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1. Review

Lemma 1.1. Let V be a finite-dimensional vector space over a field F. Let β, β′ be two

bases for V . Let T : V → V be a linear transformation. Define Q := [IV ]β
′

β . Then [T ]ββ and

[T ]β
′

β′ satisfy the following relation

[T ]β
′

β′ = Q[T ]ββQ
−1.

Theorem 1.2. Let A be an n× n matrix. Then A is invertible if and only if det(A) 6= 0.

Exercise 1.3. Let A be an n×n matrix with entries Aij, i, j ∈ {1, . . . , n}, and let Sn denote
the set of all permutations on n elements. For σ ∈ Sn, let sign(σ) := (−1)N , where σ can be
written as a composition of N transpositions. Then

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i=1

Aiσ(i).

2. Diagonal Matrices

So far, we should have a reasonably good understanding of linear transformations, matri-
ces, rank and invertibility. However, given a matrix, we don’t yet have a good understanding
of how to “simplify” this matrix. In mathematics and science, the general goal is to take
some complicated and make it simpler. In the context of linear algebra, this paradigm be-
comes: try to find a particular basis such that a linear transformation has a diagonal matrix
representation. (After all, diagonal matrices are among the simplest matrices.) We now
attempt to realize this goal within our discussion of eigenvectors and diagonalization.

Definition 2.1 (Diagonal Matrix). An n× n matrix A with entries Aij, i, j ∈ {1, . . . , n}
is said to be diagonal if Aij = 0 whenever i 6= j, i, j ∈ {1, . . . , n}. If A is diagonal, we
denote the matrix A by diag(A11, A22, . . . , Ann).
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Lemma 2.2. The rank of a diagonal matrix is equal to the number of its nonzero entries.

3. Eigenvectors and Eigenvalues

Definition 3.1 (Eigenvector and Eigenvalue). Let V be a vector space over a field F.
Let T : V → V be a linear transformation. An eigenvector of T is a nonzero vector v ∈ V
such that, there exists λ ∈ F with T (v) = λv. The scalar λ is then referred to as the
eigenvalue of the eigenvector v.

Remark 3.2. The word “eigen” is German for “self.” The equation T (v) = λv is self-
referential in v, which explains the etymology here.

Example 3.3. If A is diagonal with A = diag(A11, . . . , Ann), then LA has eigenvectors
(e1, . . . , en) with eigenvalues (A11, . . . , Ann).

Example 3.4. If T is the identity transformation, then every vector is an eigenvector with
eigenvalue 1.

Example 3.5. If T : V → V has v ∈ N(T ) with v 6= 0, then v is an eigenvector of T with
eigenvalue zero.

Example 3.6. Define T : C∞(R)→ C∞(R) by T (f) := −f ′′. For any y ∈ R, the function
f(x) := eixy satisfies Tf(x) = f ′′(x) = y2f(x). So, for any y ∈ R, eixy is an eigenfunction of
T with eigenvalue y2.

Definition 3.7 (Eigenspace). Let V be a vector space over a field F. Let T : V → V be
a linear transformation. Let λ ∈ F. The eigenspace of λ is the set of all v ∈ V (including
zero) such that T (v) = λv.

Remark 3.8. Given λ ∈ F, the set of v such that T (v) = λv is the same as N(T − λIV ).
In particular, an eigenspace is a subspace of V . And N(T − λIV ) is nonzero if and only if
T − λIV is not one-to-one.

Lemma 3.9 (An Eigenvector Basis Diagonalizes T ). Let V be an n-dimensional vector
space over a field F, and let T : V → V be a linear transformation. Suppose V has an
ordered basis β := (v1, . . . , vn). Then vi is an eigenvector of T with eigenvalue λi ∈ F, for

all i ∈ {1, . . . , n}, if and only if the matrix [T ]ββ is diagonal with [T ]ββ = diag(λ1, . . . , λn).

