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1. Review

Proposition 1.1. Let A be an n × n matrix. Let v1, . . . , vk be eigenvectors of A with
eigenvalues λ1, . . . , λk, respectively. If λ1, . . . , λk are all distinct, then the vectors v1, . . . , vk
are linearly independent.

Lemma 1.2 (An Eigenvector Basis Diagonalizes T ). Let V be an n-dimensional vector
space over a field F, and let T : V → V be a linear transformation. Suppose V has an
ordered basis β := (v1, . . . , vn). Then vi is an eigenvector of T with eigenvalue λi ∈ F, for

all i ∈ {1, . . . , n}, if and only if the matrix [T ]ββ is diagonal with [T ]ββ = diag(λ1, . . . , λn).

Lemma 1.3. Let V be a finite-dimensional vector space over a field F. Let β, β′ be two

bases for V . Let T : V → V be a linear transformation. Define Q := [IV ]β
′

β . Then [T ]ββ and

[T ]β
′

β′ satisfy the following relation

[T ]β
′

β′ = Q[T ]ββQ
−1.

Theorem 1.4 (The Fundamental Theorem of Algebra). Let f(λ) be a real polynomial
of degree n. Then there exist λ0, λ1, . . . λn ∈ C such that

f(λ) = λ0

n∏
i=1

(λ− λi).

Lemma 1.5. Let A,B be similar matrices. Then A,B have the same characteristic polyno-
mial.
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Theorem 1.6. Let A be an n×n matrix. There exist scalars a1, . . . , an−2 ∈ F such that the
characteristic polynomial f(λ) of A satisfies

f(λ) = (−1)nλn + (−1)n−1Tr(A)λn−1 + an−2λ
n−2 + · · ·+ a1λ+ det(A).

2. Inner Product Spaces

Up until this point, we have focused on the linear properties of vector spaces. Our inves-
tigation now becomes much deeper when we consider more geometric properties of vector
spaces. That is we now start to consider the size of vectors, and how close one vector can be
to another. These notions are made rigorous by the introduction of norms and inner prod-
ucts, respectively. Also, with this more geometric information, linear algebra and analysis
will start to relate much more with each other.

We first introduce the concept of a general norm, which measures the length of vectors.
We then introduce the more specific concept of an inner product, which measures the angle
between two vectors.

Definition 2.1 (Normed Linear Space). Let F denote either R or C. Let V be a vector
space over F. A normed linear space is a vector space V equipped with a norm. A norm
is a function V → R, denoted by ‖·‖, which satisfies the following properties.

(a) For all v ∈ V , for all α ∈ F, ‖αv‖ = |α| ‖v‖. (Homogeneity)
(b) For all v ∈ V with v 6= 0, ‖v‖ is a positive real number; ‖v‖ > 0. And v = 0 if and

only if ‖v‖ = 0. (Positive definiteness)
(c) For all v, w ∈ V , ‖v + w‖ ≤ ‖v‖+ ‖w‖. (Triangle Inequality)

Example 2.2. Let x = (x1, . . . , xn) ∈ Rn. Define the 2-norm on Rn by

‖x‖2 :=
√
x21 + · · ·+ x2n.

So, for n = 1, we have ‖x‖2 = |x|. We will see below one way to show the triangle inequality
for the 2-norm.

Define the 1-norm on Rn by

‖x‖1 :=
n∑
i=1

|xi| .

Define the ∞-norm on Rn by

‖x‖∞ := max
i=1,...,n

|xi| .

Exercise 2.3. Let x, y ∈ R. Verify that |x+ y| ≤ |x| + |y|. Deduce that the triangle
inequality holds for the 1-norm and the ∞-norm.

Exercise 2.4. Let V be a normed linear space. Show that, for any v, w ∈ V , ‖v − w‖ ≥
|‖v‖ − ‖w‖|.
Definition 2.5 (Complex Conjugate). Let i :=

√
−1. Let x, y ∈ R, and let z = x+ iy ∈

C. Define z := x− iy. Define |z| :=
√
x2 + y2. Note that |z|2 = zz.

Definition 2.6 (Inner Product). Let F denote either R or C. Let V be a vector space
over F. An inner product space is a vector space V equipped with an inner product.
An inner product is a function V × V → F, denoted by 〈·, ·〉, which satisfies the following
properties.
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(a) For all v, v′, w ∈ V , 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉. (Linearity in the first argument).
(b) For all v, w ∈ V , for all α ∈ F, 〈αv, w〉 = α〈v, w〉. (Homogeneity in the first

argument)
(c) For all v ∈ V , if v 6= 0, then 〈v, v〉 is a positive real number; 〈v, v〉 > 0. (Positivity)

(d) For all v, w ∈ V , 〈v, w〉 = 〈w, v〉. (Conjugate symmetry)

Exercise 2.7. Using the above properties, show the following things.

(e) For all v, v′, w ∈ V , 〈w, v+ v′〉 = 〈w, v〉+ 〈w, v′〉. (Linearity in the second argument)
(f) For all v, w ∈ V , for all α ∈ F, 〈v, αw〉 = α〈v, w〉.
(g) For all v ∈ V , 〈v, 0〉 = 〈0, v〉 = 0.
(h) 〈v, v〉 = 0 if and only if v = 0.

Remark 2.8. If F = R, then property (d) says that 〈v, w〉 = 〈w, v〉.

Example 2.9. Let x = (x1, . . . , xn) ∈ Rn, and let y = (y1, . . . , yn) ∈ Rn. Define the
standard inner product (or dot product) on Rn by

〈x, y〉 :=
n∑
i=1

xiyi.

More generally, if α1, . . . , αn > 0, then the following definition also gives an inner product

〈x, y〉α :=
n∑
i=1

αixiyi.

Example 2.10. Let w = (w1, . . . , wn) ∈ Cn, and let z = (z1, . . . , zn) ∈ Cn. Define the
standard inner product (or dot product) on Cn by

〈w, z〉 :=
n∑
i=1

wizi.

Example 2.11. Let A,B ∈Mn×n(R) . Define the standard inner product on Mn×n(R) by

〈A,B〉 := Tr(BtA).

Example 2.12. Let f, g ∈ C([0, 1],R). That is, f, g are continuous real valued functions
on [0, 1]. Define

〈f, g〉 :=

∫ 1

0

f(t)g(t)dt.

Definition 2.13 (Orthogonal Vectors). Let V be an inner product space, and let v, w ∈
V . We say that v, w are orthogonal if 〈v, w〉 = 0.

Lemma 2.14 (The Cauchy-Schwarz Inequality). Let V be an inner product space.
Then, for any v, w ∈ V ,

|〈v, w〉| ≤
√
〈v, v〉

√
〈w,w〉.

Proof. If w = 0, then both sides of our inequality are zero, so the inequality holds, and we
may assume w 6= 0. So, 〈w,w〉 > 0. Define α := 〈v, w〉/〈w,w〉. Note that by conjugate-
symmetry of the inner product,

〈v, w〉〈w, v〉 = 〈v, w〉〈v, w〉 = |〈v, w〉|2 .
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Also, by positivity of the inner product, 〈v − αw, v − αw〉 ≥ 0. That is,

〈v, v〉 − α〈w, v〉 − α〈v, w〉+ |α|2 〈w,w〉 ≥ 0

Substituting in the definition of α,

〈v, v〉 − |〈v, w〉|2 /〈w,w〉 − |〈v, w〉|2 /〈w,w〉+ |〈v, w〉|2 /〈w,w〉 ≥ 0.

