
115A Midterm 2 Practice Solutions
These are solutions to the practice midterm here: http://math.berkeley.edu/sites/

default/files/pages/F03_Second_Midterm-A.Liu_.pdf

This is an 80 minute exam, so it has a lot more on it than our 50 minute exam.

1. Question 1

True/False
(a) Let V,W be finite dimensional vector spaces over R. Then L(V,W ) and L(W,V ) are

isomorphic.
TRUE: Let T : V → W . Let α be an ordered basis for V and let β be an ordered

basis for W . Suppose V is n-dimensional and W is m dimensional. Define F (T ) := [T ]βα,
F : L(V,W )→ L(Rn,Rm). Note that F is an isomorphism. (F is linear, F (T ) = 0 implies
T = 0, and given any m× n real matrix A, there exists T : V → W such that F (T ) = A, by
Theorem 4.4 in the second set of notes.) It therefore suffices to show that, for any positive
integers n,m, we have L(Rn,Rm) is isomorphic to L(Rm,Rn). That is, it suffices to show
that the set of m×n real matrices is isomorphic to the set of n×m real matrices. To show this,
let A be an m×n real matrix, and define T (A) := At. Then T is an isomorphism, completing
the theorem. To see this, note that T is linear, T is one-to-one (since if T (A) = 0n×m, then
A = 0m×n), and T is onto (since, if we are given B an n×m matrix, then T (Bt) = (Bt)t = B).

(b) Let T : V → V be linear. Then the null space N(T ) is always contained in the range
of T .

FALSE: Define T : R2 → R2 by T (x, y) = (0, y). Then T is linear, N(T ) is the span of the
vector (1, 0), but R(T ) is the span of the vector (0, 1). If we had N(T ) ⊆ R(T ), then R(T )
would also contain the span of (1, 0), so that R(T ) would be two-dimensional. However,
R(T ) is just one-dimensional.

(c) There can be no onto linear transformation from R10 to P10(R).
TRUE: Suppose T : R10 → P10(R) is any linear transformation. Recall that dim(P10(R)) =

11 and dim(R10) = 10. By the rank-nullity theorem, rank(T ) + nullity(T ) = dim(R10) = 10.
So, rank(T ) = 10 < 11 = dim(P10(R)). Since R(T ) is a subspace of P10(R) of dimension
less than 11, there must exist some nonzero vector v ∈ P10(R) such that v /∈ R(T ). That is,
T is not onto.

(d) All multilinear functions δ : Mn×n(R) → R are equal to the determinant function
det : Mn×n(R)→ R

FALSE: There are a few ways to see that this is false. Consider δ such that δ(A) :=
2 det(A), where A ∈ Mn×n(R). Since det is multilinear, so is δ. However, δ is not equal to
the determinant, since δ(In) = 2 6= 1 = det(In).

2. Question 2

Let T : P3(R) → R4 be defined by T (f) = (f(0), f(1), f ′(0), f ′(1)). Let β = (1, x, x2, x3)
and let γ be the standard basis of R4.

(i) Calculate [T ]γβ
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Solution. Note that T (1) = (1, 1, 0, 0), T (x) = (0, 1, 1, 1), T (x2) = (0, 1, 0, 2) and T (x3) =
(0, 1, 0, 3). So,

[T ]γβ = ([T (1)]γ, [T (x)]γ, [T (x2)]γ, [T (x3)]γ) =


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

 .

(ii) Is T an isomorphism? If yes, prove it. If not, explain why not.
Solution. We do some row reductions on [T ]γβ.

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

→


1 0 0 0
0 1 1 1
0 1 0 0
0 1 2 3

→


1 0 0 0
0 1 1 1
0 0 −1 −1
0 0 1 2

→


1 0 0 0
0 1 1 1
0 0 −1 −1
0 0 0 1


We claim that T is an isomorphism. To see this, note that there exist four elementary

row operations E1, E2, E3, E4 such that E1E2E3E4[T ]γβ is in row-echelon form. Also, from

a Lemma from the notes (Lemma 3.7, in the third set of notes), E1E2E3E4[T ]γβ has rank
equal to its number of nonzero rows, which in this case is 4. From a Lemma from the notes
(Lemma 3.10, in the third set of notes), since E1, E2, E3, E4 are invertible, we conclude that
[T ]γβ also has rank 4. A 4 × 4 matrix of rank 4 is invertible, i.e. [T ]γβ is invertible. To see

this, recall that [T ]γβ has only the zero vector in its null space by the rank-nullity theorem;

also by the rank-nullity theorem, [T ]γβ is onto. So, [T ]γβ is both one-to-one and onto, so it is
invertible by a Lemma in the notes (Lemma 6.6 from the second set of notes.) Finally, since
[T ]γβ is invertible, we conclude that T is invertible, by a theorem from the notes (Theorem
6.11 in the second set of notes).

3. Question 3

(i) Let V,W be finite-dimensional vector spaces of the same dimension n. Prove that a
one-to-one linear transformation T : V → W must be an isomorphism.

Solution. Since T is one-to-one, T only has the zero vector in its null space. By the
rank-nullity Theorem, T has rank n. By a Lemma in the notes (Lemma 3.1 from the third
set of notes), T is therefore invertible.