Proof. We begin with the forward implication. Let i ∈ {1, . . . , n}. Suppose T (vi) = λivi,

[T (vi)]
β is a column vector whose ith entry is λi, with all other entries zero. Since [T ]ββ =

([T (v1)]
β, . . . , [T (vn)]β), we conclude that [T ]ββ = diag(λ1, . . . , λn).

Conversely, suppose [T ]ββ = diag(λ1, . . . , λn). Since [T ]ββ = ([T (v1)]
β, . . . , [T (vn)]β), we

conclude that T (vi) = λivi for all i ∈ {1, . . . , n}, so that vi is an eigenvector of T with
eigenvalue λi, for all i ∈ {1, . . . , n}. �

Definition 3.10 (Diagonalizable). A linear transformation T : V → V is said to be di-

agonalizable if there exists an ordered basis β of V such the matrix [T ]ββ is diagonal.

Remark 3.11. From Lemma 3.9, T is diagonalizable if and only if it has a basis consisting
of eigenvectors of T .
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Example 3.12. Let T : R2 → R2 denote reflection across the line ` which passes through the
origin and (1, 2). Then T (1, 2) = (1, 2), and T (2,−1) = −(2,−1), so we have two eigenvectors
of T with eigenvalues 1 and −1 respectively. The vectors ((1, 2), (2,−1)) are independent,
so they form a basis of R2. From Lemma 3.9, T is diagonalizable. For β := ((1, 2), (2,−1)),
we have

[T ]ββ = diag(1,−1) =

(
1 0
0 −1

)
.

Note that [T 2]ββ = I2 = [IR2 ]ββ, so T 2 = IR2 . The point of this example is that, once we can
diagonalize T , taking powers of T becomes very easy.

Definition 3.13 (Diagonalizable Matrix). An n× n matrix A is diagonalizable if the
corresponding linear transformation LA is diagonalizable.

Lemma 3.14. A matrix A is diagonalizable if and only if there exists an invertible matrix
Q and a diagonal matrix D such that A = QDQ−1. That is, a matrix A is diagonalizable if
and only if it is similar to a diagonal matrix.

Proof. Suppose A is an n × n diagonalizable matrix. Let β denote the standard basis of
Fn, so that A = [LA]ββ. Since A is diagonalizable, there exists an ordered basis β′ such that

D := [LA]β
′

β′ is diagonal. From Lemma 1.1, there exists an invertible matrix Q := [IFn ]ββ′ such
that

A = [LA]ββ = Q[LA]β
′

β′Q
−1 = QDQ−1.

We now prove the converse. Suppose A = QDQ−1, where Q is invertible and D is diagonal.
Let λ1, . . . , λn such that D = diag(λ1, . . . , λn). Then Dei = λiei for all i ∈ {1, . . . , n}, so

A(Qei) = QDQ−1Qei = QDei = λiQei.

So, Qei is an eigenvector of A, for each i ∈ {1, . . . , n}. Since Q is invertible and (e1, . . . , en)
is a basis of Fn, we see that (Qe1, . . . , Qen) is also a basis of Fn. So, β′′ := (Qe1, . . . , Qen)
is a basis of Fn consisting of eigenvectors of A, so A is diagonalizable by Lemma 3.9, since

[LA]β
′′

β′′ is diagonal. �

Lemma 3.15. Let A be an n × n matrix. Suppose β′ = (v1, . . . , vn) is an ordered basis of
Fn such that vi is an eigenvector of A with eigenvalue λi for all i ∈ {1, . . . , n}. Let Q be the
matrix with columns v1, . . . , vn (where we write each vi in the standard basis). Then

A = Q diag(λ1, . . . , λn)Q−1.

Proof. Let β be the standard basis of Fn. Note that [IFn ]ββ′ = Q. So, by Lemma 1.1,

A = [LA]ββ = Q[LA]β
′

β′Q
−1.

Since LAvi = λivi for all i ∈ {1, . . . , n},

[LA]β
′

β′ = diag(λ1, . . . , λn).