Simplifying, we get 〈v, v〉 − |〈v, w〉|2 /〈w,w〉 ≥ 0, as desired. �

Remark 2.15. If the choice of α looks a bit mysterious, note that if v = βw for some
β ∈ R, then the Cauchy-Schwarz inequality becomes an equality. And if 〈v, w〉 = 0, then
the Cauchy-Schwarz inequality has zero on the left side and a possibly large number on the
right. So, the positive number

√
〈v, v〉

√
〈w,w〉−|〈v, w〉| somehow measures how close v and

w are to being parallel. Also, in the proof of the Cauchy-Schwarz inequality, αw is parallel
to w and v − αw is orthogonal to w, so writing

v = (v − αw) + αw,

we see that the size of v − αw also measures how close v and w are to being parallel.

We now show that an inner product space is a normed linear space, with norm ‖v‖ :=√
〈v, v〉.

Lemma 2.16. Let 〈, 〉 be an inner product on a vector space V . Then the function ‖·‖ : V →
R defined by ‖v‖ :=

√
〈v, v〉 is a norm on V .

Proof. Homogeneity and positive definiteness follow readily from the definition of the inner
product, and from Exercise 2.7(h). It therefore suffices to show that the triangle inequality
holds. Let v, w ∈ V . We need to show that ‖v + w‖ ≤ ‖v‖ + ‖w‖. In order to show this
inequality, it suffices to show that its square holds.

‖v + w‖2 = |〈v + w, v + w〉| = |〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉|
≤ |〈v, v〉|+ |〈w,w〉|+ |〈v, w〉|+ |〈w, v〉| , by Exercise 2.3

≤ ‖v‖2 + ‖w‖2 + 2 ‖v‖ ‖w‖ , by Lemma 2.14

= (‖v‖+ ‖w‖)2.
�

Consequently, the triangle inequality holds for the norm ‖·‖2 on Rn, for any n ≥ 1.

3. Orthogonality

Let V be an inner product space with inner product 〈 , 〉. Recall that v, w ∈ V are said
to be orthogonal if 〈v, w〉 = 0. If v, w are orthogonal, we also sometimes say that v, w are
perpendicular, and we write v ⊥ w.

Lemma 3.1. Let V be an inner product space. Suppose v ∈ V is orthogonal to each of the
vectors v1, . . . , vn ∈ V . Then v is orthogonal to any linear combination of v1, . . . , vn.

Proof. Since 〈v, vi〉 = 0 for all i ∈ {1, . . . , n}, if α1, . . . , αn ∈ F, we have

〈v,
n∑
i=1

αivi〉 =
n∑
i=1

αi〈v, vi〉 = 0.
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Theorem 3.2 (Pythagorean Theorem). Let V be an inner product space, and let v, w ∈ V
be orthogonal. Then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof.

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉 = ‖v‖2 + ‖w‖2 .

�

Theorem 3.3 (Generalized Pythagorean Theorem). Let V be an inner product space,
and let v1, . . . , vn ∈ V be orthogonal to each other. That is, 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n}
with i 6= j. Then ∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥
2

=
n∑
i=1

‖vi‖2

Proof. We induct on n. The base case has been proven, so we only need to prove the inductive
step. Suppose the assertion is true for a fixed n. Then, let v1, . . . , vn+1 be orthogonal to
each other. From Lemma 3.1, vn+1 is orthogonal to

∑n
i=1 vi. So, applying the Pythagorean

Theorem to vn+1 and
∑n

i=1 vi, and then using the inductive hypothesis,∥∥∥∥∥vn+1 +
n∑
i=1

vi

∥∥∥∥∥
2

= ‖vn+1‖2 +

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥
2

= ‖vn+1‖2 +
n∑
i=1

‖vi‖2 .

�

Corollary 3.4. Let V be an inner product space, and let v1, . . . , vn ∈ V be orthogonal to
each other. That is, 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n} with i 6= j. Let α1, . . . , αn ∈ F.
Then ∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 ‖vi‖2 .

Proof. If 〈vi, vj〉 = 0, then 〈αivi, αjvj〉 = 0. So, apply Theorem 3.3 to the set of vectors
α1v1, . . . , αnvn. �

Definition 3.5 (Orthogonal Set, Orthonormal Set). Let V be an inner product space
and let (v1, . . . , vn) be a collection of vectors in V . The set of vectors (v1, . . . , vn) is said to
be orthogonal if 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n} with i 6= j. If additionally 〈vi, vi〉 = 1
for all i ∈ {1, . . . , n}, the set of vectors (v1, . . . , vn) is called orthonormal.

Corollary 3.6. Let V be an inner product space, and let v1, . . . , vn ∈ V be an orthonormal
set of vectors. Then ∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 .

Corollary 3.7. Any set of orthonormal vectors is linearly independent.

5



3.1. Orthonormal Bases.

Definition 3.8 (Orthonormal Basis). Let V be an inner product space. An orthonormal
basis of V is a collection (v1, . . . , vn) of orthonormal vectors that is also a basis for V .

Corollary 3.9. Let V be an n-dimensional inner product space. Let (v1, . . . , vn) be an
orthonormal set in V . Then (v1, . . . , vn) is an orthonormal basis of V .

Proof. By Corollary 3.7, (v1, . . . , vn) is linearly independent. If we have n linearly indepen-
dent vectors in an n-dimensional space, then these vectors form a basis of V . �

Theorem 3.10. Let V be an inner product space. Let (v1, . . . , vn) be an orthonormal basis
of V . Then, for any v ∈ V , we have

v =
n∑
i=1

〈v, vi〉vi.

Proof. Let v ∈ V . Since (v1, . . . , vn) is a basis of V , there exist α1, . . . , αn ∈ F such that

v =
n∑
i=1

αivi. (∗)

So, we need to show that αi = 〈v, vi〉 for all i ∈ {1, . . . , n}. Let j ∈ {1, . . . , n}. Taking the
inner product of both sides of (∗) with vj, and then applying orthonormality,

〈v, vj〉 =

〈
n∑
i=1

αivi, vj

〉
=

n∑
i=1

αi〈vi, vj〉 = αi〈vj, vj〉 = αj.

�

Corollary 3.11. Let V be an inner product space. Let β = (v1, . . . , vn) be an orthonormal
basis of V . Then, the coordinate vector [v]β has the form

[v]β =

〈v, v1〉...
〈v, vn〉

 .

Remark 3.12. Let V,W be finite-dimensional inner product spaces. Let β = (v1, . . . , vn)
be an orthonormal basis of V and let γ be an orthonormal basis of W . Let T : V → W be
a linear transformation. Then we can compute [T ]γβ using inner products, since its columns
are [T (v1)]

γ, . . . , [T (vn)]γ.

Example 3.13. Consider C([0, 1],C). As usual, let i :=
√
−1. Let f, g ∈ C([0, 1],C), and

consider the standard inner product

〈f, g〉 :=

∫ 1

0

f(t)g(t)dt.

Let k ∈ Z, t ∈ [0, 1]. Define vk(t) := e2πikt. We claim that the set {vk}k∈Z is an orthonormal
set. (In a suitable sense, it is also an orthonormal basis, but we cannot cover this topic here;
for more, look into Fourier analysis.) Let j, k ∈ Z and observe

〈vj, vk〉 =

∫ 1

0

vj(t)vk(t)dt =

∫ 1

0

e2πijte−2πiktdt =

∫ 1

0

e2πi(j−k)tdt
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So, if j = k, we get 〈vj, vk〉 =
∫ 1

0
dt = 1. And if j 6= k, we have j − k ∈ Z, so

〈vj, vk〉 =
1

2πi(j − k)
(e2πi(j−k) − 1) =

1

2πi(j − k)
(1− 1) = 0.

