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1. Introduction, Fields, Vector Spaces, Bases

1.1. Introductory Remarks.

1.1.1. What will we be learning? We will be learning linear algebra from an abstract per-
spective.

1.1.2. Why so abstract? The abstract approach to learning rigorous mathematics, can be a
bit of a difficult adjustment. This approach uses an axiomatic presentation with complete
proofs, as opposed to intuitive reasoning and sketches of proofs which are used in your lower
division classes. You have probably seen rigorous proofs and the axiomatic method in a class
in Euclidean geometry; we will be using this approach for linear algebra. The main propo-
nents of this approach were the Bourbaki group of mainly French mathematicians, starting
in the 1930s. The power of the abstract approach is that we can make statements about
many examples, simultaneously. The difficulty of the abstract approach is that abstract
thinking can require some adjustment for the learner. It is sometimes beneficial to keep
some examples in mind to stay grounded, but sometimes these examples can be misleading.

1.2. A Brief History of Linear Algebra. Early antecedents for solving systems of linear
equations go back at least to Leibniz and Newton. This theory along with matrix theory
were developed through the 1800s. Essentially everything that we do in this course was
known by the year 1900, though the presentation has been streamlined over the years, as we
already discussed. By now matrices are ubiquitous in mathematics. And linear algebra serves
as the foundation of quantum mechanics, functional analysis, Fourier analysis, probability
theory, partial differential equations, computer science, and several other fields. There is a
very good reason that this class is required for all math majors.

1.3. Fields and Vector Spaces. In this course, we will be using arithmetic of vectors and
fields at an abstract level. For the sake of basic intuition, we can think of a field as R or
C, and we can think of a vector space as R2 or Rn for any natural number n with n ≥ 1.
However, many of the statements that we will prove in this course will hold for all objects
that satisfy the usual properties of arithmetic with which we are familiar. We formalize these
properties below as abstract definitions, when we define both fields and vector spaces, which
we will focus on throughout the course.

Definition 1.3.1 (Binary Operation). Let F be a set. A binary operation is a function
F × F → F .

Example 1.3.2. Addition on the real numbers is a binary operation. Two real numbers
(x, y) are mapped to the real number x+ y.

Definition 1.3.3 (Field). A field is a set F with two binary operations + and ·, such that
the following properties hold.

(1) ∀ α, β ∈ F, α + β = β + α (commutativity of addition)
(2) ∀ α, β, γ ∈ F, α + (β + γ) = (α + β) + γ (associativity of addition)
(3) ∀ α, β ∈ F, α · β = β · α (commutativity of multiplication)
(4) ∀ α, β, γ ∈ F, (α · β) · γ = α · (β · γ) (associativity of multiplication)
(5) ∀ α, β, γ ∈ F, α · (β + γ) = α · β + α · γ (distributivity)
(6) ∃ 0 ∈ F such that ∀ α ∈ F, 0 + α = α (additive identity)
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(7) ∀ α ∈ F, ∃ −α ∈ F such that α + (−α) = 0 (additive inverse)
(8) ∃ 1 ∈ F such that, ∀ α ∈ F, 1 · α = α (multiplicative identity)
(9) ∀ α ∈ F, α 6= 0, ∃ α−1 ∈ F such that α · α−1 = 1 (multiplicative inverse)

Remark 1.3.4. Note that the integers satisfy properties (1) through (8), but not property
(9). For all x ∈ Z, 2x 6= 1. So, the integers are not a field.

Example 1.3.5. The real numbers R are a field, with respect to the usual addition and
multiplication of real numbers.

Example 1.3.6. The rational numbers Q are a field, with respect to the usual addition and
multiplication of rational numbers.

Example 1.3.7. The set F = {0, 1} can be made into a field if we define addition and
multiplication via the following addition and multiplication tables.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

With these definitions of addition and multiplication, F is referred to as the field of two
elements.

Remark 1.3.8. The elements of a field are often called scalars.

Definition 1.3.9 (Vector Space). A vector space V over a field F is a set V together
with two functions +: V × V → V , · : F× V → V , such that the following properties hold.

(1) ∀ u, v ∈ V , u+ v = v + u (commutativity of addition)
(2) ∀ u, v, w ∈ V , u+ (v + w) = (u+ v) + w (associativity of addition)
(3) ∃ 0 ∈ V such that ∀ u ∈ V , 0 + u = u (additive identity)
(4) ∀ u ∈ V , ∃ −u ∈ V such that u+ (−u) = 0 (additive inverse)
(5) ∀ u ∈ V , ∀ α, β ∈ F, α · (β · u) = (αβ) · u (associativity of multiplication)
(6) ∀ u ∈ V , ∀ α, β ∈ F, (α + β) · u = α · u+ β · u (scalar distributivity)
(7) ∀ u, v ∈ V , ∀ α ∈ F, α · (u+ v) = α · u+ α · v (vector distributivity)
(8) ∀ u ∈ V , 1 ∈ F satisfies 1 · u = u (multiplicative identity)

Remark 1.3.10. Strictly speaking, the field element 0 ∈ F is distinct from the vector 0 ∈ V .
However, we use the same notation for both objects, since there is usually no confusion that
arises. Yet, at the stage of creating definitions, we should be aware of the difference between
these two objects.

Example 1.3.11. R is a vector space over R.

Example 1.3.12. R2 is a vector space over R. More generally, for any natural number n,
Rn is a vector space over R. More generally, for any field F, and for any n ∈ N, Fn is a
vector space over F.

Example 1.3.13. Let x be a real variable. The set P2(R) of all real polynomials in the
variable x of degree at most 2 is a vector space over R. More generally, the set P (R) of all
real polynomials in the variable x is a vector space over R. More generally, the set C∞(R)
of all infinitely differentiable functions in the variable x is a vector space over R.

3



Remark 1.3.14. Eventually, we will stop writing α · u, and we will just write αu, where
α ∈ F and u ∈ V . No confusion should arise from this change.

To get used to doing proofs, lets prove a fact that follows from the properties of a vector
space (Definition 1.3.9).

Proposition 1.3.15 (Vector Cancellation Law). Let V be a vector space over a field F.
Let u, v, w ∈ V such that u+ v = u+ w. Then v = w.

Proof. From property (4) in the Definition of a vector space, there exists −u ∈ V such that
u+ (−u) = 0. So,

v = 0 + v , by Property (3) in Definition 1.3.9

= (u+ (−u)) + v

= ((−u) + u) + v , by Property (1) in Definition 1.3.9

= (−u) + (u+ v) , by Property (2) in Definition 1.3.9

= (−u) + (u+ w) , by assumption

= ((−u) + u) + w , by Property (2) in Definition 1.3.9

= (u+ (−u)) + w , by Property (1) in Definition 1.3.9

= 0 + w

= w , by Property (3) in Definition 1.3.9.

�

After a while we won’t do algebraic manipulations in this level of detail. The purpose of
the above proof is to get used to justifying each step in our proofs. When doing homework
problems, make sure to justify each step of your proof. If you cannot justify each step, then
you may have a mistake in your proof!

Exercise 1.3.16. Let V be a vector space over a field F. Using the same level of detail as
the proof of Proposition 1.3.15, prove the following facts:

• ∀ v ∈ V , 0 · v = 0.
• ∀ v ∈ V , (−1) · v = −v.
• ∀ α ∈ F , and for 0 ∈ V , α · 0 = 0.
• ∀ α ∈ F, ∀ v ∈ V , α · (−v) = (−α) · v = −(α · v).

1.4. Three Fundamental Motivations for Linear Algebra. We will now present three
examples that should motivate the study of linear algebra. Consider the set X := {f ∈
C∞([0, 1]) : f(0) = f(1) = 0}. For any f ∈ X, define Tf := −(d2/dt2)f(t), where t ∈ [0, 1].
Note that X is a vector space over R. We will see later that X is infinite dimensional, so to
understand it, we cannot just use our intuition about finite dimensional vector spaces such
as R2. Note that T is linear, in the sense that, for any f, g ∈ X and for any α, β ∈ R, we
have T (αf + βg) = αT (f) + βT (g). Once again, since X is infinite dimensional, we cannot
truly think about T as being a matrix, in the same way that we can understand a linear
function on a finite dimensional vector space to be a matrix. However, there are some ways
in which we can use our finite dimensional intuition even when X is infinite dimensional. For
example, for any k ≥ 0, k ∈ Z, the functions sin(kπt) satisfy T [sin(kπt)] = k2π2 sin(kπt).
So, the functions sin(kπt) are eigenfunctions of T with eigenvalues k2π2. And understanding
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these eigenfunctions and eigenvalues leads us to an understanding of T . More general linear
functions such as T are studied in partial differential equations, quantum mechanics, Fourier
analysis, computer science, and so on. The theory of eigenfunctions and eigenvectors from
linear algebra can in fact be extended to infinite dimensional vector spaces X. This is done
in the mathematical subject of functional analysis. So, for now, we will mostly be studying
finite dimensional spaces X, but there is still a lot more to be gained from this theory, as
von Neumann and others found in the 1930s.

Linear algebra is also used in search technology, e.g. Google’s PageRank algorithm. In
this setting, it is desirable to design a large matrix A with very few entries. When we iterate
A roughly thirty times to get the matrix A30, then the largest entries of A30 give the most
relevant websites for a search query. The specific choice of A relies on a linear algebraic
interpretation of the set of all websites on the internet. In particular, we take x to be a real
vector whose length is the number of websites on the internet, and then A is a square matrix
whose side lengths are both the number of websites on the internet. Since A has very few
entries, the matrix A30 can be computed rather quickly. When Google estimates the time it
has taken to complete a search query, it is basically estimating the time it takes to iterate a
certain matrix A around 30 times.

