
115A Midterm 2 Solutions1

1. Question 1

True/False
(a) For any n ≥ 1, every linear transformation on an n-dimensional vector space has n

distinct eigenvalues.
FALSE: The 2× 2 identity matrix has all eigenvalues 1.
(b) Any linear transformation on a 4-dimensional vector space that has fewer than 4

distinct eigenvalues is not diagonalizable.
FALSE: The 4× 4 identity matrix has all eigenvalues 1, but it is diagonal, so it is diago-

nalizable.
(c) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly

dependent.
FALSE: The standard basis of Rn gives an orthonormal set of eigenvectors for the identity

matrix, and all of these vectors have eigenvalue 1.
(d) Let V be a vector space over C. Let T : V → V be a linear transformation. If 0 is the

only eigenvalue of T , then T = 0.
FALSE: Recall that a 2×2 matrix has at most 2 eigenvalues by the Fundamental Theorem

of Algebra. Now, the matrix A =

(
0 1
0 0

)
has exactly two zero eigenvalues, but it is not

zero.
(e) Let A,B be 3×3 matrices such that AB = −BA. Then either A or B is non-invertible.
TRUE: Taking the determinant of the identity AB = −BA and applying the multiplicative

property of the determinant, we get det(A)det(B) = −det(B)det(A). If both A,B are
invertible, then they have nonzero determinants, so we get 1 = −1, a contradiction. We
conclude that at least one of A,B has zero determinant. That is, at least one of A,B is not
invertible.

2. Question 2

Let V be a (possibly infinite-dimensional) vector space over a field F. Suppose P : V → V
is a linear transformation such that P 2 = P . Such a linear transformation is called a
projection. Prove that, for any v ∈ V , there exist unique vectors n,w ∈ V such that
v = n+ w, where n ∈ N(P ) and w ∈ R(P ).

Solution. Write v = (v−P (v)) +P (v). Define n := v−P (v) and define w := P (v). Then
v = n+w. Also, n ∈ N(P ) since P (v−P (v)) = P (v)−P (P (v)) = P (v)−P (v) = 0, using the
assumption P 2 = P . Lastly, w ∈ R(P ), by definition of w (that is, using w = P (v)). We have
therefore proven existence. We now prove uniqueness. Suppose v = n′+w′ where n′ ∈ N(P )
and w′ ∈ R(P ). Then n + w = n′ + w′, so n − n′ = w′ − w. So, if we define x = n − n′,
then x ∈ N(P ) and x ∈ R(P ). Since x ∈ R(P ), there exists z ∈ V such that P (z) = x.
Then P 2(z) = P (x) = 0, using x ∈ N(P ), Since P 2 = P , we have P (z) = P (x) = 0, so that
z ∈ N(P ). Since P (z) = 0 and P (z) = x, we have x = 0. That is, 0 = n− n′ = w′ − w, so
that n = n′ and w = w′. That is, n,w are unique; there is only one way to write v = n+ w
where n ∈ N(P ) and w ∈ R(P ).
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3. Question 3

In the following questions, you do not necessarily need to diagonalize the matrix to answer
the question.

(i) Is the following matrix diagonalizable over R? Why or why not?

A =

2 0 1
0 3 4
0 0 4

 .

Solution. This matrix is diagonalizable over R. Its characteristic polynomial is (2−λ)(3−
λ)(4− λ), which is a product of distinct real roots. We can therefore diagonalize A over R.
This was Corollary 5.3 in the fourth set of notes.

(ii) Is the following matrix diagonalizable over R? Why or why not?

A =

2 0 1
0 3 4
0 1 3

 .

This matrix is also diagonalizable over R, because its characteristic polynomial is a prod-
uct of distinct real roots, so Corollary 5.3 applies as before. Observe, the characteristic
polynomial is

(2− λ)[(3− λ)2 − 4] = (2− λ)(λ2 − 6λ+ 5) = (2− λ)(λ− 5)(λ− 1).

Therefore, the characteristic polynomial of A has three distinct real roots.
(iii) Is the following matrix diagonalizable over C? Why or why not?

A =

(
0 −1
1 0

)
.

This matrix is diagonalizable over C. Its characteristic polynomial is λ2 + 1 = (λ +√
−1)(λ−

√
−1), which is a product of distinct complex roots. We can therefore diagonalize

A over C by as Corollary 5.3 in the fourth set of notes.

4. Question 4

Let A be the real matrix

A =

1 2 3
2 3 4
3 4 5

 .

Find bases for the null space N(LA) and for the range R(LA). Then, find a diagonal 3 × 3
matrix D whose entries are zero or one such that there exist invertible 3 × 3 matrices P,Q
with D = QAP−1. (You may assume that such D,Q, P exist, you do not need to find P ,
and you do not need to find Q.)

Solution: Since A is 3× 3, recall that LA : R3 → R3. Let’s do some row reductions.1 2 3
2 3 4
3 4 5

→
1 2 3

0 −1 −2
0 −2 −4

→
1 2 3

0 −1 −2
0 0 0


So, A must have rank 2 (since elementary row operations are invertible, and invertible
transformations preserve the rank of a matrix), so the null space is 1-dimensional, and the
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range space is 2-dimensional, by the rank-nullity theorem. The null space is unchanged by
invertible transformations, so a basis of the null space of the row-reduced form of A is a basis
for the null space of A. So, a basis for the null space of A is

 1
−2
1


There are a few ways to find a basis for the range of A. For one method, note that the first
and second columns of the row-echelon form of A are part of a basis of R3. So, the first
and second columns of A must be a basis for the range of A, since the row-echelon form was
obtained by applying invertible matrices to A. That is, the vectors

1
2
3

 ,

2
3
4


form a basis for the range of A. Actually, any two linearly independent columns of A form
a basis for the range of A, since this range is two-dimensional.

Now, to find D, note that since P,Q are invertible, if D exists as stated, then D must
have rank 2. Since D is diagonal with zero or one entries, D may therefore have the form

D =

1 0 0
0 1 0
0 0 0

 .

Actually, D could be any diagonal matrix with two ones and one zero on the diagonal.

5. Question 5

Let n be a positive integer. Let T : Pn(R)→ Rn+1 be defined by

T (f) := (f(0), f(1), f(2), . . . , f(n)).

(Recall that Pn(R) is the set of all polynomials of degree at most n in a real variable x.) For
example, if n = 3, then T (x2) = (0, 1, 4, 9).

Prove that T is linear. Then, prove that T is an isomorphism.
Solution. Let f, g ∈ Pn(R) and let α ∈ R. Then

T (αf + g) = ((αf + g)(0), . . . , (αf + g)(n)) = (αf(0) + g(0), . . . , αf(0) + g(n))

= α(f(0), . . . , f(n)) + (g(0), . . . , g(n)) = αT (f) + T (g).

Therefore, T is linear. We now show that T is an isomorphism. From Lemma 6.6 in the
second set of notes, it suffices to show that T is both one-to-one and onto. Both properties
actually follow from Lagrange Interpolation (Theorem 7.2 in the first set of notes). Given
any numbers y0, . . . , yn, there exists a unique polynomial f ∈ Pn(R) such that f(i) = yi for
all 0 ≤ i ≤ n. The existence of f implies that T is onto, and the uniqueness of f implies
that T is one-to-one. (If T (f) = T (g), then f and g both satisfy f(i) = g(i) = yi for all
0 ≤ i ≤ n, so by the uniqueness part of Lagrange Interpolation, we have f = g, so that
T is one-to-one). In conclusion, T is both one-to-one and onto, so it is an isomorphism by
Theorem 7.2 in the first set of notes.
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