ⊆ V , Y ⊆ W .

f(X) := {f(v) : v ∈ V }.

f−1(Y ) := {v ∈ V : f(v) ∈ Y }.

The function f : V → W is said to be injective (or one-to-one) if: for every v, v′ ∈ V , if
f(v) = f(v′), then v = v′.

The function f : V → W is said to be surjective (or onto) if: for every w ∈ W , there
exists v ∈ V such that f(v) = w.

The function f : V → W is said to be bijective (or a one-to-one correspondence) if:
for every w ∈ W , there exists exactly one v ∈ V such that f(v) = w. A function f : V → W
is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if there exists a bijection from V
onto W .

The identity map I : X → X is defined by I(x) = x for all x ∈ X. To emphasize that
the domain and range are both X, we sometimes write IX for the identity map on X.
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Let V,W be vector spaces over a field F. Then L(V,W ) denotes the set of linear trans-
formations from V to W , and L(V ) denotes the set of linear transformations from V to
V .

UCLA Department of Mathematics, Los Angeles, CA 90095-1555
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