Let Tn denote the set of trigonometric polynomials of the form a0 +a1e
2πit+ · · ·+ane

2πint,
a1, . . . , an ∈ C. Then Tn is a subspace of C([0, 1],C), so Tn is also an inner product space.
So from Theorem 3.10, if f ∈ Tn, we have

f(t) =
n∑
j=0

(

∫ 1

0

f(s)e−2πijsds)e2πijt,

and from Corollary 3.6, we have Plancherel’s formula∫ 1

0

|f(t)|2 dt =
n∑
j=0

∣∣∣∣∫ 1

0

f(s)e−2πijsds

∣∣∣∣2 .
The scalars

∫ 1

0
f(s)e−2πijsds, j ∈ {0, . . . , n} are called the Fourier coefficients of f .

4. Gram-Schmidt Orthogonalization

Definition 4.1 (Unit Vector). Let V be a normed linear space, and let v ∈ V . If ‖v‖ = 1,
we say that v is a unit vector.

Remark 4.2. Let v 6= 0. Then v/ ‖v‖ is a unit vector.

Definition 4.3 (Projection onto a vector). Let v, w be vectors in an inner product space,
with w 6= 0. Define the orthogonal projection of v onto w by

Pw(v) :=
〈v, w〉
〈w,w〉

w =

〈
v,

w

‖w‖

〉
w

‖w‖
.

Note that Pw is a linear transformation.

As we saw in the proof of the Cauchy-Schwarz inequality, if v, w ∈ V and w 6= 0, we can
write

v = (v − Pw(v)) + Pw(v).

And v − Pw(v) is orthogonal to w, while Pw(v) is parallel to w. Therefore, v − Pw(v) is
orthogonal to Pw(v).

Definition 4.4 (Projection onto a subspace). Let V be an inner product space. Let
W ⊆ V be an n-dimensional subspace of V . Let w1, . . . , wn be an orthogonal set of nonzero
vectors in W . Let v ∈ V . Define the orthogonal projection of v onto W by

PW (v) :=
n∑
i=1

〈
v,

wi
‖wi‖

〉
wi
‖wi‖

.

Note that PW : V → V is a linear transformation, and R(PW ) ⊆ W .

Remark 4.5. PW (v) = v if and only if v ∈ W by Theorem 3.10. Also, the definition of
PW (v) does not depend on the orthogonal set of nonzero vectors w1, . . . , wn. This follows by
applying Theorem 3.10 to the orthonormal set (w1/ ‖w1‖ , . . . , wn/ ‖wn‖).
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Remark 4.6. Let w1, . . . , wn be an orthogonal set of nonzero vectors in W . As before, given
v ∈ V and W an n-dimensional subspace of V , we can write

v = (v − PW (v)) + PW (v).

Note that PW (v) ∈ W , and (v − PW (v)) is orthogonal to wi for each i ∈ {1, . . . , n}. So, by
Lemma 3.1, (v − PW (v)) is orthogonal to any vector in W .

Given a set of linearly independent vectors, we can create an orthonormal set of vectors
from the linearly independent set by using projections and Remark 4.6. The procedure for
creating these orthonormal sets is known as Gram-Schmidt orthogonalization.

Theorem 4.7 (Gram-Schmidt Orthogonalization). Let v1, . . . , vn be a linearly indepen-
dent set of vectors in an inner product space V . Then we can create an orthogonal set of
vectors in V as follows. Define

w1 := v1.

w2 := v2 − Pw1(v2).

w3 := v3 − Pspan(w1,w2)(v3).

And so on. In general, for k ∈ {2, . . . , n}, define

wk := vk − Pspan(w1,...,wk−1)(vk).

Then for each k ∈ {1, . . . , n}, (w1, . . . , wk) is an orthogonal set of nonzero vectors in V .
Also, span(w1, . . . , wk) = span(v1, . . . , vk) for each k ∈ {1, . . . , n}. Finally, note that the
set (w1/ ‖w1‖ , . . . , wn/ ‖wn‖) is an orthonormal set of vectors in V with the same span as
v1, . . . , vn.

Proof. Note that w2 ⊥ w1 from Remark 4.6. We will show that {w1, . . . , wk} is an orthogonal
set of nonzero vectors, and span(w1, . . . , wk) = span(v1, . . . , vk) by induction on k. (The base
case k = 1 holds since v1 6= 0.) Assume {w1, . . . , wk} is an orthogonal set of nonzero vectors,
and span(w1, . . . , wk) = span(v1, . . . , vk) for some k. Consider wk+1. Using the definition of
wk+1, the inductive hypothesis, and Remark 4.5,

wk+1 = vk+1 − Pspan(w1,...,wk)(vk+1) = vk+1 − Pspan(v1,...,vk)(vk+1). (∗)

From Remark 4.6, wk+1 is orthogonal to any vector in span(v1, . . . , vk) = span(w1, . . . , wk).
Also, wk+1 6= 0, since vk+1 /∈ span(v1, . . . , vk), by linear independence. That is, vk+1 6=
Pspan(v1,...,vk)(vk+1) by Remark 4.5. Therefore, {w1, . . . , wk+1} is an orthogonal set of nonzero
vectors. We now show the spanning property. From (∗) and the definition of the projection,
wk+1 ∈ span(v1, . . . , vk+1). So,

span(w1, . . . , wk+1) ⊆ span(v1, . . . , vk+1).

Now, note that the span on the right is (k + 1)-dimensional by Corollary 3.7, as is the span
on the left. So we must have equality. The induction step is complete, and we are done. �

Example 4.8. Consider P2([−1, 1]), the set of real polynomials of degree at most 2 on the
interval [−1, 1]. Let f, g ∈ P2([−1, 1]). We use the inner product

〈f, g〉 :=

∫ 1

−1
f(t)g(t)dt.
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Let’s start with the standard basis (1, t, t2) where t is a real variable, and let’s create an
orthonormal basis from the standard one. Define v1 := 1, v2 := t, and v3 := t2. Define

w1 := v1 = 1.

Note that 〈w1, w1〉 = 2, so w1 has norm
√

2. Then, define

w2 := v2 − 〈v2, w1〉w1/2 = t.

We can verify that 〈t, 1〉 = 0. Note also that 〈t, t〉 =
∫ 1

−1 t
2dt = 2/3, so (

√
3/2)w2 has norm

1. So, define

w3 := v3 − 〈v3, w2〉w2/ ‖w2‖2 − 〈v3, w1〉w1/ ‖w1‖2

= t2 − (

∫ 1

−1
x3dx)t(3/2)− (1/2)(

∫ 1

−1
x2dx)

= t2 − 1/3.

We can verify that 〈t2 − 1/3, 1〉 = 0 and 〈t2 − 1/3, t〉 = 0. Also,
∫ 1

−1(t
2 − 1/3)2dt = 8/45, so

t2 − 1/3 has norm
√

8/45.
In conclusion, an orthonormal basis for P2([−1, 1]), is{√

1

2
,

√
3

2
t,

√
45

8

(
t2 − 1

3

)}
.

Corollary 4.9. Every finite dimensional inner product space has an orthonormal basis.