Lastly, in sampling and data compression (WAV files, cell phones, JPEG, MPEG, youtube
videos,etc.), we once again want to design linear transformations which compress data as
much as possible. In this setting, a vector x is an audio, image or video file, we design some
matrix A in a certain way, and the output Ax is a compressed file. The details of the design
of A now come from Fourier analysis.

1.5. Subspaces, Linear independence. We are now going to make some definitions that
will help us break apart vector spaces into sub-objects. Eventually, we will be able to treat
certain vector spaces as sums of simpler pieces. And the simpler pieces (subspaces) will be
easier to understand.

Definition 1.5.1 (Subspace). Let V be a vector space over a field F, and let W ⊆ V with
W 6= ∅. If W is closed under vector addition and scalar multiplication, we say that W is a
subspace of V . That is, for all u, v ∈ W , we have u + v ∈ W . And for all u ∈ W , for all
α ∈ F, αu ∈ W .

Remark 1.5.2. If V is a vector space over a field F, and if W ⊆ V is a subspace of V , then
W is a vector space over F.

Remark 1.5.3. C∞(R) is a subspace of the space of all functions from R to R.

Remark 1.5.4. Every subspace W of a vector space V must satisfy 0 ∈ W . (To see this,
choose α = 0 in the definition of a subspace.) Note that we do not consider the empty set
to be a subspace of V .

The book uses a different definition of a subspace, so let’s show that our definition agrees
with the definition in the book.

Proposition 1.5.5 (Subspace Equivalence). Let V be a vector space over a field F, and let
W ⊆ V with W 6= ∅. Then W is closed under vector addition and scalar multiplication if and
only if W is a vector space over F (with the operations of addition and scalar multiplication
defined on V ).
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Proof. We begin with the reverse implication. Suppose W is a vector space over F. Then,
from the definition of a vector space (Definition 1.3.9), the operations of addition and mul-
tiplication must satisfy +: W ×W → W and · : F ×W → W . That is, W is closed under
addition and scalar multiplication.

We now prove the forward implication. Suppose W is closed under vector addition and
scalar multiplication. We need to show that W satisfies all of the properties in the definition
of a vector space (Definition 1.3.9). Let u, v, w ∈ W , α, β ∈ F. Since W ⊆ V , u, v, w ∈ V .
Since V is a vector space and u, v, w ∈ V , properties (1), (2), (5), (6), (7) and (8) all apply to
u, v, w, α, β. That is, all properties except for properties (3) and (4) must hold for W . So,
we will conclude once we show that W satisfies properties (3) and (4). (Note that it is not
immediately obvious that 0 ∈ W or −u ∈ W .)

We now show that W satisfies properties (3) and (4). Let u ∈ W . Since W ⊆ V , u ∈ V .
From Exercise 1.3.16 applied to V , 0 · u = 0 and (−1) · u = −u. Since W is closed under
scalar multiplication, we conclude that 0 ∈ W and −u ∈ W . From properties (3) and (4) of
Definition 1.3.9 applied to V (recalling that V is a vector space and u ∈ V ), we know that
0 +u = u and u+ (−u) = 0. Combining these facts with 0 ∈ W and −u ∈ W , we know that
properties (3) and (4) hold for W , as desired. �

Exercise 1.5.6. Show that the intersection of two subspace is also a subspace.

Definition 1.5.7 (Linear combination). Let V be a vector space over a field F. Let
u1, . . . , un ∈ V and let α1, . . . , αn ∈ F. Then

∑n
i=1 αiui is called a linear combination of

the vector elements u1, . . . , un.

Definition 1.5.8 (Linear dependence). Let V be a vector space over a field F. Let S be
a subset of V . We say that S is linearly dependent if there exists a finite set of vectors
u1, . . . , un ∈ S and there exist α1, . . . , αn ∈ F which are not all zero such that

∑n
i=1 αiui = 0.

Definition 1.5.9 (Linear independence). Let V be a vector space over a field F. Let S
be a subset of V . We say that S is linearly independent if S is not linearly dependent.

Example 1.5.10. The set S = {(1, 0), (0, 1)} is linearly independent in R2. The set S∪(1, 1)
is linearly dependent in R2, since (1, 0) + (0, 1)− (1, 1) = 0.

Definition 1.5.11 (Span). Let V be a vector space over a field F. Let S ⊆ V be a
finite or infinite set. Then the span of S, denoted by span(S), is the set of all finite linear
combinations of vectors in S. That is,

span(S) =

{
n∑
i=1

αiui : n ∈ N, αi ∈ F, ui ∈ S, ∀ i ∈ {1, . . . , n}

}
.

Remark 1.5.12. We define span(∅) := {0}.

Theorem 1.5.13 (Span as a Subspace). Let V be a vector space over a field F. Let
S ⊆ V . Then span(S) is a subspace of V such that S ⊆ span(S). Also, any subspace of V
that contains S must also contain span(S).

Proof. We first deal with the case that S = ∅. In this case, span(S) = {0}, which is a
subspace of V . Also, any subspace contains {0}, as shown in Remark 1.5.4. Below, we
therefore assume that S 6= ∅.
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We first show that span(S) is a subspace of V .
Step 1. We first show that span(S) ⊆ V . Let u ∈ span(S). By the definition of span
(Definition 1.5.11), ∃ n ∈ N, ∃ α1, . . . , αn ∈ F and ∃ u1, . . . , un ∈ S ⊆ V such that
u =

∑n
i=1 αiui. Since V is closed under scalar multiplication and vector addition, we have

u ∈ V . Since u ∈ span(S) is arbitrary, we conclude that span(S) ⊆ V .
Step 2. We now show that span(S) is closed under vector addition. Let v ∈ span(S). By the
definition of span (Definition 1.5.11), ∃ m ∈ N, ∃ β1, . . . , βm ∈ F and ∃ v1, . . . , vm ∈ S ⊆ V
such that v =

∑m
i=1 βivi. So,

u+ v = α1u1 + · · ·+ αnun + β1v1 + · · ·+ βmvm.

Since u1, . . . , un, v1, . . . , vm ∈ S, u+ v is a linear combination of elements of S. We conclude
that u + v ∈ span(S). Since u, v ∈ span(S) were arbitrary, we have that span(S) is closed
under vector addition.
Step 3. We now show that span(S) is closed under scalar multiplication. Let γ ∈ F. Recall
that u =

∑n
i=1 αiui. Using properties (7) and (5) from the definition of a vector space

(Definition 1.3.9),

γ · u = γ ·

(
n∑
i=1

αiui

)
=

n∑
i=1

(γαi) · ui.

That is, γ · u is a linear combination of elements of S. Since u ∈ span(S) is artbirary, we
conclude that span(S) is closed under scalar multiplication.

Combining Steps 1, 2 and 3 and applying Definition 1.5.1, we get that span(S) is a subspace
of V .

We now show that S ⊆ span(S). Let u ∈ S. In the definition of the span (Definition
1.5.11), choose n = 1, α1 = 1 to get 1 · u ∈ span(S). By property (8) of the definition of a
vector space (Definition 1.3.9), u = 1 · u ∈ span(S). Therefore, S ⊆ span(S).

We now prove the final claim of the Theorem. Let W ⊆ V be a subspace such that
S ⊆ W . We want to show that span(S) ⊆ W as well. So, let n ∈ N, let u1, . . . , un ∈ S, and
let α1, . . . , αn ∈ F. Since S ⊆ W , u1, . . . , un ∈ W . Since W is a subspace of V , W is closed
under scalar multiplication and under vector addition. So,

∑n
i=1 αiui ∈ W . Since n ∈ N,

u1, . . . , un ∈ S, and α1, . . . , αn ∈ F were arbitrary, we conclude that span(S) ⊆ W . �

1.6. Bases, Spanning Sets.

Definition 1.6.1 (Spanning Set). Let V be a vector space over a field F. Let S ⊆ V . We
say that S spans V if span(S) = V . In this case, we call S a spanning set for V . We can
also say that S generates V , and S is a generating set for V .

Example 1.6.2. The set {(1, 0), (0, 1)} is a spanning set for R2.

Spanning sets S are nice to have, since a spanning set S is sufficient to describe the vector
space V (since span(S) = V ). If we instead have a set S of linearly dependent vectors, then
there is some redundancy in our description of V . To use an analogy, if we want to make a
dictionary to describe a language, we want to just make a single entry for each word. It isn’t
very sensible to have multiple identical entries in our dictionary. The following Theorem
then shows that we can remove redundancy in a linearly dependent set of vectors.
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Theorem 1.6.3. Let V be a vector space over a field F. Let S ⊆ V be finite and linearly
dependent. Then there exists u ∈ S such that

span(S) = span(S r {u}).
Conversely, if S is linearly independent and finite, then any proper subset S ′ ( S satisfies

span(S ′) ( span(S).

Proof. We begin with the first claim. Let S ⊆ V be linearly dependent. Write S =
{u1, . . . , un}, with ui ∈ V for all i ∈ {1, . . . , n}. Since S is linearly dependent, there ex-
ist α1, . . . , αn ∈ F such that

n∑
i=1

αiui = 0. (∗)

There also exists i ∈ {1, . . . , n} such that αi 6= 0. By rearranging the vectors u1, . . . , un, we
may assume that α1 6= 0. Then we can rearrange (∗) and solve for u1 to get

u1 = −α−11

n∑
i=2

αiui =
n∑
i=2

(−α−11 αi)ui. (∗∗)

Since (S r {u1}) ⊆ S, span(S r {u1}) ⊆ span(S). So, it remains to show that span(S r
{u1}) ⊇ span(S). To show this, let w ∈ span(S). Then there exist β1, . . . , βn ∈ F such that

w =
n∑
j=1

βjuj.

Substituting (∗∗) into this equation,

w = β1

n∑
i=2

(−α−11 αi)ui +
n∑
j=2

βjuj.