The Lemma follows. �
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4. Characteristic Polynomial

Lemma 4.1. Let A be an n × n matrix. Then λ ∈ F is an eigenvalue of A if and only if
det(A− λIn) = 0.

Proof. Suppose λ is an eigenvalue of A. Then there exists v ∈ Fn such that Av = λv and
v 6= 0, so that (A− λIn)v = 0. So, (A− λIn) is not invertible, and det(A− λIn) = 0, from
the contrapositive of Theorem 1.2. Conversely, if det(A − λIn) = 0, then A − λIn is not
invertible, from the contrapositive of Theorem 1.2. In particular, A− λIn is not one-to-one.
So, there exists v ∈ Fn with v 6= 0 such that (A− λIn)v = 0, i.e. Av = λv. �

Definition 4.2 (Characteristic Polynomial). Let A be an n × n with entries in a field
F. Let λ ∈ F, and define the characteristic polynomial f(λ) of A, by

f(λ) := det(A− λIn).

Lemma 4.3. Let A,B be similar matrices. Then A,B have the same characteristic polyno-
mial.

Proof. Let λ ∈ F. Since A,B are similar, there exists an invertible matrix Q such that
A = QBQ−1. So, using the multiplicative property of the determinant,

det(A− λI) = det(QBQ−1 − λI) = det(Q(B − λI)Q−1)

= det(Q) det(B − λI) det(Q−1) = det(Q) det(Q)−1 det(B − λI)

= det(B − λI).

�

Lemma 4.4. Let A be an n × n matrix all of whose entries lie in P1(F). Then det(A) ∈
Pn(F).

Proof. From Exercise 1.3 from the homework, det(A) is a sum of polynomials of degree at
most n. That is, det(A) itself is in Pn(R). �

Remark 4.5. From this Lemma, we see that the characteristic polynomial of A is a poly-
nomial of degree at most n.

Lemma 4.6. Let A be an n×n matrix with entries Aij, i, j ∈ {1, . . . , n}. Then there exists
g ∈ Pn−2(F) such that

f(λ) = det(A− λI) = (A11 − λ) · · · (Ann − λ) + g(λ)

Proof. Let B := A− λI. From Exercise 1.3 from the homework,

det(A− λI) =
n∏
i=1

(Aii − λ) +
∑

σ∈Sn : σ 6=In

sign(σ)
n∏
i=1

Biσ(i).

Note that each term in the sum on the right has a number of λ terms equal to the number
of i ∈ {1, . . . , n} such that i = σ(i). So, if σ ∈ Sn and σ 6= In, it suffices to show that
there exist at least two integers i, j ∈ {1, . . . , n} with i 6= j such that σ(i) 6= i and σ(j) 6= j.
We prove this assertion by contradiction. Suppose there exists σ ∈ Sn, σ 6= In with exactly
one i ∈ {1, . . . , n} with σ(i) 6= i. Then σ(k) = k for all k ∈ {1, . . . , n} r {i}. Since σ is a
permutation, σ is onto, so there exists i′ ∈ {1, . . . , n} such that σ(i′) = i. Since σ(k) = k
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for all k ∈ {1, . . . , n}r {i}, we must therefore have i = i′, so that σ(i) = i, a contradiction.
We conclude that since σ 6= In, there exist at least two i, j ∈ {1, . . . , n} with i 6= j such that
σ(i) 6= i and σ(j) 6= j, as desired. �

Definition 4.7 (Trace). Let A be an n×n matrix with entries Aij, i, j ∈ {1, . . . , n}. Then
the trace of A, denoted by Tr(A), is defined as

Tr(A) :=
n∑
i=1

Aii.

Theorem 4.8. Let A be an n×n matrix. There exist scalars a1, . . . , an−2 ∈ F such that the
characteristic polynomial f(λ) of A satisfies

f(λ) = (−1)nλn + (−1)n−1Tr(A)λn−1 + an−2λ
n−2 + · · ·+ a1λ+ det(A).