Proof. Recall that every finite-dimensional vector space has a basis, by the definition of
finite-dimensionality. Given this basis v1, . . . , vn, apply the Gram-Schmidt Orthogonalization
(Theorem 4.7) to get an orthonormal set w1/ ‖w1‖ , . . . , wn/ ‖wn‖. By Corollary 3.9, the
vectors produced from the Gram-Schmidt process are an orthonormal basis. �

Corollary 4.10. Let V be an inner product space, and let W ⊆ V be a finite-dimensional
subspace. Then there exists a linear transformation P : V → V such that P 2 = P , R(P ) ⊆
W , and P (w) = w for any w ∈ W . That is, P is a projection onto W .

Proof. From Corollary 4.9, let w1, . . . , wn be an orthonormal basis for W . As in Definition
4.4, define

P (v) = PW (v) :=
n∑
i=1

〈v, wi〉wi.

�

4.1. Orthogonal Complements.

Definition 4.11 (Orthogonal Subspaces). Let V1, V2 be two subspaces of an inner product
space V . If v1 ⊥ v2 for all v1 ∈ V1, v2 ∈ V2, we say that V1 is orthogonal to V2, and we
write V1 ⊥ V2.

Lemma 4.12. Let V1, V2 be two subspaces of an inner product space V . If V1 ⊥ V2, then
V1 ∩ V2 = {0}.

9



Proof. Since V1, V2 are subspaces, 0 ∈ V1 and 0 ∈ V2, so 0 ∈ V1 ∩ V2. Now, let v ∈ V1 ∩ V2.
We will show that v = 0. Then v ∈ V2. But since v ∈ V2 and V2 ⊥ V1, we have 〈v, v1〉 = 0
for all v1 ∈ V1. In particular, since v ∈ V1, we have 〈v, v〉 = 0. By the positive definiteness
property of the inner product, we conclude that v = 0. That is, V1 ∩ V2 = {0}. �

Definition 4.13 (Orthogonal Complement). Let V1 be a subspace of an inner product
space V . Define the orthogonal complement of V1 in V by

V ⊥1 := {v ∈ V : 〈v, v1〉 = 0, ∀ v1 ∈ V1}.

Exercise 4.14. Show that {0}⊥ = V and V ⊥ = {0}.

Exercise 4.15. Let V1 be a subspace of an inner product space V . Show that V ⊥1 is a
subspace of V .

The following Theorem gives an algorithm for computing orthogonal complements.

Theorem 4.16. Let V be an n-dimensional inner product space, and let W ⊆ V be a k-
dimensional subspace. Let v1, . . . , vk be a basis of W , and let v1, . . . , vn be an extension of
that basis to V . (We proved that this extension exists in Chapter 1). Let w1, . . . , wn be the
orthonormal vectors produced by Gram-Schmidt orthogonalization. Then w1, . . . , wk is an
orthonormal basis of W , and wk+1, . . . , wn is an orthonormal basis of W⊥.

Proof. From Theorem 4.7, span(w1, . . . , wk) = span(v1, . . . , vk). Since W is k-dimensional,
we conclude that w1, . . . , wk is a basis for W . Since w1, . . . , wk is also orthonormal, it is
therefore an orthonormal basis of W .

Also, the vectors wk+1, . . . , wn are orthonormal, and therefore they are linearly independent
by Corollary 3.7. So, it remains to show that wk+1, . . . , wn spans W⊥. Let j ∈ {k+1, . . . , n}.
By the Gram-Schmidt process, wj is orthogonal to each of the vectors w1, . . . , wk. By Lemma
3.1, wj is then orthogonal to all of W . So, wj ∈ W⊥. So, span(wk+1, . . . , wn) ⊆ W⊥. It
remains to show that every w ∈ W⊥ is in span(wk+1, . . . , wn).

Let w ∈ W⊥. Since w ∈ V and (w1, . . . , wn) is an orthonormal basis of V , we have by
Theorem 3.10,

w =
n∑
i=1

〈w,wi〉wi.

Since w ∈ W⊥, 〈w,wi〉 = 0 for each i ∈ {1, . . . , k}. That is,

w =
n∑

i=k+1

〈w,wi〉wi.

So, w ∈ span(wk+1, . . . , wn), as desired. �

Example 4.17. We continue the definitions and notation from Example 4.8. Consider
W ⊆ P2([−1, 1]), where W is the span of 1 and t. Let’s compute W⊥. To do this, we
complete the set (1, t) to a basis (1, t, t2). From Example 4.8, we then used Gram-Schmidt
orthogonalization using v1 = 1, v2 = t and v3 = t2. We found that the resulting orthonormal
basis for P2([−1, 1]) is {√

1

2
,

√
3

2
t,

√
45

8

(
t2 − 1

3

)}
.
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So,
√

1/2 and
√

(3/2)t are an orthonormal basis of W . And therefore, W⊥ is a one-
dimensional space described as

W⊥ = {α(t2 − 1/3) : α ∈ R}.

Corollary 4.18 (Dimension Theorem for orthogonal complements). Let W be a
subspace of a finite-dimensional inner product space V . Then

dim(W ) + dim(W⊥) = dim(V ).

Corollary 4.19. Let W be a subspace of a finite-dimensional inner product space V . Then
every v ∈ V can be written uniquely as v = w + n where w ∈ W and n ∈ W⊥.

Proof. By Theorem 4.16, ∃ an orthonormal basis w1, . . . , wm of V such that w1, . . . , wk is an
orthonormal basis of W , and wk+1, . . . , wm is an orthonormal basis of W⊥. Let v ∈ V . by
Theorem 3.10,

v =
m∑
i=1

〈v, wi〉wi =
k∑
i=1

〈v, wi〉wi +
m∑

i=k+1

〈v, wi〉wi.

Define

w :=
k∑
i=1

〈v, wi〉wi, n :=
m∑

i=k+1

〈v, wi〉wi.

Then v = w+n, w ∈ W , n ∈ W⊥. (As an aside, note that w = PW (v), and n = v−PW (v).)
We now show the desired uniqueness statement. Suppose v = w′ + n′ with w′ ∈ W and
n′ ∈ W⊥. We will be done once we show that w = w′ and n = n′. Since w+ n = w′+ n′, we
have

w − w′ = n− n′. (∗)

The vector on the left of (∗) is in W , and the vector on the right of (∗) is in W⊥. By Lemma
4.12, W ∩W⊥ = {0}. So, both sides of (∗) must be zero. That is, w = w′ and n = n′, as
desired. �

Theorem 4.20 (Orthogonal projections minimize length). Let W be a subspace of a
finite-dimensional inner product space V . Let v ∈ V , and let w = PW (v) be the orthogonal
projection of v onto W . Then, for any w′ ∈ W with w′ 6= w, we have ‖v − w‖ < ‖v − w′‖.

Proof. From Corollary 4.19, write v = w+n, where w := PW (v) ∈ W , and n := v−w ∈ W⊥.
Then ‖v − w‖ = ‖n‖. Now, write

v − w′ = (v − w) + (w − w′).

Since w,w′ ∈ W , w − w′ ∈ W . Since v − w = n ∈ W⊥, 〈v − w,w − w′〉 = 0. So, by the
Pythagorean Theorem (Theorem 3.2),

‖v − w′‖2 = ‖v − w‖2 + ‖w − w′‖2 .