That is, w ∈ span(S r {u1}). In conclusion, span(S r {u1}) ⊇ span(S), and so span(S r
{u1}) = span(S).

We now prove the second claim. Since S ′ ⊆ S, span(S ′) ⊆ span(S). So, it remains to find
w ∈ span(S) such that w /∈ span(S ′). Since S ′ ( S, there exists w ∈ S such that w /∈ S ′.
We will show that w /∈ span(S ′). To show this, we argue by contradiction. Assume that
w ∈ span(S ′). Then, there exist α1, . . . , αn ∈ F and there exist u1, . . . , un ∈ S ′ ⊆ S such
that

w =
n∑
i=1

αiui.

That is,

0 = (−1)w +
n∑
i=1

αiui. (‡)

Since −1 6= 0 and w /∈ S ′, we have achieved an equality (‡) that violates the linear inde-
pendence of S. (If we had w ∈ S ′, then the −1 coefficient in front of w could possibly be
cancelled by some αi term in the sum in (‡). And then all coefficients in (‡) could be zero, so
(‡) may not give us any linear dependence among elements of S. So, we are really using here
that w /∈ S ′.) Since we have achieved a contradiction, we conclude that in fact w /∈ span(S ′),
as desired. �
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Exercise 1.6.4. Show that the assumption that S is finite can be removed from the state-
ment of Theorem 1.6.3.

Remark 1.6.5. If we begin with a finite, linearly dependent set of vectors S, then we can
apply Theorem 1.6.3 multiple times to eliminate more and more vectors from S to get a
linearly independent set.

Definition 1.6.6 (Basis). Let V be a vector space over a field F. Let S ⊆ V . We say that
S is a basis of V if S is a linearly independent set such that span(S) = V .

Example 1.6.7. The set {(1, 0), (0, 1)} is a basis of R2.

Example 1.6.8. The set {1, x, x2} is a basis of P2(R).

Example 1.6.9. The set {1, x, x2, x3, . . .} is a basis of P (R).

Remark 1.6.10. Bases are the building blocks of a vector space.

Bases are nice for many reasons. One such reason is that they have the following uniqueness
property.

Theorem 1.6.11 (Existence and Uniqueness of Basis Coefficients). Let {u1, . . . , un}
be a basis for a vector space V over a field F. Then for any vector u ∈ V , there exist unique
scalars α1, . . . , αn ∈ F such that

u =
n∑
i=1

αiui.

Proof. Let u ∈ V . Since {u1, . . . , un} spans V , there exist scalars α1, . . . , αn ∈ F such that

u =
n∑
i=1

αiui. (∗)

It remains to show that these scalars are unique. To prove the uniqueness, let β1, . . . , βn ∈ F
such that

u =
n∑
i=1

βiui. (∗∗)

Subtracting (∗) from (∗∗), we get

0 =
n∑
i=1

(βi − αi)ui.

Since {u1, . . . , un} are linearly independent, we conclude that (αi − βi) = 0 for all i ∈
{1, . . . , n}. That is, αi = βi for all i ∈ {1, . . . , n}. That is, the scalars α1, . . . , αn are
unique. �

Theorem 1.6.12. Let V be a vector space over a field F. Let S be a linearly independent
subset of V . Let u ∈ V be a vector that does not lie in S.

(a) If u ∈ span(S), then S ∪ {u} is linearly dependent, and span(S ∪ {u}) = span(S).
(b) If u /∈ span(S), then S ∪ {u} is linearly independent, and span(S ∪ {u}) ) span(S).
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Proof of (a). Let u ∈ span(S). Then there exist u1, . . . , un ∈ S, α1, . . . , αn ∈ F such that
u =

∑n
i=1 αiui. That is,

0 = (−1) · u+
n∑
i=1

αiui.

Since ui ∈ S for all i ∈ {1, . . . , n}, we conclude that S ∪ {u} is a linearly dependent set
(since −1 6= 0).

Since S ⊆ S ∪ {u}, we know that span(S ∪ {u}) ⊇ span(S). So, it remains to show that
span(S∪{u}) ⊆ span(S). To this end, let v ∈ span(S∪{u}). Then there exist v1, . . . , vm ∈ S,
β0, . . . , βn ∈ F such that v = β0u+

∑m
i=1 βivi. Since u =

∑n
i=1 αiui, we conclude that

v = β0(
n∑
i=1

αiui) +
m∑
i=1

βivi.

That is, v is a linear combination of elements in S. So, v ∈ span(S). In conclusion,
span(S ∪ {u}) ⊆ span(S), so span(S ∪ {u}) = span(S). �

Proof of (b). Let u1, . . . , un ∈ S, and let α0, . . . , αn ∈ F. Assume that

α0u+
n∑
i=1

αiui = 0. (∗)

We need to show that α0 = · · · = αn = 0. We split into two cases, depending whether or
not α0 is zero. If α0 = 0, then (∗) becomes

n∑
i=1

αiui = 0.

And then α1 = · · · = αn = 0, since S is linearly independent. On the other hand, if α0 6= 0,
then (∗) says

u = −α−10

(
n∑
i=1

αiui

)
=

n∑
i=1

(−α−10 αi)ui.

That is, u ∈ span(S), contradicting our assumption that u /∈ span(S). So, we must have
α0 = 0, and therefore (as we showed), α0 = α1 = · · · = αn = 0, as desired. Therefore,
S ∪ {u} is linearly independent.

We now prove the second claim of part (b). Since S ⊆ S ∪{u}, span(S ∪{u}) ⊇ span(S).
Finally, by assumption, u /∈ span(S), so span(S ∪ {u}) ) span(S), as desired. �

The following theorem elaborates on the previous theorem.

Theorem 1.6.13 (The Replacement Theorem). Let V be a vector space over a field F.
Let S ⊆ V be a finite spanning set (i.e. such that span(S) = V ). Assume that S has exactly
n elements. Let L be a finite subset of V which is linearly independent. Assume that L has
exactly m elements. Then m ≤ n. Moreover, there exists a subset S ′ of S containing exactly
n−m vectors such that S ′ ∪ L spans V .

Proof. We use induction on m. The base case is m = 0, and in this case it is true that
n ≥ 0 = m. Since span(S) = V , we then define S ′ := S, completing the proof.

We now prove the inductive step. Let m > 0. Assume that the theorem is true for m− 1.
Since L has m elements, we can write L = {v1, . . . , vm}, where vi ∈ V for all i ∈ {1, . . . ,m}.
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Since L is linearly independent, the set {v2, . . . , vm} is also linearly independent, by the
definition of linear independence. So, by the inductive hypothesis, we apply the theorem to
the set of vectors {v2, . . . , vm}. Then m−1 ≤ n, and there exists a subset S ′′ of S containing
exactly n−m+ 1 vectors such that S ′′ ∪ {v2, . . . , vm} spans V .

Write S ′′ = {w1, . . . , wn−m+1}, where wi ∈ V for all i ∈ {1, . . . , n − m + 1}. We now
prove that n ≥ m. We know n ≥ m − 1, so we need to exclude the case n = m − 1.
Since S ′′ ∪ {v2, . . . , vm} = {w1, . . . , wn−m+1, v2, . . . , vm} spans V and v1 ∈ V , there exist
α1, . . . , αn−m+1, β2, . . . , βm ∈ F such that

v1 = α1w1 + · · ·+ αn−m+1wn−m+1 + β2v2 + · · ·+ βmvm. (∗)
We now argue by contradiction to show that n 6= m − 1. So, assume to the contrary that
n = m− 1. Then S ′′ is empty, and (∗) becomes

v1 = β2v2 + · · ·+ βmvm. (∗∗)
That is,

0 = (−1)v1 + β2v2 + · · ·+ βmvm.

But {v1, . . . , vm} = L is a linearly independent set, so we get a contradiction, since −1 6= 0.
We therefore conclude that n 6= m− 1. Since n ≥ m− 1 also, we conclude that n ≥ m.

We will now conclude the proof. Since n ≥ m, and S ′′ has n−m + 1 elements, we know
that S ′′ is nonempty. Recall that the set

{w1, . . . , wn−m+1, v2, . . . , vm}
spans V , so by adding one vector, we still span V . That is, the set

{w1, . . . , wn−m+1, v1, . . . , vm}
spans V . To conclude the proof, we need to remove one of the wi from this set, and still
retain the spanning property.

In equation (∗), at least one element of α1, . . . , αn−m+1 must be nonzero, otherwise we
would get (∗∗) and obtain a contradiction. Since the ordering of the vectors in (∗) does not
matter, we may assume that α1 6= 0. So, rewriting (∗) and solving for w1,

w1 = v1 − α−11 α2w2 − · · · − α−11 αn−m+1wn−m+1 − α−11 β2v2 − · · · − α−11 βmvm.

That is, w1 is a linear combination of {w2, . . . , wn−m+1, v1, . . . , vm}.
So, define S ′ := {w2, . . . , wn−m+1}. Then w1 is a linear combination of elements of S ′ ∪L.

By Theorem 1.6.12(a),
span(S ′ ∪ L) = span(S ′ ∪ L ∪ {w1}).

But S ′ ∪ L ∪ {w1} = S ′′ ∪ L, so

span(S ′ ∪ L) = span(S ′′ ∪ L).

Since S ′′ ∪ {v2, . . . , vm} spans V and S ′′ ∪ L ⊇ S ′′ ∪ {v2, . . . , vm}, we conclude that S ′′ ∪ L
spans V , so span(S ′ ∪ L) = V . Finally, S ′ has exactly n−m elements, as desired. �

The Replacement Theorem will allow us to finally start talking about the dimension of
finite vector spaces. We now collect some consequences of the Replacement Theorem, some
of which will help us in constructing bases of vector spaces.