Proof. From Lemma 4.6, there exists g ∈ Pn−2(F) such that

f(λ) = (A11 − λ) · · · (Ann − λ) + g(λ).

Multiplying out the product terms, we therefore get the two highest order terms of f . That
is, there exists G ∈ Pn−2(F) such that

f(λ) = (−λ)n + Tr(A)(−λ)n−1 +G(λ).

Finally, to get the zeroth order term of the polynomial f , note that by definition of the
characteristic polynomial, f(0) = det(A). �

Example 4.9. Let a, b, c, d ∈ R. Then the characteristic polynomial of(
a b
c d

)
is

(a− λ)(d− λ)− bc = λ2 − λ(a+ d) + (ad− bc) = λ2 − λTr(A) + det(A).

Example 4.10. The characteristic polynomial of(
0 1
1 0

)
is λ2 − 1 = (λ+ 1)(λ− 1).

Example 4.11. Let i :=
√
−1. The characteristic polynomial of(

0 −1
1 0

)
is λ2 + 1 = (λ+ i)(λ− i). However, we cannot factor λ2 + 1 using only real numbers. So, as
we will see below, we can diagonalize this matrix over the complex numbers, but not over
the real numbers.

Theorem 4.12 (The Fundamental Theorem of Algebra). Let f(λ) be a real polynomial
of degree n. Then there exist λ0, λ1, . . . λn ∈ C such that

f(λ) = λ0

n∏
i=1

(λ− λi).
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Remark 4.13. This theorem is one of the reasons that complex numbers are useful. If we
have complex numbers, then any real matrix has a characteristic polynomial that can be
factored into complex roots. Without complex numbers, we could not do this.

5. Diagonalizability

Recall that n linearly independent vectors in Fn form a basis of Fn. So, from Lemma 3.9
or the proof of Lemma 3.14, we have

Lemma 5.1. Let A be an n× n matrix with elements in F. Then A is diagonalizable (over
F) if and only if there exists a set (v1, . . . , vn) of linearly independent vectors in Fn such that
vi is an eigenvector of A for all i ∈ {1, . . . , n}.

We now examine some ways of finding a set of linearly independent eigenvectors of A,
since this will allow us to diagonalize A.

Proposition 5.2. Let A be an n × n matrix. Let v1, . . . , vk be eigenvectors of A with
eigenvalues λ1, . . . , λk, respectively. If λ1, . . . , λk are all distinct, then the vectors v1, . . . , vk
are linearly independent.

Proof. We argue by contradiction. Assume there exist α1, . . . , αk ∈ F not all zero such that

k∑
i=1

αivi = 0.

Without loss of generality, α1 6= 0. Applying (A− λkI) to both sides,

0 =
k−1∑
i=1

αi(A− λkI)vi =
k−1∑
i=1

αi(λi − λk)vi.

We now apply (A− λk−1I) to both sides, and so on. Continuing in this way, we eventually
get the equality

0 = α1(λ1 − λk)(λ1 − λk−1) · · · (λ1 − λ2)v1.
Since λ1, . . . , λk are all distinct, and α1 6= 0, and since v1 6= 0 (since it is an eigenvector), we
have arrived at a contradiction. We conclude that v1, . . . , vk are linearly independent. �

Corollary 5.3. Let A be an n × n matrix with elements in F. Suppose the characteristic
polynomial f(λ) of A can be written as f(λ) =

∏n
i=1(λi − λ), where λi ∈ F are distinct, for

all i ∈ {1, . . . , n}. Then A is diagonalizable.

Proof. For all i ∈ {1, . . . , n}, let vi ∈ Fn be the eigenvector corresponding to the eigenvalue
λi. Setting k = n in Proposition 5.2 shows that v1, . . . , vn are linearly independent. Lemma
5.1 therefore completes the proof. �

Example 5.4. Consider

A =

(
1 −2
1 4

)
.