So, ‖v − w′‖2 > ‖v − w‖2 since w 6= w′, as desired. �
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5. Adjoints

5.1. Linear Functionals.

Definition 5.1 (Linear Functional). Let V be a vector space over a field F. A linear
functional is a linear transformation T : V → F.

Linear functionals are also known as dual vectors, covectors, or 1-forms. In order to
understand some vector space V , it is often of interest to understand the set of all linear
functionals on V . Such a classification becomes quite subtle especially for infinite dimensional
spaces. However, as we show below, the case of finite-dimensional inner product spaces is
fairly tame.

Example 5.2. Define T : R3 → R by T (a, b, c) := a+2b+3c. Then T is a linear functional.

Example 5.3. Define T : C([0, 1],R) → R by T (f) :=
∫ 1

0
f(t)dt. Then T is a linear func-

tional.

Example 5.4. Define T : C([0, 1],R)→ R by T (f) := f(1/3). Then T is a linear functional.

Example 5.5. Let V be a finite-dimensional inner product space over R. Let w ∈ V , and
define T : V → R by T (v) := 〈v, w〉. Then T is a linear functional.

As we now show, the previous example essentially classifies all linear functionals on a
finite-dimensional inner product space.

Theorem 5.6 (Riesz Representation Theorem). Let V be a finite-dimensional inner
product space over a field F. Let T : V → F be a linear functional. Then there exists a
unique vector w ∈ V such that, for all v ∈ V , T (v) = 〈v, w〉.
Proof. From Corollary 4.9, V has an orthonormal basis v1, . . . , vn. Define

w :=
n∑
j=1

vjT (vj).

Let v ∈ V . From Theorem 3.10,

v =
n∑
i=1

〈v, vi〉vi.

Since T is linear, we get

T (v) =
n∑
i=1

〈v, vi〉T (vi)

Since v1, . . . , vn is an orthonormal basis,

〈v, w〉 =

〈
n∑
i=1

〈v, vi〉vi,
n∑
j=1

vjT (vj)

〉
=

n∑
i=1

n∑
j=1

〈v, vi〉T (vj)〈vi, vj〉 =
n∑
i=1

〈v, vi〉T (vi) = T (v).

This completes the existence part of the proof. We now prove uniqueness.
Suppose there exists w′ ∈ V such that T (v) = 〈v, w′〉. We will show that w = w′. For all

v ∈ V , T (v) = 〈v, w〉 = 〈v, w′〉. That is,

∀ v ∈ V 〈v, w − w′〉 = 0. (∗)
Choosing v = w − w′ shows that 〈w − w′, w − w′〉 = 0 = ‖w − w′‖2. Therefore, w − w′ = 0,
as desired. �
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5.2. Adjoints. Let F denote R or C. Let V be a finite-dimensional inner product space
over F with inner product 〈 , 〉V , and let W be a finite-dimensional inner product space over
F with inner product 〈 , 〉W . Let T : V → W be a linear transformation. Given any w ∈ W ,
define a linear functional Tw : V → F by

Tw(v) := 〈T (v), w〉W .
Note that Tw is actually a linear function. To see this, let v, v′ ∈ V and let α ∈ F. Then

Tw(v + v′) = 〈T (v + v′), w〉W = 〈T (v), w〉W + 〈T (v′), w〉W = Tw(v) + Tw(v′).

Tw(αv) = 〈T (αv), w〉W = α〈T (v), w〉W = αTw(v).

Definition 5.7 (Adjoint). Since Tw : V → F is a linear functional, we can apply Theorem
5.6 to get a unique vector in V , which we denote by T ∗(w), such that for all v ∈ V ,

Tw(v) = 〈v, T ∗(w)〉V .
As we will see shortly, T ∗ is a linear transformation from W to V , which we call the adjoint
of T . Also, recalling the definition of Tw, we have

〈T (v), w〉W = 〈v, T ∗(w)〉V .
Remark 5.8. Note that T : V → W , whereas T ∗ : W → V .

Remark 5.9. We have added subscripts to the above inner products to emphasize that the
inner product in W could be different from the inner product in V . From now on, we will
drop these subscripts.

Lemma 5.10. Let T : V → W be a linear transformation between finite-dimensional inner
product spaces. Then T ∗ : W → V is a linear transformation

Proof. Let w,w′ ∈ W and let α ∈ F. We will first show that T ∗(w + w′) = T ∗(w) + T ∗(w′).
By the definition of T ∗, for all v ∈ V ,

〈T (v), w + w′〉 = 〈v, T ∗(w + w′)〉.
So, rearranging things and applying the definition of T ∗ again,

〈v, T ∗(w + w′)〉 = 〈T (v), w〉+ 〈T (v), w′〉 = 〈v, T ∗(w)〉+ 〈v, T ∗(w′)〉 = 〈v, T ∗(w) + T ∗(w′)〉.
By the uniqueness part of the Riesz Representation Theorem (Theorem 5.6), we therefore
have T ∗(w + w′) = T ∗(w) + T ∗(w′).

We now show that T ∗(αw) = αT ∗(w).

〈v, T ∗(αw)〉 = 〈T (v), αw〉 = α〈T (v), w〉 = α〈v, T ∗(w)〉 = 〈v, αT ∗(w)〉
By the uniqueness part of the Riesz Representation Theorem (Theorem 5.6), we therefore
have T ∗(αw) = αT ∗(w). �

Definition 5.11 (Adjoint of a Matrix). Let A be an m × n matrix with Ajk ∈ C,
1 ≤ j ≤ m, 1 ≤ k ≤ n. The adjoint of A, denoted by A†, is an n ×m matrix with entries
(A†)jk := Akj, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Theorem 5.12. Let T : V → W be a linear transformation between inner product spaces
V,W . Let β = (v1, . . . , vn) be an orthonormal basis of V and let γ = (w1, . . . , wm) be an
orthonormal basis of W . Then

[T ∗]βγ = ([T ]γβ)†.
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Proof. Let w ∈ W . From Corollary 3.11, recall that

[w]γ =

 〈w,w1〉
...

〈w,wm〉

 .

Also, from Remark 3.12, [T ]γβ has columns [T (v1)]
γ, . . . , [T (vn)]γ. That is,

[T ]γβ =


〈T (v1), w1〉 〈T (v2), w1〉 · · · 〈T (vn), w1〉
〈T (v1), w2〉 〈T (v2), w2〉 · · · 〈T (vn), w2〉

...
... · · · ...

〈T (v1), wm〉 〈T (v2), wm〉 · · · 〈T (vn), wm〉

 .

Similarly, [T ∗]βγ is an n×m matrix with (i, j) entry 〈T ∗(wj), vi〉. And

〈T ∗(wj), vi〉 = 〈vi, T ∗(wj)〉 = 〈T (vi), wj〉.
That is,

[T ∗]βγ =


〈T (v1), w1〉 〈T (v1), w2〉 · · · 〈T (v1), wm〉
〈T (v2), w1〉 〈T (v2), w2〉 · · · 〈T (v2), wm〉

...
... · · · ...

〈T (vn), w1〉 〈T (vn), w2〉 · · · 〈T (vn), wm〉

 .

In conclusion [T ∗]βγ = ([T ]γβ)†. �

Corollary 5.13. Let F denote R or C. Let A be an m× n matrix with elements in F. Let
Fn and Fm respectively denote the usual vector spaces Fn and Fm with their standard inner
products. Then the adjoint of LA : Fn → Fm is LA†.