Corollary 1.6.14. Let V be a vector space over a field F. Assume that B is a finite basis
of V , and B has exactly d elements. Then
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(a) Any set S ⊆ V containing less than d elements cannot span V . (That is, any spanning
set must contain at least d elements.)

(b) Any set S ⊆ V containing more than d elements must be linearly dependent. (That
is, any linearly independent set in V must contain at most d elements.)

(c) Any basis of V must contain exactly d elements.
(d) Any spanning set of V with exactly d elements is a basis of V .
(e) Any set of d linearly independent elements of V is a basis of V .
(f) Any set of linearly independent elements of V is contained in a basis of V .
(g) Any spanning set of V contains a basis.

Proof of (a). We argue by contradiction. Suppose S spans V , and S has d′ < d elements.
Since B is linearly independent, the Replacement Theorem (Theorem 1.6.13) implies that
d′ ≥ d. But d′ < d by assumption. Since we have arrived at a contradiction, we conclude
that S cannot span V . �

Proof of (b). First, assume that S is finite. We argue by contradiction. Suppose S is linearly
independent, and S has d′ > d elements. Since B spans V , the Replacement Theorem
(Theorem 1.6.13) implies that d ≥ d′. But d′ > d by assumption. Since we have arrived at
a contradiction, we conclude that S is linearly dependent.

Now, assume that S is infinite. Let S ′ be any subset of S with d+ 1 elements. From what
we just proved, we know that S ′ is linearly dependent. Since S ′ ⊆ S, we conclude that S is
linearly dependent. �

Proof of (c). Let S ⊆ V be any basis. Suppose S has d′ elements. Since S spans V , d′ ≥ d
by part (a). Since S is linearly independent, d′ ≤ d by part (b). Therefore d′ = d. �

Proof of (d). Let S ⊆ V be a spanning set with d elements. It suffices to show that S is
linearly independent. To show this, we argue by contradiction. Assume that S is linearly
dependent. From Theorem 1.6.3, there exists u ∈ S such that S r {u} is also a spanning
set. But S r {u} has d− 1 elements, contradicting part (a). We therefore conclude that S
is linearly independent, as desired. �

Proof of (e). Let S ⊆ V be a set of d linearly independent elements. It suffices to show that
S is a spanning set. To show this, we argue by contradiction. Suppose S does not span V .
Then there exists u ∈ V such that u /∈ span(S). By Theorem 1.6.12(b), S ∪ {u} is linearly
independent, and it has d+ 1 elements, contradicting part (b) of the present Theorem. We
therefore conclude that S is a spanning set. �

Proof of (f). Let L ⊆ V be a set of exactly d′ linearly independent elements. By the Re-
placement Theorem (Theorem 1.6.13), there exists a subset B′ of B with exactly d − d′

elements such that L ∪ B′ spans V . Then L ∪ B′ has at most (d − d′) + d′ = d elements.
Since L∪B′ spans V , L∪B′ must have exactly d elements, by part (a). It remains to show
that L ∪B′ is linearly independent. This follows from part (d). �

Proof of (g). Let S ⊆ V be a spanning set of V . From part (e), it suffices to find a subset
of S of d linearly independent elements. To find such a subset, we argue by contradiction.
Suppose every subset of S with d elements has at most d′ < d linearly independent elements.
Suppose we have d′ linearly independent elements S ′ := {u1, . . . , ud′} ⊆ V . Let u ∈ S with
u /∈ S ′. Then u must be a linear combination of elements of S ′. Otherwise, S ∪ {u} would
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be a linearly independent set of d′ + 1 elements, by Theorem 1.6.12(b). In conclusion, every
element of S is a linear combination of elements of S ′. So, span(S ′) = span(S) = V . So, S ′

is a basis of V with d′ elements. But this fact contradicts part (c), since d′ < d, and B is a
basis of V with d elements. Since we have reached a contradiction, we conclude that there
exists a subset S of V with d linearly independent elements, as desired. �

Definition 1.6.15 (Dimension). Let V be a vector space over a field F. We say that V
is finite-dimensional if there exists d ∈ N such that V contains a basis with d elements.
By Corollary 1.6.14(c), the number d does not depend on the choice of basis of V . We
therefore call d the dimension of V , and we write dim(V ) = d. If the vector space V is not
finite-dimensional, we say that V is infinite-dimensional, and we write dim(V ) =∞.

Remark 1.6.16. From Corollary 1.6.14(c), we see that a given finite-dimensional vector
space V over a field F has exactly one d ∈ N such that V has dimension d. That is, the
notion of the dimension of a vector space V over a field F is well-defined.

Example 1.6.17. R3 has dimension 3.

Example 1.6.18. P2(R) has dimension 3.

Example 1.6.19. The vector space Mm×n(R) of m×n matrices over R has dimension mn.

Example 1.6.20. P (R) is infinite dimensional.

Example 1.6.21. The complex numbers C viewed as a vector space over the field C have
dimension 1.

Example 1.6.22. The complex numbers C viewed as a vector space over the field R have
dimension 2. So, changing the field can change our notion of dimension.

1.7. Subspaces and Dimension.

Theorem 1.7.1. Let V be a finite-dimensional vector space over a field F. Let W be a
subspace of V . Then W is also finite-dimensional, and dim(W ) ≤ dim(V ). Moreover, if
dim(W ) = dim(V ), then W = V .

Proof. We will build a basis for W . We begin with the zero vector {0}. If W = {0}, we
stop building the basis. Otherwise, let u1 ∈ W be a nonzero vector. If W = span(u1), then
the basis for W is {u1}. Otherwise, let u2 ∈ W such that u2 /∈ span(u1). By Theorem
1.6.12(b), {u1, u2} is a linearly independent set. If W = span(u1, u2), then {u1, u2} is a
basis for W , by the definition of basis. Otherwise, let u3 ∈ W such that u3 /∈ span(u1, u2).
We continue in this way, building this list of vectors. Since V is finite-dimensional, it has
a basis consisting of d elements for some d ∈ N. So, by Corollary 1.6.14(b), we must stop
building our list of vectors after at most d steps. Suppose that when this procedure stops,
we have n vectors {u1, . . . , un}. Then W = span(u1, . . . , un), so W is finite-dimensional,
dim(W ) = n, and n ≤ d. In the case n = d, then W = span(u1, . . . , un), and {u1, . . . , un}
is a linearly independent set. So, by Corollary 1.6.14(e), {u1, . . . , un} is a basis for V . So,
span(u1, . . . , un) = V , i.e. W = V . �

The following result concerning polynomials may appear entirely unrelated to linear alge-
bra. However, if we look at the problem in the right way, the uniqueness statement becomes
a relatively easy consequence of the general theory we have developed above.
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Theorem 1.7.2 (Lagrange Interpolation Formula). Let x1, . . . , xn be distinct real num-
bers, and let y1, . . . , yn ∈ R. Then, there exists a unique polynomial f ∈ Pn−1(R) such that
f(xi) = yi for all i ∈ {1, . . . , n}. Moreover, for any x ∈ R, f can be written as

f(x) =
n∑
j=1

∏
1≤k≤n : k 6=j(x− xk)∏
1≤k≤n : k 6=j(xj − xk)

· yj. (∗)

Proof. We first show that f is unique. This uniqueness will come from writing f in a suitable
basis of Pn−1(R), and then applying Theorem 1.6.11.

For each i ∈ {1, . . . , n}, define

fi(x) :=
∏

1≤k≤n : k 6=i

x− xk
xi − xk

.

Note that fi is a degree (n− 1) polynomial,

fi(xi) = 1, fi(xj) = 0 ∀ j ∈ {1, . . . , n}r {i}. (∗∗)
We claim that the set {fi}ni=1 is a basis of Pn−1(R). We know that B := {1, x, x2, . . . , xn−1}
is a basis for Pn−1(R) with n elements. So, to show that {fi}ni=1 is a basis of P(n−1)(R), it
suffices to show that {fi}ni=1 is a linearly independent set, by Corollary 1.6.14(e).

We show that {fi}ni=1 is a linearly independent set by contradiction. Suppose {fi}ni=1 is
not linearly independent. Then, there exist α1, . . . , αn ∈ R such that

n∑
i=1

αifi(x) = 0, ∀x ∈ R, (†)

and there exists j ∈ {1, . . . , n} such that αj 6= 0. However, using x = xj in (†), and then
applying (∗∗), we get from (†) that αj = 0, a contradiction. We conclude that {fi}ni=1 is a
linearly independent set. So, by Theorem 1.6.11, for any f ∈ Pn−1(R), there exist unique
scalars β1, . . . , βn ∈ R such that

f =
n∑
j=1

βjfj. (‡)

If f ∈ Pn−1(R) satisfies f(xj) = yj for all j ∈ {1, . . . , n}, we will show that βj = yj for
all j ∈ {1, . . . , n} in (‡). Fix j ∈ {1, . . . , n}. Using xj in (‡) and applying (∗∗), we get
f(xj) = βj. If f(xj) = yj for all j ∈ {1, . . . , n}, we must therefore have βj = yj in (‡). That
is, we exactly recover formula (∗).

f =
n∑
j=1

yjfj.

