115A Midterm 2 Solutions¹

1. Question 1

True/False

(a) For any $n \geq 1$, every linear transformation on an n-dimensional vector space has n distinct eigenvalues.

FALSE: The 2×2 identity matrix has all eigenvalues 1.

(b) Any linear transformation on a 4-dimensional vector space that has fewer than 4 distinct eigenvalues is not diagonalizable.

FALSE: The 4×4 identity matrix has all eigenvalues 1, but it is diagonal, so it is diagonalizable.

(c) Two distinct eigenvectors corresponding to the same eigenvalue are always linearly dependent.

FALSE: The standard basis of \mathbb{R}^n gives an orthonormal set of eigenvectors for the identity matrix, and all of these vectors have eigenvalue 1.

(d) Let V be a vector space over C. Let $T: V \to V$ be a linear transformation. If 0 is the only eigenvalue of T, then T = 0.

FALSE: Recall that a 2×2 matrix has at most 2 eigenvalues by the Fundamental Theorem of Algebra. Now, the matrix $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has exactly two zero eigenvalues, but it is not zero.

(e) Let A, B be 3×3 matrices such that AB = -BA. Then either A or B is non-invertible. TRUE: Taking the determinant of the identity AB = -BA and applying the multiplicative property of the determinant, we get $\det(A)\det(B) = -\det(B)\det(A)$. If both A,B are invertible, then they have nonzero determinants, so we get 1 = -1, a contradiction. We conclude that at least one of A, B has zero determinant. That is, at least one of A, B is not invertible.

2. Question 2

Let V be a (possibly infinite-dimensional) vector space over a field \mathbf{F} . Suppose $P: V \to V$ is a linear transformation such that $P^2 = P$. Such a linear transformation is called a projection. Prove that, for any $v \in V$, there exist unique vectors $n, w \in V$ such that v = n + w, where $n \in N(P)$ and $w \in R(P)$.

Solution. Write v = (v - P(v)) + P(v). Define n := v - P(v) and define w := P(v). Then v = n + w. Also, $n \in N(P)$ since P(v - P(v)) = P(v) - P(P(v)) = P(v) - P(v) = 0, using the assumption $P^2 = P$. Lastly, $w \in R(P)$, by definition of w (that is, using w = P(v)). We have therefore proven existence. We now prove uniqueness. Suppose v = n' + w' where $n' \in N(P)$ and $w' \in R(P)$. Then n + w = n' + w', so n - n' = w' - w. So, if we define x = n - n', then $x \in N(P)$ and $x \in R(P)$. Since $x \in R(P)$, there exists $z \in V$ such that P(z) = x. Then $P^2(z) = P(x) = 0$, using $x \in N(P)$, Since $P^2 = P$, we have P(z) = P(x) = 0, so that $z \in N(P)$. Since P(z) = 0 and P(z) = x, we have x = 0. That is, $x \in N(P)$ and $x \in N(P)$ and $x \in N(P)$ and $x \in N(P)$.

¹May 20, 2015, © 2015 Steven Heilman, All Rights Reserved.

3. Question 3

In the following questions, you do not necessarily need to diagonalize the matrix to answer the question.

(i) Is the following matrix diagonalizable over **R**? Why or why not?

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{pmatrix}.$$

Solution. This matrix is diagonalizable over \mathbf{R} . Its characteristic polynomial is $(2-\lambda)(3-\lambda)(4-\lambda)$, which is a product of distinct real roots. We can therefore diagonalize A over \mathbf{R} . This was Corollary 5.3 in the fourth set of notes.

(ii) Is the following matrix diagonalizable over **R**? Why or why not?

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 1 & 3 \end{pmatrix}.$$

This matrix is also diagonalizable over \mathbf{R} , because its characteristic polynomial is a product of distinct real roots, so Corollary 5.3 applies as before. Observe, the characteristic polynomial is

$$(2 - \lambda)[(3 - \lambda)^2 - 4] = (2 - \lambda)(\lambda^2 - 6\lambda + 5) = (2 - \lambda)(\lambda - 5)(\lambda - 1).$$

Therefore, the characteristic polynomial of A has three distinct real roots.