Proof. Note that LA : Fm → Fn and LA† : Fn → Fm. Let β be the standard basis of Fm and
let γ be the standard basis of Fn. From Theorem 5.12,

[L∗A]βγ = ([LA]γβ)† = A† = [LA† ]
β
γ .

So, L∗A = LA† , as desired. �

Remark 5.14. Let F denote R or C. Let A be an m× n matrix with elements in F. Then
for any v ∈ Fn and for any w ∈ Fm,

〈Av,w〉 = 〈v,A†w〉.
In this equality, the inner product on the left is the standard inner product on Fm, and the
inner product on the right is the standard inner product on Fn. Note that if we change the
inner product, then the adjoint could possibly change as well. For example, suppose n = 2
and we use the inner product

〈(v1, v2), (w1, w2)〉′ := (v1, v2)

(
1 1/2

1/2 1

)
(w1, w2)

t, (v1, v2), (w1, w2) ∈ R2.

Then it is not true that 〈Av,w〉′ = 〈v,A†w〉′. For example, choose v = (1, 0), w = (1, 0),

A =

(
1 1
0 1

)
. Then 〈Av,w〉′ = 〈(1, 0), (1, 0)〉′ = (1, 0)(1, 1/2)t = 1, while 〈v, A†w〉′ =

〈(1, 0), (1, 1)〉′ = (1, 0)(3/2, 3/2)t = 3/2.
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Exercise 5.15. Find the adjoint of LA : R2 → R2 in the above example, where R2 is
equipped with the inner product 〈 , 〉′.

Exercise 5.16. Let F denote R or C. Let T : V → W , S : V → W and let R : U → V be
linear transformations between inner product spaces U, V,W over F. Verify the following
facts

(a) (T + S)∗ = T ∗ + S∗.
(b) For all α ∈ F, (αT )∗ = αT ∗.
(c) (T ∗)∗ = T .
(d) (TR)∗ = R∗T ∗.
(e) If T is invertible, then (T−1)∗ = (T ∗)−1.

Exercise 5.17. Let A be an m× n matrix. Show that rank(A) = rank(A†).

Exercise 5.18. Let A be an n× n matrix with elements in C. Then det(A†) = det(A).

6. Normal Operators

One of the ultimate goals of this course is to take an arbitrary linear transformation
and either diagonalize it, or show that it cannot be diagonalized. Such a result provides the
starting point for many further investigations. We cannot fully realize this goal in this course.
However, we will identity a large class of linear transformations (i.e. operators) that can be
diagonalized, and that appear often in practice. Two such classes of operators are normal
and self-adjoint operators. This course will conclude by showing that these two classes of
operators can be diagonalized. Such a diagonalization result is referred to as a spectral
theorem. The spectrum of a linear operator is its set of eigenvalues. This terminology
may seem a bit strange, since we usually refer to the spectrum of an electromagnetic wave.
However, this conflation of terminology is no coincidence. For example, the spectral theorem
for infinite-dimensional vector spaces (which is outside the scope of this course) demonstrates
mathematically the discreteness of the energy emissions of the hydrogen atom. In particular,
there is a self-adjoint operator whose set of eigenvalues is the energy emission spectrum of
the hydrogen atom. And the eigenvectors give the (infinite set of) atomic orbitals that you
learned in chemistry class, the first of which you called s,p,d and f orbitals. (Beware: in
infinite-dimensional spaces, self-adjointness becomes more complicated than in the finite-
dimensional case.)

Definition 6.1 (Normal Operator). Let V be a finite-dimensional inner product space.
Let T : V → V be a linear transformation. Recall that T ∗ : V → V is also a linear transfor-
mation. We say that T is a normal operator if TT ∗ = T ∗T .

Example 6.2. Define T : R2 → R2 by T (x, y) = (y,−x) for all x, y ∈ R. Then T ∗(x, y) =
(−y, x), by the definition of T ∗. Observe,

TT ∗(x, y) = T (−y, x) = (x, y).

T ∗T (x, y) = T ∗(y,−x) = (x, y).

So, T ∗T = TT ∗, so T is normal.

Definition 6.3 (Normal Matrix). Let A be an n × n matrix. We say that A is normal
if AA† = A†A.
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Example 6.4. Every diagonal matrix is normal.

Proposition 6.5. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Let β be an orthonormal basis of V . Then T : V → V is normal if and
only if [T ]ββ is normal.

Proof. Suppose T is normal. Then TT ∗ = T ∗T . Taking the matrix representation of this
identity,

[T ]ββ[T ∗]ββ = [TT ∗]ββ = [T ∗T ]ββ = [T ∗]ββ[T ]ββ.

From Theorem 5.12, [T ∗]ββ is the adjoint of [T ]ββ. So, [T ]ββ is normal.
So, we proved the forward implication. To prove the reverse implication, note that the

above steps can be reversed. �

Lemma 6.6. Let F denote R or C. Let V be a finite-dimensional inner product space over
F. Let T : V → V be a normal operator. Assume that there exists v ∈ V and λ ∈ F such
that Tv = λv. Then T ∗v = λv.

Proof. It suffices to show that ‖T ∗(v)− λv‖2 = 0. That is, we verify that

〈T ∗(v)− λv, T ∗(v)− λv〉 = 0.

Expanding both sides, we equivalently want

〈T ∗(v), T ∗(v)〉 − λ〈v, T ∗(v)〉 − λ〈T ∗(v), v〉+ |λ|2 〈v, v〉 = 0.

Using the definition of adjoint and that T is normal, the left-most term is 〈TT ∗v, v〉 =
〈T ∗Tv, v〉. Using the adjoint definition some more, we equivalently want

〈T ∗T (v), v〉 − λ〈T (v), v〉 − λ〈v, T (v)〉+ |λ|2 〈v, v〉 = 0.

Using T (v) = λv, we equivalently want

λ〈T ∗(v), v〉 − |λ|2 〈v, v〉 − |λ|2 〈v, v〉+ |λ|2 〈v, v〉 = 0.

Applying the adjoint definition again and simplifying, we want

λ〈v, T (v)〉 − |λ|2 〈v, v〉 = 0.

Finally, using T (v) = λv, we have λ〈v, T (v)〉 = |λ|2 〈v, v〉, completing the proof. �

The following Lemma shows that Proposition 1.1 becomes strengthened when T is normal.

Lemma 6.7. Let T : V → V be a normal operator on a finite-dimensional inner product
space V . Let v1, v2 be two eigenvectors of T with distinct eigenvalues λ1, λ2, respectively.
Then v1 is orthogonal to v2.

Proof. Since T (v1) = λ1v1 and T (v2) = λ2v2, we have T ∗(v1) = λ1v1 and T ∗(v2) = λ2v2 by
Lemma 6.6. So,

λ1〈v1, v2〉 = 〈T (v1), v2〉 = 〈v1, T ∗(v2)〉 = λ2〈v1, v2〉.
Since λ1 6= λ2, we must have 〈v1, v2〉 = 0, as desired. �

Remark 6.8. Most linear transformations will not be normal, since they will typically have
non-orthogonal eigenvectors.

We now prove a converse to Lemma 6.7, which is also a variation on Lemma 1.2 for normal
T .

16



Lemma 6.9. Let T : V → V be a linear transformation on a finite-dimensional inner product
space V . Suppose β is an orthonormal basis of V consisting of eigenvectors of T . Then T
is normal.