Finally, note that f defined by the formula f =
∑n

j=1 yjfj does satisfy f ∈ Pn−1(R) and

f(xj) = yj for all j ∈ {1, . . . , n}. �

Remark 1.7.3 (An Application to Cryptography.). The following application of Theorem
1.7.2 is known as Shamir’s Secret Sharing. Suppose I want to have a secret piece of
information shared between n people such that all n people can together verify the secret,
but any set of (n−1) of the people cannot verify the secret. The following procedure allows us
to share the secret in this way. We label the people as integers i ∈ {1, . . . , n}. Let x1, . . . , xn
be distinct, nonzero integers, and let y1, . . . , yn be any integers. Each person i ∈ {1, . . . , n}
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keeps a value (xi, yi). By Theorem 1.7.2, let f ∈ Pn−1(R) be the unique polynomial such
that f(xi) = yi for all i ∈ {1, . . . , n}. Then the secret information is f(0). To see that the
secret cannot be found by n−1 people, suppose we only knew the values {(xi, yi)}n−1i=1 . Then
there would be infinitely many polynomials f such that f(xi) = yi for all i ∈ {1, . . . , n− 1}
by Theorem 1.7.2. So, the secret f(0) could not be found by n− 1 people.

2. Linear Transformations and Matrices

2.2. Linear Transformations. The general approach to the foundations of mathematics
is to study certain spaces, and then to study functions between these spaces. In this course
we follow this paradigm. Up until now, we have been studying properties of vector spaces.
Vector spaces have a linear structure, and so it is natural to deal with functions between
vector spaces that preserve this linear structure. That is, we will concern ourselves with
linear transformations between vector spaces. For finite-dimensional spaces, it will turn
out that linear transformations can be represented by the action of a matrix on a vector.
However, for infinite-dimensional spaces, this representation doesn’t quite hold anymore.
(Though, thinking by the way of analogy allows many results for infinite-dimensional linear
transformations to nearly follow from the finite-dimensional case.) In any case, we can get
a good deal of mileage by simply talking about abstract linear transformations, without
addressing matrices at all. We will begin this approach below.

Definition 2.2.1. Let V and W be vector spaces over a field F. We call a function T : V →
W a linear transformation from V to W if, for all v, v′ ∈ V and for all α ∈ F,

(a) T (v + v′) = T (v) + T (v′). (T preserves vector addition.)
(b) T (αv) = αT (v). (T preserves scalar multiplication.)

Exercise 2.2.2. Let T : V → W be a linear transformation. Show that T (0) = 0.

Example 2.2.3. Define T (v) := 0. Then T is linear. This T is known as the zero transfor-
mation.

Example 2.2.4. Define T : V → V by T (v) := v. Then T is linear.

Example 2.2.5. Define T : R→ R by T (x) := x2. Then T is not linear.

Example 2.2.6. Let a, b, c, d ∈ R. Define T : R2 → R2 by

T

(
x
y

)
:=

(
a b
c d

)(
x
y

)
.

Then T is linear.

Example 2.2.7. Define T : C∞(R)→ C∞(R) by T (f) := df/dt. Then T is linear.

Example 2.2.8. Define T : C∞(R)→ C∞(R) by T (f) :=
∫ 1

0
f(t)dt. Then T is linear.

Remark 2.2.9. The set L(V,W ) of all linear transformations from V → W is itself a vector
space over F. We write L(V ) := L(V, V ). Given linear transformations S, T : V → W , we
define S + T so that, for all v ∈ V , (S + T )(v) := S(v) + T (v). Also, for any α ∈ F, we
define αT so that, for all v ∈ V , (αT )(v) := α(T (v)).
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2.3. Null spaces, range, coordinate bases.

Definition 2.3.1 (Null Space). Let V,W be vector spaces over a field F. Let T : V → W
be a linear transformation. The null space of T , denoted N(T ), is defined as

N(T ) := {v ∈ V : T (v) = 0}.

Remark 2.3.2. N(T ) is also referred to as the kernel of T . Note that N(T ) is a subspace
of V , so its dimension can be defined.

Definition 2.3.3 (Nullity). Let V,W be vector spaces over a field F. Let T : V → W be
a linear transformation. The nullity of T , denoted nullity(T ), is defined as

dim(N(T )).

Theorem 2.3.4. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Then T is injective if and only if N(T ) = {0}.

Proof. Suppose T is injective. We will show that N(T ) = {0}. Note that T (0) = 0 by
Exercise 2.2.2, so {0} ⊆ N(T ). It now suffices to show that N(T ) has only one element,
which we prove by contradiction. Suppose there exist v, v′ ∈ N(T ) such that v 6= v′. Since
T is injective, T (v) 6= T (v′). But v, v′ ∈ N(T ) imply 0 = T (v) = T (v′), a contradiction. We
conclude that N(T ) has only one element, as desired.

Now, suppose N(T ) = {0}. We will show that T is injective. Let v, v′ ∈ V such that
T (v) = T (v′). By linearity of T , T (v − v′) = T (v) − T (v′) = 0, so v − v′ ∈ N(T ). Since
N(T ) = {0}, v − v′ = 0, so that v = v′, proving the injectivity of T . �

Definition 2.3.5 (Range). Let T : V → W be a linear transformation. The range of T ,
denoted R(T ), is defined as

R(T ) := {T (v) : v ∈ V }.

Remark 2.3.6. Note that R(T ) is a subspace of W , so its dimension can be defined.

Definition 2.3.7 (Rank). Let V,W be vector spaces over a field F. Let T : V → W be a
linear transformation. The rank of T , denoted rank(T ), is defined as

dim(R(T )).

Exercise 2.3.8. Let T : V → W be a linear transformation. Prove that N(T ) is a subspace
of V and that R(T ) is a subspace of W .

Theorem 2.3.9 (Dimension Theorem/ Rank-Nullity Theorem). Let V,W be vector
spaces over a field F. Let T : V → W be linear. If V is finite-dimensional, then

nullity(T ) + rank(T ) = dim(V ).

Proof. Since V is finite dimensional, and N(T ) ⊆ V is a subspace, N(T ) is finite dimensional
by Theorem 1.7.1. In particular, a basis {v1, . . . , vk} for N(T ) exists, by the definition of
finite-dimensionality. So, the set {v1, . . . , vk} ⊆ V is linearly independent. By Corollary
1.6.14(f), the set {v1, . . . , vk} is therefore contained in a basis for V . (Since V is finite-
dimensional, a basis for V exists, so we can apply Corollary 1.6.14.) So, we have a basis
{v1, . . . , vk, u1, . . . , um} for V . That is, nullity(T ) = k and dim(V ) = k + m. It remains to
show that rank(T ) = m.
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We now show that rank(T ) = m. To show this, it suffices to show that {Tu1, . . . , Tum} is
a basis for R(T ). Let us therefore show that {Tu1, . . . , Tum} is a linearly independent set.
We prove this by contradiction. Suppose {Tu1, . . . , Tum} is not a linearly independent set.
Then there exist α1, . . . , αm ∈ F which are not all equal to zero, such that

m∑
i=1

αiTui = 0.

Since T is linear, we can rewrite this as

T

(
m∑
i=1

αiui

)
= 0.

That is,
∑m

i=1 αiui ∈ N(T ). Since {v1, . . . , vk} is a basis for N(T ), there exist scalars
β1, . . . , βk ∈ F such that

m∑
i=1

αiui =
k∑
i=1

βivi.

That is,
m∑
i=1

αiui −
k∑
i=1

βivi = 0. (∗)

Since the set {v1, . . . , vk, u1, . . . , um} is a basis for V , this set is linearly independent. So all
the coefficients in (∗) are zero. In particular, α1 = · · · = αm = 0. But we assumed that some
αi was nonzero. Since we have achieved a contradiction, we conclude that {Tu1, . . . , Tum}
is a linearly independent set.

It now remains to show that {Tu1, . . . , Tum} is a spanning set of R(T ). Let w ∈ R(T ).
We need to show that w is a linear combination of {Tu1, . . . , Tum}. Since w ∈ R(T ), there
exists u ∈ V such that T (u) = w. Since {v1, . . . , vk, u1, . . . , um} is a basis for V , there exist

scalars γ1, . . . , γk, δ1, . . . , δm ∈ F such that u =
∑k

i=1 γivi +
∑m

i=1 δiui. Applying T to both
sides of this equation, and recalling that vi ∈ N(T ) for all i ∈ {1, . . . , k}, we get

T (u) = T

(
k∑
i=1

γivi +
m∑
i=1

δiui

)
= T

(
m∑
i=1

δiui

)
=

m∑
i=1

δiT (ui). (∗∗)

Since w = T (u), we have just expressed w as a linear combination of {Tu1, . . . , Tum}, as
desired. We conclude that {Tu1, . . . , Tum} is a spanning set for R(T ), so that rank(T ) = m,
as desired. �

Lemma 2.3.10. Let V and W be finite-dimensional vector spaces over a field F. Assume
that dim(V ) = dim(W ). Let T : V → W be linear. Then T is one-to-one if and only if T is
onto.

Proof. We only prove the forward implication. Suppose T is one-to-one. Then N(T ) = {0}
by Theorem 2.3.4. By the Dimension Theorem (Theorem 2.3.9), rank(T ) = dim(V ). Since
dim(V ) = dim(W ), rank(T ) = dim(W ). Since R(T ) is a subspace of W , and dim(R(T )) =
dim(W ), we conclude that R(T ) = W by Theorem 1.7.1. So, T is onto, as desired. �

Exercise 2.3.11. Prove the reverse implication of Lemma 2.3.10.
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Exercise 2.3.12. Define T : C(R) → C(R) by Tf(x) :=
∫ x
0
f(t)dt. Note that T is linear

and one-to-one, but not onto, since there does not exist f ∈ C(R) such that T (f)(x) = 1 for
all x ∈ R. Define S : P (R)→ P (R) by Sf := df/dt. Note that S is linear and onto, but S
is not one-to-one, since S maps the constant function 1 to the zero function. How can you
reconcile these facts with Lemma 2.3.10?

2.4. Linear Transformations and Bases. We will now isolate a few facts related to the
main steps of the proof of the Dimension Theorem. These facts will be useful for us in our
later discussion of isomorphism.

Theorem 2.4.1. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Assume that {v1, . . . , vn} spans V . Then {Tv1, . . . , T vn} spans R(T ).