(ii) Let V be a finite-dimensional vector space and let T : V → V be a linear transforma-

tion. Suppose that, for some ordered basis β of V , we have det([T ]ββ) = 0.
(a) Prove that det([T ]γγ) = 0 for an arbitrary ordered basis γ of V .
Solution. Define Q := [IV ]γβ. Recall that (from Lemma 7.3 in the second set of notes), Q

is an invertible matrix, and

Q[T ]ββQ
−1 = [IV ]γβ[T ]ββ([IV ]γβ)−1 = [IV ]γβ[T ]ββ[IV ]βγ = [T ]γγ

So, taking the determinant of both sides and using the multiplicative property of the deter-
minant,

det([T ]γγ) = det(Q[T ]ββQ
−1) = det(Q) det([T ]ββ) det(Q−1).

The right side is zero since det([T ]ββ) = 0. Therefore, det([T ]γγ) = 0, as desired.
(b) Prove that nullity(T ) > 0.
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Solution. Since det([T ]ββ) = 0, we know that [T ]ββ is not invertible (by Theorem 4.5 in

the fourth set of notes). Since [T ]ββ is not invertible, we know that T is not invertible (by
Theorem 6.11 in the second set of notes). Since T is not invertible, T is not one-to-one. (If
T were one-to-one, then T would also by onto, by the rank-nullity theorem, so T would be
invertible, a contradiction.) Since T is not one-to-one, there exists a nonzero vector v such
that Tv = 0. That is, the nullity of T is positive.

4. Question 4

Let V ⊆ P2(R) be the subspace of all f ∈ P2(R) such that f(1) = 0. Let β = (v1, v2) =
(x− 1, x2 − x) be an ordered basis of V .

(i) Let a, b ∈ R with ab 6= −2. Let γ = (−v1 + av2, bv1 + 2v2) be another ordered basis of
V . Calculate the change of coordinate matrix from β to γ.

Solution. The change of coordinate matrix Q is defined as Q = [IV ]γβ. So, we have

Q = [IV ]γβ = ([v1]
γ, [v2]

γ).

Using ab 6= −2 so that we do not divide by zero, we have

v1 = (−1− ab/2)−1(−v1 + av2) + (−1− ab/2)−1(−a/2)(bv1 + 2v2)

v2 = (ab+ 2)−1b(−v1 + av2) + (ab+ 2)−1(bv1 + 2v2).

Therefore,

Q =

(
(−1− ab/2)−1 (ab+ 2)−1b

(−1− ab/2)−1(−a/2) (ab+ 2)−1

)
.

(ii) Let a = −2, b = −1 in part (i). Suppose T : V → V satisfies [T ]γγ =

(
1 2
3 4

)
. Find

[T ]ββ.
Solution. Recall that (from Lemma 7.3 in the second set of notes),

[T ]ββ = [IV ]βγ [T ]γγ[IV ]γβ = Q−1[T ]γγQ.

So, if a = −2 and b = −1, we have

[T ]ββ = Q−1
(

1 2
3 4

)
Q =

(
−1/2 −1/4
−1/2 1/4

)−1(
1 2
3 4

)(
−1/2 −1/4
−1/2 1/4

)
.

5. Question 5

(a) State the prove the dimension theorem for a linear transformation T : V → W . (I
don’t think I would ask this question on an exam, myself.)

Solution. See Theorem 3.9 in the second set of notes.
(b) (This question deals with dual bases, which is not formally a part of our class.)
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6. Question 6

Let V,W,U be three finite dimensional vector spaces, and let α, β, γ be ordered bases for
V,W and U respectively. Prove that, for all S : W → U linear and for all T : V → W linear,
we have

[ST ]γα = [S]γβ[T ]βα.

(I don’t think I would ask this question on an exam, myself.)
Solution. See Theorem 5.14 in the second set of notes.

7. Extra Credit

Let D be an n×n diagonal matrix whose (i, i) entry is equal to i, for all 1 ≤ i ≤ n. Define
a linear transformation T : Mn×n(R) → Mn×n(R) by T (A) = DA − AD. Find a basis of
N(T ) and determine the rank of T .

Solution. Let ei be a standard basis vector of Rn for each 1 ≤ i ≤ n. Suppose T (A) = 0.
That is, DA = AD. Since Dei = iei, we have iAei = ADei = DAei. That is, Aei is
an eigenvector of D with eigenvalue i. Since the eigenspace of D with eigenvalue i is one-
dimensional and it is the span of ei, we know that Aei is a multiple of ei. That is, there
exists λi ∈ R such that ei is an eigenvector of A with eigenvalue λi. Since this is true for
all 1 ≤ i ≤ n, we conclude that (e1, . . . , en) is a basis of Rn consisting of eigenvectors of A.
From Lemma 3.15 in the fourth set of notes, we conclude that A itself is a diagonal matrix
with entries λ1, . . . , λn. That is, A = diag(λ1, . . . , λn).

Therefore, if T (A) = 0, then A is contained in the subspace of all diagonal n×n matrices.
Note that this space is n-dimensional. That is, dim(N(T )) ≤ n. We will in fact show that
nullity(T ) = n. To see this, consider the n × n diagonal matrix Di whose ith entry is 1,
with all other entries 0. Then the set of matrices (D1, . . . , Dn) is a linearly independent set.
Moreover, we just verified that Di ∈ N(T ) for all 1 ≤ i ≤ n. (We can also observe directly
that ADi = DiA, so T (Di) = 0 for all 1 ≤ i ≤ n.) Therefore, nullity(T ) ≥ n. In conclusion,
nullity(T ) = n, so that (D1, . . . , Dn) is a basis for N(T ), by Corollary 6.14(e) in the first set
of notes.

Finally, by the rank-nullity theorem, we have rank(T ) = dim(Mn×n(R)) − nullity(T ) =
n2 − n = n(n− 1).
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