Proof. From Lemma 1.2, [T ]ββ is diagonal. In particular, [T ]ββ is normal. So, from Proposition
6.5, T is normal. �

Theorem 6.10 (The Spectral Theorem for Normal Operators). Let T : V → V be a
normal operator on a finite-dimensional inner product space V over C. Then there exists an
orthonormal basis β of V consisting of eigenvectors of T . In particular, T is diagonalizable.

Proof. We will prove the theorem by induction on the dimension n of V . Consider first
the case n = 1. Let β consist of exactly one nonzero unit vector v ∈ V . Since V is one
dimensional, for any w ∈ V , there exists α ∈ C such that w = αv. So, if T (v) = w for some
w ∈ V , we have T (v) = αv, so that v is an eigenvector of T . In conclusion, the theorem
holds for n = 1.

Now, suppose the theorem holds for a fixed n ≥ 1, and consider the case dim(V ) = n+ 1.
Let f(λ) be the characteristic polynomial of some matrix representation of T . (Recall that
any two matrix representations of T are similar by Lemma 1.3, and two similar matrices
have the same characteristic polynomial by Lemma 1.5. So, the matrix representation that
we use for T does not affect f .) From the Fundamental Theorem of Algebra (Theorem 1.4),
f has n + 1 zeros. In particular, f has one zero. So, T has at least one eigenvalue λ1 ∈ C,
and at least one eigenvector v1 ∈ V , v1 6= 0 with T (v1) = λ1v1. Replacing v1 with v1/ ‖v1‖
if necessary, we may assume that ‖v1‖ = 1.

Since T (v1) = λ1v1, Lemma 6.6 shows that T ∗(v1) = λ1v1. Let W := {av1 : a ∈ C} denote
the span of v1. Observe that W ⊆ V is a one-dimensional subspace. Let W⊥ := {v ∈
V : 〈v, v1〉 = 0} denote the orthogonal complement of W . Recall that W⊥ is a subspace of
V by Exercise 4.15, and dim(W⊥) = n+ 1− 1 = n by Corollary 4.18.

We would like to apply the inductive hypothesis to T , where we restrict the domain of T
to the subspace W⊥. In order for the inductive hypothesis to apply, we need to show that
the restriction of T to W⊥ satisfies the hypotheses of the theorem. That is, we need to show:

(a) T (W⊥) ⊆ W⊥, i.e. that W⊥ is invariant under T .
(b) T ∗(W⊥) ⊆ W⊥.
(c) T and T ∗ are adjoints of each other when we consider them as operators on W⊥.

Proof of (a). Let w ∈ W⊥, so that 〈w, v1〉 = 0. Then

0 = λ1〈w, v1〉 = 〈w, T ∗(v1)〉 = 〈T (w), v1〉.
So, T (w) ∈ W⊥, as desired.

Proof of (b). Let w ∈ W⊥, so that 〈w, v1〉 = 0. Then

0 = λ1〈w, v1〉 = 〈w, T (v1)〉 = 〈T ∗(w), v1〉.
So, T ∗(w) ∈ W⊥, as desired.

Proof of (c). Let v, w ∈ W⊥. We need to show that there exists x ∈ W⊥ such that

〈T (v), w〉 = 〈v, x〉. (∗)
Since T ∗ is the adjoint of T , we know that x := T ∗(w) is the unique vector in V such that
(∗) holds, by the Riesz Representation Theorem (Theorem 5.6). So, we need to show that
T ∗(w) ∈ W⊥. But this follows from part (b).
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Having proven parts (a),(b) and (c), we can finally apply the inductive hypothesis to
T , where we restrict the domain of T to W⊥. That is, there exists an orthonormal basis
(v2, . . . , vn+1) of W⊥ consisting of eigenvectors of T . Since v1 ∈ W , v1 is orthogonal to
the vectors v2, . . . , vn+1. So, the set of vectors v1, . . . , vn+1 is an orthonormal set (recalling
‖v1‖ = 1). Since dim(V ) = n+1, Corollary 3.9 says v1, . . . , vn+1 is a basis of V , as desired. �

7. Self-Adjoint Operators

Definition 7.1 (Self-Adjoint Operator). Let F denote R or C. Let V be a finite-
dimensional inner product space over F. Let T : V → V be a linear transformation. Then T
is called a self-adjoint operator if T ∗ = T . A square matrix A is said to be self-adjoint
if A = A†.

Remark 7.2. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . If T is self-adjoint, then T is normal. But if T is normal, then T is not
necessarily self-adjoint.

Example 7.3. The linear transformation T : R2 → R2 defined by T (x, y) = (y,−x) is
normal but not self-adjoint, since it has adjoint T ∗(x, y) = (−y, x). However, the linear
transformation T : R2 → R2 defined by T (x, y) = (y, x) is self-adjoint.

Remark 7.4. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V over F. If T is self-adjoint and if F = C, then T is sometimes called
Hermitian. If T is self-adjoint and if F = R, then T is symmetric. A square complex
matrix A with A = A† is also called Hermitian. And a square real matrix with A = A† is
called symmetric, since A = A† becomes A = At.

Theorem 7.5. Let F denote R or C. Let V be a finite-dimensional inner product space
over F. Let T : V → V be a self-adjoint linear transformation. Then all eigenvalues of T
are real.

Proof. Let λ ∈ C be any eigenvalue of T . So, there exists v ∈ V with v 6= 0 such that
T (v) = λv. Lemma 6.6 shows that T ∗(v) = λv. Since T = T ∗, we conclude that λ = λ, so
that λ ∈ R, as desired. �

Remark 7.6. Similarly, all eigenvalues of a Hermitian matrix are real.

Proposition 7.7. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Let β be an orthonormal basis of V . Then T : V → V is self-adjoint if and
only if [T ]ββ is self-adjoint.

Proof. Suppose T is self-adjoint. Then T = T ∗. From Theorem 5.12, [T ∗]ββ is the adjoint

of [T ]ββ. So, [T ]ββ is self-adjoint. We proved the forward implication. To prove the reverse
implication, note that the above steps can be reversed. �

Corollary 7.8. Let A be an n× n complex Hermitian matrix, and let f(λ) := det(A− λI)
be the characteristic polynomial of A. Then there exist λ1, . . . , λn ∈ R such that f(λ) =∏n

i=1(λi − λ).

Proof. From the Fundamental Theorem of Algebra (Theorem 1.4), there exist λ0, . . . , λn ∈ C
such that f(λ) = λ0

∏n
i=1(λi − λ). Recall that coefficient of the degree n term of f(λ) is

(−1)n by Theorem 1.6. So, λ0 = 1. From Remark 7.6, λi ∈ R for all i ∈ {1, . . . , n}. �
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Lemma 7.9. Let F denote either R or C. Let T : V → V be a linear transformation on a
finite-dimensional inner product space V over F. Suppose there exists an orthonormal basis
β of V consisting of eigenvectors of T with real eigenvalues. Then T is self-adjoint.

Proof. From Lemma 1.2, [T ]ββ is diagonal with real entries. In particular, [T ]ββ is self-adjoint
So, from Proposition 7.7, T is self-adjoint. �

Theorem 7.10 (The Spectral Theorem for Self-Adjoint Operators). Let F denote
either R or C. Let T : V → V be a self-adjoint operator on a finite-dimensional inner product
space V over F. Then there exists an orthonormal basis β of V consisting of eigenvectors of
T . In particular, T is diagonalizable. Moreover, all eigenvalues of T are real.