The characteristic polynomial is then

f(λ) = (1− λ)(4− λ) + 2 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3).
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So, f(λ) has two distinct real roots, and we can diagonalize A over R. Observe that v1 =
(2,−1) is an eigenvector with eigenvalue 2 and v2 = (1,−1) is an eigenvector with eigenvalue
3. So, if we think of the eigenvectors as column vectors, and use them to define Q,

Q :=

(
2 1
−1 −1

)
,

we then have the desired diagonalization(
1 −2
1 4

)
= Q

(
2 0
0 3

)
Q−1 =

(
2 1
−1 −1

)(
2 0
0 3

)(
1 1
−1 −2

)
.

Exercise 5.5. Using the matrix from Example 4.11, find its diagonalization over C.

In summary, ifA is an n×nmatrix with elements in F, and if we can write the characteristic
polynomial of A as a product of n distinct roots in F, then A is diagonalizable over F. On
the other hand, if we cannot write the characteristic polynomial as a product of n roots in
F, then A is not diagonalizable over F. (Combining Lemmas 3.14 and 4.3 shows that, if A
is diagonalizable, then it has the same characteristic polynomial as a diagonal matrix. That
is, the characteristic polynomial of A is the product of n roots.) (Recalling Example 4.11,
the real matrix with characteristic polynomial λ2 + 1 can be diagonalized over C but not
over R.)

The only remaining case to consider is when the characteristic polynomial of A can be
written as a product of n non-distinct roots of F. Unfortunately, this case is more compli-
cated. It can be dealt with, but we don’t have to time to cover the entire topic. The two
relevant concepts here would be the Jordan normal form and the minimal polynomial.

To see the difficulty, note that the matrix(
2 0
0 2

)
is diagonal, so it is diagonalizable. Also, the standard basis of R2 are eigenvectors, and the
characteristic polynomial is (2− λ)2.

On the other hand, consider the matrix

A =

(
2 1
0 2

)
.

This matrix also has characteristic polynomial (2− λ)2, but it is not diagonalizable. To see
this, we will observe that the eigenvectors of A do not form a basis of R2. Since 2 is the only
eigenvalue, all of the eigenvectors are in the null space of(

0 1
0 0

)
.

However, this matrix has only a one-dimensional null space, which is spanned by the column
vector (1, 0). Since the eigenvectors of A do not form a basis of R2, A is not diagonalizable,
by Remark 3.11 (or Lemma 3.9).
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6. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers. Let F be a field.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

C(R) denotes the set of all continuous functions from R to R

Pn(R) denotes the set of all real polynomials in one real variable of degree at most n

P (R) denotes the set of all real polynomials in one real variable

Mm×n(F) denotes the vector space of m× n matrices over the field F

In denotes the n× n identity matrix

det denotes the determinant function

Sn denotes the set of permutations on {1, . . . , n}
sign(σ) := (−1)N where σ ∈ Sn can be written as the composition of N transpositions

Tr denotes the trace function

6.1. Set Theory. Let V,W be sets, and let f : V → W be a function. Let X ⊆ V , Y ⊆ W .

f(X) := {f(v) : v ∈ V }.

f−1(Y ) := {v ∈ V : f(v) ∈ Y }.
The function f : V → W is said to be injective (or one-to-one) if: for every v, v′ ∈ V , if
f(v) = f(v′), then v = v′.

The function f : V → W is said to be surjective (or onto) if: for every w ∈ W , there
exists v ∈ V such that f(v) = w.
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The function f : V → W is said to be bijective (or a one-to-one correspondence) if:
for every w ∈ W , there exists exactly one v ∈ V such that f(v) = w. A function f : V → W
is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if there exists a bijection from V
onto W .

The identity map I : X → X is defined by I(x) = x for all x ∈ X. To emphasize that
the domain and range are both X, we sometimes write IX for the identity map on X.

Let V,W be vector spaces over a field F. Then L(V,W ) denotes the set of linear trans-
formations from V to W , and L(V ) denotes the set of linear transformations from V to
V .
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