(iii) Is the following matrix diagonalizable over C? Why or why not?

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

This matrix is diagonalizable over \mathbf{C} . Its characteristic polynomial is $\lambda^2 + 1 = (\lambda + \sqrt{-1})(\lambda - \sqrt{-1})$, which is a product of distinct complex roots. We can therefore diagonalize A over \mathbf{C} by as Corollary 5.3 in the fourth set of notes.

4. Question 4

Let A be the real matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}.$$

Find bases for the null space $N(L_A)$ and for the range $R(L_A)$. Then, find a diagonal 3×3 matrix D whose entries are zero or one such that there exist invertible 3×3 matrices P, Q with $D = QAP^{-1}$. (You may assume that such D, Q, P exist, you do not need to find P, and you do not need to find Q.)

Solution: Since A is 3×3 , recall that $L_A : \mathbf{R}^3 \to \mathbf{R}^3$. Let's do some row reductions.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

So, A must have rank 2 (since elementary row operations are invertible, and invertible transformations preserve the rank of a matrix), so the null space is 1-dimensional, and the

2

range space is 2-dimensional, by the rank-nullity theorem. The null space is unchanged by invertible transformations, so a basis of the null space of the row-reduced form of A is a basis for the null space of A. So, a basis for the null space of A is

$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

There are a few ways to find a basis for the range of A. For one method, note that the first and second columns of the row-echelon form of A are part of a basis of \mathbb{R}^3 . So, the first and second columns of A must be a basis for the range of A, since the row-echelon form was obtained by applying invertible matrices to A. That is, the vectors

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\3\\4 \end{pmatrix} \right\}$$

form a basis for the range of A. Actually, any two linearly independent columns of A form a basis for the range of A, since this range is two-dimensional.

Now, to find D, note that since P, Q are invertible, if D exists as stated, then D must have rank 2. Since D is diagonal with zero or one entries, D may therefore have the form

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Actually, D could be any diagonal matrix with two ones and one zero on the diagonal.

5. Question 5

Let n be a positive integer. Let $T: P_n(\mathbf{R}) \to \mathbf{R}^{n+1}$ be defined by

$$T(f) := (f(0), f(1), f(2), \dots, f(n)).$$

(Recall that $P_n(\mathbf{R})$ is the set of all polynomials of degree at most n in a real variable x.) For example, if n = 3, then $T(x^2) = (0, 1, 4, 9)$.

Prove that T is linear. Then, prove that T is an isomorphism.

Solution. Let $f, g \in P_n(\mathbf{R})$ and let $\alpha \in \mathbf{R}$. Then

$$T(\alpha f + g) = ((\alpha f + g)(0), \dots, (\alpha f + g)(n)) = (\alpha f(0) + g(0), \dots, \alpha f(0) + g(n))$$

= $\alpha(f(0), \dots, f(n)) + (g(0), \dots, g(n)) = \alpha T(f) + T(g).$

Therefore, T is linear. We now show that T is an isomorphism. From Lemma 6.6 in the second set of notes, it suffices to show that T is both one-to-one and onto. Both properties actually follow from Lagrange Interpolation (Theorem 7.2 in the first set of notes). Given any numbers y_0, \ldots, y_n , there exists a unique polynomial $f \in P_n(\mathbf{R})$ such that $f(i) = y_i$ for all $0 \le i \le n$. The existence of f implies that T is onto, and the uniqueness of f implies that T is one-to-one. (If T(f) = T(g), then f and g both satisfy $f(i) = g(i) = y_i$ for all $0 \le i \le n$, so by the uniqueness part of Lagrange Interpolation, we have f = g, so that T is one-to-one). In conclusion, T is both one-to-one and onto, so it is an isomorphism by Theorem 7.2 in the first set of notes.