Proof. Let w ∈ R(T ). We need to express w as a linear combination of {Tv1, . . . , T vn}. Since
w ∈ R(T ), there exists v ∈ V such that T (v) = w. Since {v1, . . . , vn} spans V , there exist
scalars α1, . . . , αn ∈ F such that v =

∑n
i=1 αivi. Applying T to both sides of this equality,

and then using linearity of T ,

T (v) = T

(
n∑
i=1

αivi

)
=

n∑
i=1

αiT (vi).

Since w = T (v), we have expressed w as a linear combination of {Tv1, . . . , T vn}, as desired.
�

Theorem 2.4.2. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation which is one-to-one. Assume that {v1, . . . , vn} is linearly independent. Then
{T (v1), . . . , T (vn)} is also linearly independent.

Proof. We argue by contradiction. Assume that {T (v1), . . . , T (vn)} is linearly dependent.
Then there exist scalars α1, . . . , αn ∈ F not all equal to zero such that

∑n
i=1 αiT (vi) = 0.

Applying linearity of T , this equation says T (
∑n

i=1 αivi) = 0. Since T is one-to-one, we must
have

n∑
i=1

αivi = 0.

However, the set {v1, . . . , vn} is linearly independent, so we must have α1 = · · · = αn = 0.
But at least one αi must be nonzero, a contradiction. We conclude that {T (v1), . . . , T (vn)}
is linearly independent, as desired. �

Corollary 2.4.3 (Bijections Preserve Bases). Let V,W be vector spaces over a field
F. Let T : V → W be a linear transformation which is one-to-one and onto. Assume that
{v1, . . . , vn} is a basis for V . Then {T (v1), . . . , T (vn)} is a basis for W . And therefore,
dim(V ) = dim(W ) = n.

Proof. Since {v1, . . . , vn} is a basis for V , {v1, . . . , vn} spans V . So, from Theorem 2.4.1,
{T (v1), . . . , T (vn)} spans R(T ). Since T is onto, R(T ) = W , so {T (v1), . . . , T (vn)} spans W .
It remains to show that {T (v1), . . . , T (vn)} is linearly independent. Since {v1, . . . , vn} is a
basis for V , {v1, . . . , vn} is linearly independent. So, from Theorem 2.4.2, {T (v1), . . . , T (vn)}
is linearly independent, as desired. �
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As we now show, if T : V → W is linear and T is defined only on a basis of V , then this is
sufficient to define T over all vectors in V . We phrase this theorem as a combined existence
and uniqueness statement.

Theorem 2.4.4 (Rigidity of Linear Transformations). Let V,W be vector spaces over
a field F. Assume that {v1, . . . , vn} is a basis for V . Let {w1, . . . , wn} be any vectors in W .
Then there exists a unique linear transformation T : V → W such that T (vi) = wi for all
i ∈ {1, . . . , n}.

Proof. We first prove that T exists. Let v ∈ V . From Theorem 1.6.11, there exist unique
scalars α1, . . . , αn ∈ F such that v =

∑n
i=1 αivi. Suppose we define a map

T (
n∑
i=1

αivi) :=
n∑
i=1

αiwi. (∗)

Observe that T : V → W is a map. In particular, since the scalars α1, . . . , αn ∈ F depend
uniquely on v, T is well-defined. We now check that T (vi) = wi for all i ∈ {1, . . . , n}. Note
that

vi = 1 · vi +
∑

1≤j≤n : j 6=i

0 · vj.

So, plugging this formula into (∗) shows that T (vi) = wi.
We now need to verify that T is linear. Let α ∈ F. We first verify that T (αv) = αT (v).

T (αv) = T

(
n∑
i=1

(ααi)vi

)
=

n∑
i=1

ααiwi , by (∗)

= α(
n∑
i=1

αiwi) = αT (v) , by (∗).

So, T (αv) = αT (v) for all v ∈ V and for all α ∈ F. Let v′ ∈ V . We now verify that
T (v+v′) = T (v)+T (v′). There exist unique scalars β1, . . . , βn ∈ F such that v′ =

∑n
i=1 βivi.

We now check

T (v + v′) = T

(
n∑
i=1

(αi + βi)vi

)
=

n∑
i=1

(αi + βi)wi , by (∗)

=
n∑
i=1

αiwi +
n∑
i=1

βiwi = T (v) + T (v′) , by (∗).

In conclusion, the map T defined by (∗) is in fact a linear transformation.
We now finish the proof by showing that T is unique. Suppose some other linear trans-

formation T ′ : V → W satisfies T (vi) = wi for all i ∈ {1, . . . , n}. Then (T − T ′)(vi) = 0 for
all i ∈ {1, . . . , n}. So, for any v ∈ V , once we write v =

∑n
i=1 αivi, we have by linearity of

(T − T ′)

(T − T ′)(v) = (T − T ′)(
n∑
i=1

αivi) =
n∑
i=1

αi(T − T ′)(vi) = 0.

That is, T − T ′ = 0, so T = T ′, as desired. �
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2.5. Matrix Representation, Matrix Multiplication.

Definition 2.5.1 (Ordered Basis). Let V be a finite-dimensional vector space over a field
F. An ordered basis for V is a an ordered set (v1, . . . , vn) of elements of V such that
{v1, . . . , vn} is a basis of V .

Example 2.5.2. One ordered basis for R2 is ((1, 0), (0, 1)).

Definition 2.5.3 (Coordinate Vector). Let β = (v1, . . . , vn) be an ordered basis for V ,
and let v ∈ V . From Theorem 1.6.11, there exist unique scalars such that v =

∑n
i=1 αivi.

The scalars α1, . . . , αn are referred to as the coordinates of v with respect to β. We then
define the coordinate vector of v relative to β by

[v]β :=

α1
...
αn


Example 2.5.4. Let v := (3, 4). If β = ((1, 0), (0, 1)). Then v = 3(1, 0) + 4(0, 1), so

[v]β =

(
3
4

)
.

If β′ = ((1,−1), (1, 1)), then v = (−1/2)(1,−1) + (7/2)(1, 1), so

[v]β
′
=

(
−1/2
7/2

)
.

If β′′ = ((3, 4), (0, 1)), then v = 1(3, 4) + 0(0, 1)

[v]β
′′

=

(
1
0

)
.

Definition 2.5.5 (Matrix Representation). Let V,W be finite-dimensional vector spaces.
Let β = (v1, . . . , vn) be an ordered basis for V , and let γ = (w1, . . . , wm) be an ordered basis
for W . Let T : V → W be linear. Then, for each j ∈ {1, . . . , n}, there exist unique scalars
a1j, . . . , amj ∈ F by Theorem 1.6.11 such that

T (vj) =
m∑
i=1

aijwi.

We therefore define the matrix representation of T with respect to the bases β and γ by

[T ]γβ =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn

 .

Remark 2.5.6. Note that the jth column of [T ]γβ is exactly [T (vj)]
γ, so that

[T ]γβ = ([T (v1)]
γ, [T (v2)]

γ, . . . , [T (vn)]γ).
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So, if we have an arbitrary v ∈ V , and we write v uniquely as v =
∑n

j=1 bjvj where b1, . . . , bn ∈
F, then by linearity, Tv =

∑n
j=1 bjT (vj). That is,

Tv =
n∑
j=1

m∑
i=1

bjaijwi =
m∑
i=1

(
n∑
j=1

bjaij)wi

If we also express Tv in the basis γ, so that Tv =
∑m

i=1 ciwi where c1, . . . , cm ∈ F, then we
equate like terms to get ci =

∑n
j=1 bjaij for all 1 ≤ i ≤ m. In matrix form, this becomes

 c1
...
cm

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn


b1...
bn

 .

Or, using our ordered basis notation,

[Tv]γ = [T ]γβ[v]β.

Remark 2.5.7. The important point here is that a linear transformation T : V → W has
a meaning that does not depend on any ordered basis. However, when we view T from
different perspectives (i.e. we examine [T ]γβ for different ordered bases β, γ), then T may
look very different. One of the major goals of linear algebra is to take a T and view it from
the “correct” basis, so that [T ]γβ takes a rather simple form, and therefore T becomes easier

to understand. For example, if we could find ordered bases β, γ such that [T ]γβ becomes a
diagonal matrix, then this would be really nice, since diagonal matrices are fairly easy to
understand, and therefore we would better understand T . Unfortunately, we cannot always
find bases such that [T ]γβ becomes diagonal, but in certain cases this can be done.

Remark 2.5.8. If we have a linear transformation T : V → W , then specifying ordered
bases β, γ gives a matrix representation [T ]γβ. Conversely, if we have a matrix representation

[T ]γβ, then we know how T acts on an ordered basis. So, by Theorem 2.4.4, we can recover

T : V → W from the matrix representation [T ]γβ.

Example 2.5.9. Let T : R2 → R2 be the linear transformation that takes any vector (x, y) ∈
R2 and rotates this vector counterclockwise around the origin by an angle π/2. Note that
this description of T does not make use of any ordered basis. Let us find two different matrix
representations of T . We first use β = γ = ((1, 0), (0, 1)). In this case, note that T (1, 0) =
(0, 1) and T (0, 1) = (−1, 0). So, T (1, 0) = 0(1, 0) + 1(0, 1) and T (0, 1) = −1(1, 0) + 0(0, 1),
and

[T ]γβ =

(
0 −1
1 0

)
.