Proof. Since T is self-adjoint, T is normal. So, if F = C, the result follows directly from
the Spectral Theorem for normal operators (Theorem 6.10). Then we apply Theorem 7.5 to
finish. If F = R, we repeat the proof of Theorem 6.10, replacing C everywhere by R. The
crucial new ingredient in the proof is that, in the inductive step and in the base case of the
induction, T has some real eigenvalue λ1 ∈ R by Theorem 7.5. �

Remark 7.11. Note that Theorem 6.10 requires V to be a vector space over C. But
Theorem 7.10 requires V to be a vector space over R or C. So, every symmetric operator
on a real inner product space is diagonalizable.

Remark 7.12. In conclusion, self-adjoint operators are really nice, since they have an or-
thonormal basis of eigenvectors (so they can be diagonalized), and all of their eigenvalues
are real.

8. Orthogonal and Unitary Operators (Bonus Section)

Definition 8.1 (Unitary Operators). Let F denote R or C. Let V be a finite-dimensional
inner product space over F. Let T : V → V be a linear transformation. Then T is called
a unitary operator if TT ∗ = T ∗T = IV . A square matrix A is called unitary if AA† =
A†A = I.

Remark 8.2. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . If T is unitary, then T is normal.

Remark 8.3. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V over F. If T is unitary and F = R, then T is called orthogonal. A
square real matrix A with AA† = A†A = I is also called orthogonal, since we then have
AAt = AtA = I.

Theorem 8.4. Let F denote R or C. Let V be a finite-dimensional inner product space
over F. Let T : V → V be a unitary operator. Then all eigenvalues of T have absolute value
1.

Proof. Let λ ∈ C be any eigenvalue of T . So, there exists v ∈ V with v 6= 0 such that
T (v) = λv. Lemma 6.6 shows that T ∗(v) = λv. So, using T ∗T = IV ,

|λ|2 〈v, v〉 = 〈λv, λv〉 = 〈T (v), T (v)〉 = 〈T ∗T (v), v〉 = 〈v, v〉.
Since v 6= 0, we conclude that |λ|2 = 1, as desired. �

Remark 8.5. Similarly, all eigenvalues of a unitary matrix have absolute value 1.
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Proposition 8.6. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Let β be an orthonormal basis of V . Then T : V → V is unitary if and
only if [T ]ββ is unitary.

Proof. Suppose T is unitary. Then TT ∗ = T ∗T = IV . Taking the matrix representation,

[T ]ββ[T ∗]ββ = [TT ∗]ββ = [T ∗T ]ββ = [T ∗]ββ[T ]ββ = [IV ]ββ = I.

From Theorem 5.12, [T ∗]ββ is the adjoint of [T ]ββ. So, [T ]ββ is unitary. We proved the forward
implication. To prove the reverse implication, note that the above steps can be reversed. �

Corollary 8.7. Let A be an n × n unitary matrix, and let f(λ) := det(A − λI) be the
characteristic polynomial of A. Then there exist λ1, . . . , λn ∈ C with |λi| = 1 for all i ∈
{1, . . . , n} such that f(λ) =

∏n
i=1(λi − λ).

Proof. From the Fundamental Theorem of Algebra (Theorem 1.4), there exist λ0, . . . , λn ∈ C
such that f(λ) = λ0

∏n
i=1(λi − λ). Recall that coefficient of the degree n term of f(λ) is

(−1)n by Theorem 1.6. So, λ0 = 1. From Remark 8.5, |λi| = 1 for all i ∈ {1, . . . , n}. �

Lemma 8.8. Let F denote either R or C. Let T : V → V be a linear transformation on
a finite-dimensional inner product space V over F. Suppose there exists an orthonormal
basis β of V consisting of eigenvectors of T with eigenvalues of absolute value 1. Then T is
unitary.

Proof. From Lemma 1.2, [T ]ββ is diagonal with entries of absolute value 1. In particular, [T ]ββ
is unitary. So, from Proposition 8.6, T is unitary. �

Theorem 8.9 (The Spectral Theorem for Unitary Operators). Let T : V → V be a
unitary operator on a finite-dimensional inner product space V over C. Then there exists an
orthonormal basis β of V consisting of eigenvectors of T . In particular, T is diagonalizable.
Moreover, all eigenvalues of T have absolute value 1.

Proof. Since T is unitary, T is normal. So, the result follows directly from the Spectral
Theorem for normal operators (Theorem 6.10). Then we apply Theorem 8.4 to finish. �

Remark 8.10. Note that Theorem 8.9 requires V to be a vector space over C. In the
case that V is a vector space over R, the corresponding spectral theorem becomes very
restricted, since the only real numbers with absolute value one are 1 and −1. So, if we want
to diagonalize an orthogonal operator over R, T must have all eigenvalues 1 or −1. Even
though we can diagonalize an orthogonal operator over C by Theorem 8.9, we can essentially
never diagonalize an orthogonal operator over R. Nevertheless, let’s present the result for
diagonalization over R.

If F = R, and if T is both self-adjoint and unitary, then the Spectral Theorem for self-
adjoint operators (Theorem 7.10) together with Theorem 8.4 show: there exists an orthonor-
mal basis β of V consisting of eigenvectors of T . So, T is diagonalizable, and all eigenvalues
of T are 1 or −1. Conversely, suppose T is a linear operator on an inner product space V over
R, and suppose there exists a basis β of V consisting of eigenvectors of T with eigenvalues
1 or −1. Then [T ]ββ is orthogonal. So T is orthogonal by Proposition 8.6. By Lemma 7.9, T
is also self-adjoint.
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9. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers. Let F be a field.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

x+ y
√
−1 := x− y

√
−1, x, y ∈ R , the complex conjugate

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

C(R) denotes the set of all continuous functions from R to R

Pn(R) denotes the set of all real polynomials in one real variable of degree at most n

P (R) denotes the set of all real polynomials in one real variable

Mm×n(F) denotes the vector space of m× n matrices over the field F

In denotes the n× n identity matrix

det denotes the determinant function

Sn denotes the set of permutations on {1, . . . , n}
sign(σ) := (−1)N where σ ∈ Sn can be written as the composition of N transpositions

Tr denotes the trace function

9.1. Set Theory. Let V,W be sets, and let f : V → W be a function. Let X ⊆ V , Y ⊆ W .

f(X) := {f(v) : v ∈ V }.
f−1(Y ) := {v ∈ V : f(v) ∈ Y }.

The function f : V → W is said to be injective (or one-to-one) if: for every v, v′ ∈ V , if
f(v) = f(v′), then v = v′.

The function f : V → W is said to be surjective (or onto) if: for every w ∈ W , there
exists v ∈ V such that f(v) = w.

21



The function f : V → W is said to be bijective (or a one-to-one correspondence) if:
for every w ∈ W , there exists exactly one v ∈ V such that f(v) = w. A function f : V → W
is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if there exists a bijection from V
onto W .

The identity map I : X → X is defined by I(x) = x for all x ∈ X. To emphasize that
the domain and range are both X, we sometimes write IX for the identity map on X. Let
f : X → X. We write f 2 to denote f composed with itself: f ◦ f . More generally, for any
n ∈ N, we write fn to denote f composed with itself n times: f ◦ f ◦ · · · ◦ f .

Let V,W be vector spaces over a field F. Then L(V,W ) denotes the set of linear trans-
formations from V to W , and L(V ) denotes the set of linear transformations from V to V .
Let T : V → W be a linear transformation between inner product spaces. Then T ∗ : W → V
denotes the adjoint of T .
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