We will now find a matrix representation of T that is the identity matrix. Let β :=
((1, 0), (0, 1)) and let γ := ((0, 1), (−1, 0)). Then T (1, 0) = 1(0, 1) + 0(−1, 0) and T (0, 1) =
0(0, 1) + 1(−1, 0), so

[T ]γβ =

(
1 0
0 1

)
.
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Recall that, in Remark 2.2.9, we noted that the set L(V,W ) of all linear transformations
from V → W is itself a vector space over F. Given linear transformations S, T : V → W , we
defined S + T so that, for all v ∈ V , (S + T )(v) := S(v) + T (v). Also, for any α ∈ F, we
defined αT so that, for all v ∈ V , (αT )(v) := α(T (v)). We can also define the product, or
composition, or linear transformations as follows.

Definition 2.5.10 (Product/Composition). Let U, V,W be vector spaces over a field F.
Let S : V → W and let T : U → V be linear transformations. We define the product or
composition ST : U → W by the formula

ST (u) := S(T (u)) ∀u ∈ U.

Exercise 2.5.11. Using the linearity of S and T , show that ST : U → W is a linear trans-
formation.

Definition 2.5.12 (Matrix Multiplication). Let A be an m× ` matrix, and let B be an
n ×m matrix. That is, A is a collection of scalars arranged into m rows and ` columns as
follows

A =


A11 A12 · · · A1`

A21 A22 · · · A2`
...

... · · · ...
Am1 Am2 · · · Am`

 .

Then the n× ` matrix BA is defined, so that the (k, i) entry of BA is given by

(BA)ki :=
m∑
j=1

BkjAji. 1 ≤ k ≤ n, 1 ≤ i ≤ `

Definition 2.5.13. The n× n identity matrix In is defined by

In =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 .

Note that the composition of two linear transformations evidently has a natural definition
in Definition 2.5.10. On the other hand, matrix multiplication in Definition 2.5.12 may have
appeared somewhat unnatural at first sight. So, perhaps surprisingly, we now show that
the composition of linear transformations exactly defines the matrix multiplication to which
we are accustomed. Put another way, the matrix multiplication in Definition 2.5.12 is a
realization, in coordinates, of the composition of two linear transformations.

Theorem 2.5.14 (Equivalence of Composition and Matrix Multiplication). Suppose
U, V,W are vector spaces over a field F. Let S : V → W and let T : U → V be linear trans-
formations. Assume that U is `-dimensional and it has an ordered basis α = (u1, . . . , u`).
Assume that V is m-dimensional and it has an ordered basis β = (v1, . . . , vm). Assume that
W is n-dimensional and it has an ordered basis γ = (w1, . . . , wn). Then

[ST ]γα = [S]γβ[T ]βα.
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Proof. We first apply Definition 2.5.5 to T . Then there exist scalars {aji}1≤j≤m,1≤i≤` such
that, for each 1 ≤ i ≤ `,

T (ui) =
m∑
j=1

ajivj. (2.5.1)

That is,

[T ]βα =


a11 a12 · · · a1`
a21 a22 · · · a2`
...

... · · · ...
am1 am2 · · · am`

 . (2.5.2)

We now apply Definition 2.5.5 to S. Then there exist scalars {bkj}1≤k≤n,1≤j≤m such that,
for each 1 ≤ j ≤ m,

S(vj) =
n∑
k=1

bkjwk. (2.5.3)

That is,

[S]γβ =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

... · · · ...
bn1 bn2 · · · bnm

 . (2.5.4)

Applying S to both sides of (2.5.1) and using linearity of S,

S(T (ui)) = S

(
m∑
j=1

ajivj

)
=

m∑
j=1

ajiS(vj)

=
m∑
j=1

aji

n∑
k=1

bkjwk , by (2.5.3).

Changing the order of summation, we get

ST (ui) =
n∑
k=1

(
m∑
j=1

bkjaji

)
wk. (2.5.5)

So, for each 1 ≤ k ≤ n and 1 ≤ i ≤ `, define

cki :=
m∑
j=1

bkjaji. (2.5.6)

Then (2.5.5) becomes

ST (ui) =
n∑
k=1

ckiwk. (2.5.7)
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That is, using the definitions of α and γ,

[ST ]γα =


c11 c12 · · · c1`
c21 c22 · · · c2`
...

... · · · ...
cn1 cn2 · · · cn`

 . (2.5.8)

Finally, we use (2.5.2) and (2.5.4), and then perform the matrix multiplication

[S]γβ[T ]βα =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

... · · · ...
bn1 bn2 · · · bnm



a11 a12 · · · a1`
a21 a22 · · · a2`
...

... · · · ...
am1 am2 · · · am`

 . (2.5.9)

Then the matrix multiplication in (2.5.9), defined in Definition 2.5.12, agrees with the matrix
in (2.5.8), because of (2.5.6). That is, [ST ]γα = [S]γβ[T ]βα, as desired. �

2.5.1. Matrices as Linear Transformations. We showed in Theorem 2.5.14 that composing
two linear transformations is equivalent to using matrix multiplication. We now belabor this
point by beginning with a matrix, and then using the theory of linear transformations to
prove associativity of matrix multiplication. We could prove that matrix multiplication is
associative by taking three matrices and then writing out all the relevant terms. However, the
“coordinate-free” approach below ends up being a bit more elegant. This proof strategy is
part of a larger paradigm, in which “coordinate-free” proofs end up being more enlightening
that coordinate-reliant proofs.

Definition 2.5.15. Consider the vector space Fn over the field F. The standard basis for
Fn is defined as

(e1, . . . , en) = ((1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)).

Definition 2.5.16. Let A be an m× n matrix of scalars in a field F. Define LA : Fn → Fm

by the formula
LA(u) := Au, ∀u ∈ Fn.

Here we think of vectors in Fn and Fm as column vectors. Note that LA is linear.

Lemma 2.5.17. Let α be the standard basis of Fn and let β be the standard basis of Fm.
Let A ∈ Mm×n(F). Then [LA]βα = A. Let T : Fn → Fm be a linear transformation. Then
L[T ]βα

= T .

Proof. Let u ∈ Fn be a column vector. That is, there exist α1, . . . , αn ∈ Fn such that

u =

α1
...
αn

 .

That is, u =
∑n

i=1 αiui. That is,

u = [u]α, ∀u ∈ Fn. (∗)
Similarly,

v = [v]β, ∀ v ∈ Fm. (∗∗)
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From Remark 2.5.6,
[LA(u)]β = [LA]βα[u]α.

Applying (∗) and (∗∗), we get

LA(u) = [LA]βαu.

Since LA(u) = Au, we get

Au = [LA]βαu. ∀u ∈ Fn

Using u = ei for any i ∈ {1, . . . , n} shows that the ith column of A is equal to the ith column
of [LA]βα. So, [LA]βα = A, as desired.

Now, let T : Fn → Fm be a linear transformation. From Remark 2.5.6, for any u ∈ Fn,

[T (u)]β = [T ]βα[u]α.

Applying (∗) and (∗∗),
T (u) = [T ]βαu = L[T ]βα

(u). ∀u ∈ Fn.

Therefore, T = L[T ]βα
, as desired. �

Lemma 2.5.18. Let U, V,W,X be vector spaces over a field F. Let T : U → V , S : V → W ,
R : W → X be three linear transformations. Then R(ST ) = (RS)T .

Proof. We are required to show that, for all u ∈ U , R(ST )(u) = (RS)T (u). We repeatedly
apply Definition 2.5.10 as follows.

R(ST )(u) = R(ST (u)) = R(S(T (u))) = RS(T (u)) = (RS)T (u).

�

Note that Lemma 2.5.18 was proven in a coordinate-free manner. We now combine Lem-
mas 2.5.17 and 2.5.18 to prove associativity of matrix multiplication, a statement that uses
coordinates.

Corollary 2.5.19. Let A be an m × ` matrix, let B be an n × m matrix, and let C be a
k × n matrix. Then C(BA) = (CB)A.

Proof. From Lemma 2.5.18,
LC(LBLA) = (LCLB)LA. (2.5.10)

Let α, β, γ, δ be the standard bases for F`,Fm,Fn and Fk, respectively. Applying Theorem
2.5.14 twice to the left side of (2.5.10),

[LC(LBLA)]δα = [LC ]δγ[LBLA]γα = [LC ]δγ([LB]γβ[LA]βα)

= C(BA) by Lemma 2.5.17. (2.5.11)

Applying Theorem 2.5.14 twice to the right side of (2.5.10),

[(LCLB)LA]δα = [LCLB]δβ[LA]βα = ([LC ]δγ[LB]γβ)[LA]βα

= (CB)A by Lemma 2.5.17. (2.5.12)

Combining (2.5.10), (2.5.11) and (2.5.12) completes the proof. �

The following facts are proven in a similar manner.

Remark 2.5.20. Let A be an m× ` matrix, let B be an n×m matrix. Then LBLA = LBA.

25



Proof. Let α, β, γ be the standard bases for F`,Fm and Fn respectively. Applying Theorem
2.5.14 then Lemma 2.5.17,

[LBLA]γα = [LB]γβ[LA]βα = BA.

Taking L of both sides and applying Lemma 2.5.17 to the left side shows that LBLA =
LBA. �

Remark 2.5.21. Let A be an n×mmatrix, let B be an n×mmatrix. Then LA+B = LA+LB.

Proof. Let α, β be the standard bases for Fm and Fn, respectively. Applying Lemma 2.5.17,

[LA + LB]βα = [LA]βα + [LB]βα = A+B.

Taking L of both sides and applying Lemma 2.5.17 to the left side shows that LA + LB =
LA+B. �

2.6. Invertibility, Isomorphism. We now introduce the concept of invertibility. As will
become clear, the invertibility of a linear transformation is closely related to our ability to
find a “nice” matrix representation of the linear transformation.

Definition 2.6.1 (Inverse). Let V,W be vector spaces over a field F. Let T : V → W be a
linear transformation. We say that a linear transformation S : W → V is the inverse of T
if TS = IW and ST = IV . We say that T is invertible if T has an inverse, and we denote
the inverse by T−1, so that TT−1 = IW and T−1T = IV .

Remark 2.6.2. If T is the inverse of S, then S is the inverse of T .

If an inverse of T exists, then it is unique, as we now show.

Lemma 2.6.3. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Let S : W → V be an inverse of T , and let S ′ : W → V be an inverse of T .
Then S = S ′.

Proof. Using the definition of inverse,

S = SIW = S(TS ′) = (ST )S ′ = IV S
′ = S ′.

�

Lemma 2.6.4. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. If T has an inverse S : W → V , then T must be one-to-one and onto.

Proof. We first show that T is one-to-one. Suppose v, v′ ∈ V satisfy T (v) = T (v′). Applying
S to both sides, ST (v) = ST (v′). That is, v = v′, so T is one-to-one, as desired.

We now show that T is onto. Let w ∈ W . We need to find v ∈ V such that T (v) = w.
Define v := Sw. Then T (v) = TS(w) = w, as desired. �

Example 2.6.5. The zero transformation T : R2 → R2 defined by T = 0 is not onto, so T
is not invertible.

We now prove the converse of Lemma 2.6.4

Lemma 2.6.6. Let V,W be vector spaces over a field F. Let T : V → W be a linear
transformation. Suppose T is one-to-one and onto. Then there exists a linear transformation
S : W → V that is the inverse of T .
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Proof. We first have to somehow define a linear transformation S : W → V that inverts T .
Given any w ∈ W , since T is bijective, there exists a unique v ∈ V such that w = T (v). So,
define

S(w) := v. (∗)
Since v uniquely depends on w, the map S : W → V defined in this way is well-defined.
We now show that S is linear. Let w,w′ ∈ W . Since T is bijective, there exist unique
v, v′ ∈ V such that T (v) = w and T (v′) = w′. In particular, by the definition (∗), S(w) = v
and S(w′) = v′. Since T is linear, T (v + v′) = w + w′. So, by the definition (∗), we have
S(w + w′) = v + v′ = S(w) + S(w′). Now, let α ∈ F. Since T (v) = w and T is linear,
T (αv) = αT (v) = αw. By the definition (∗), S(αw) = αv. Since v = S(w), we therefore
have S(αw) = αS(w), as desired. So, S is linear.

It remains to show that S inverts T . Applying T to both sides of (∗), note that TS(w) =
T (v) = w, so TS = IW . Also, substituting w = T (v) into (∗), we get S(T (v)) = v, so that
ST = IV , as desired. �

Combining Lemmas 2.6.4 and 2.6.6, we see that a linear transformation T : V → W is
invertible if and only if T is one-to-one and onto. Invertible linear transformations are also
known as isomorphisms.

Definition 2.6.7 (Isomorphism). Two vector spaces V,W over a field F are said to be
isomorphic if there exists an invertible linear transformation T : V → W from one space
to the other.

The notion of isomorphism allows us to reason about two vector spaces being the same
(if they are isomorphic) or not the same (if they are not isomorphic). Many parts of mathe-
matics, or science more generally, are concerned with classifying things according to whether
they are they same or not the same. Within the context of vector spaces, this notion of
isomorphism is most appropriate, since it asks for the linear structure of the vector space to
be preserved. Within other mathematical contexts, different notions of isomorphism appear,
though they all generally ask for the structures at hand to be preserved by a certain map.

Lemma 2.6.8. Two finite-dimensional vectors spaces V,W over a field F are isomorphic if
and only if dim(V ) = dim(W ).

Proof. Suppose V,W are isomorphic. Then there exists an invertible linear transformation
T : V → W . By Lemma 2.6.4, T is one-to-one and onto. In particular, nullity(T ) = 0. By
the Dimension Theorem (Theorem 2.3.9), rank(T ) = dim(V ). Since T is onto, rank(T ) =
dim(W ). Therefore, dim(V ) = dim(W ), as desired.

We now prove the reverse implication. Assume that dim(V ) = dim(W ) = n for some
n ∈ N. Let {v1, . . . , vn} be a basis for V , and let {w1, . . . , wn} be a basis for W . By
Theorem 2.4.4, there exists a linear transformation T : V → W such that T (vi) = wi for all
i ∈ {1, . . . , n}. By Theorem 2.4.1, {w1, . . . , wn} spans R(T ). Since {w1, . . . , wn} also spans
W , we have R(T ) = W , so that T is onto. By Lemma 2.3.10 (using dim(V ) = dim(W )), T
is also one-to-one. So, T is an isomorphism, and V,W are isomorphic, as desired. �

Remark 2.6.9. If V has an ordered basis β = (v1, . . . , vn), then the coordinate map φβ : V →
Fn defined by

φβ(v) := [v]β
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is a linear transformation. It is also an isomorphism. Note that φβ is one-to-one by Theorem
1.6.11, and φβ is onto since, if we are given the coordinate vector [v]β = (α1, . . . , αn), then
φβ(
∑n

i=1 αivi) = [v]β. So, φβ is an isomorphism by Lemma 2.6.6. The book calls φβ the
standard representation of V with respect to β.

If we only care about linear transformations for finite-dimensional vector spaces over R,
then Lemma 2.6.8 and Theorem 2.5.14 show that it suffices to discuss real matrices and the
vector spaces Rn, n ∈ N. However, our effort in developing the theory of linear transfor-
mations was not a waste of time. For example, the notion of isomorphism from Definition
2.6.7 is not very meaningful for infinite-dimensional vector spaces. For another example,
when we introduce norms and inner products, the notion of isomorphism from Definition
2.6.7 becomes less meaningful, and finer properties of linear transformations become more
relevant. Nevertheless, we will mostly discuss real matrices and Rn for the rest of the course.

2.6.1. Invertibility and Matrices.

Definition 2.6.10 (Inverse Matrix). Let A be an m × n matrix. We say that A has an
inverse B if B is an n×m matrix such that AB = Im and such that BA = In. If A has an
inverse, we say that A is an invertible matrix, and we write B = A−1.

We now continue to emphasize the relation between linear transformations and matrices,
as in Theorem 2.5.14 and Remark 2.5.6.

Theorem 2.6.11. Let V,W be vector spaces over a field F. Assume that α is an ordered
basis for V with n elements, and assume that β is an ordered basis for W with m elements.
Then a linear transformation T : V → W is invertible if and only if [T ]βα is invertible. Also,
[T−1]αβ = ([T ]βα)−1

Proof. Suppose T : V → W has an inverse T−1 : W → V . Then TT−1 = IW and T−1T = IV .
So, applying Theorem 2.5.14,

[T ]βα[T−1]αβ = [TT−1]ββ = [IW ]ββ = Im.

[T−1]αβ [T ]βα = [T−1T ]αα = [IV ]αα = In.

So, [T−1]αβ is the inverse of [T ]βα, so that [T ]βα is an invertible matrix.

We now prove the reverse implication. Suppose [T ]βα is invertible. Then there exists
an n × m matrix B such that B[T ]βα = In and [T ]βαB = Im. Write α = (v1, . . . , vn),
β = (w1, . . . , wm). We would like to have a linear transformation S : W → V such that
S(wi) =

∑n
k=1Bkivk for all i ∈ {1, . . . ,m}. If such an S exists, then [S]αβ = B. Such a linear

transformation exists by Theorem 2.4.4. Therefore,

[IV ]αα = In = B[T ]βα = [S]αβ [T ]βα = [ST ]αα.

[IW ]ββ = Im = [T ]βαB = [T ]βα[S]αβ = [TS]ββ.

So, T is invertible, as desired. �

Corollary 2.6.12. An m× n matrix A is invertible if and only if the linear transformation
LA : Fn → Fm is invertible. Also, (LA)−1 = LA−1.
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Proof. Let α be the standard basis for Fn and let β be the standard basis for Fm. Then

[LA]βα = A. (∗)

So, by Theorem 2.6.11, LA is invertible if and only if A is invertible. Also, from Theorem
2.6.11,

[L−1A ]αβ = ([LA]βα)−1 = A−1 = [LA−1 ]αβ , by (∗).
Therefore, L−1A = LA−1 . �

Corollary 2.6.13. Let A be an m× n matrix. If A is invertible, then m = n.

Proof. Apply Corollary 2.6.12 and Lemma 2.6.8. �

Unfortunately, not all matrices are invertible. For example, the zero matrix is not invert-
ible.

2.7. Change of Coordinates. Suppose we have two finite ordered bases β, β′ for the same
vector space V . Let v ∈ V . We would like a way to relate [v]β to [v]β

′
. Using Remark 2.5.6

and that IV v = v for all v ∈ V , we have

[IV ]β
′

β [v]β = [v]β
′
.

That is, to relate [v]β to [v]β
′
, it suffices to compute [IV ]β

′

β

Example 2.7.1. Let β = ((2, 0), (1,−1)), and let β′ = ((0, 1), (2, 1)) be two ordered bases
of R2. Then

IV (2, 0) = (2, 0) = −1(0, 1) + 1(2, 1).

IV (1,−1) = (1,−1) = −(3/2)(0, 1) + (1/2)(2, 1).

So

[IV ]β
′

β =

(
−1 −3/2
1 1/2

)
.

So, we can verify that [IV ]β
′

β [v]β = [v]β
′
. For example, choosing v = (3, 2), note that

[v]β =

(
5/2
−2

)
, [v]β

′
=

(
1/2
3/2

)
,

(
−1 −3/2
1 1/2

)(
5/2
−2

)
=

(
1/2
3/2

)
.

Similarly, note that [IV ]ββ′ is the inverse of [IV ]β
′

β , so

[IV ]ββ′ =

(
1/2 3/2
−1 −1

)
.

Exercise 2.7.2. Show that [IV ]β
′

β is invertible, with inverse [IV ]ββ′ .

Lemma 2.7.3. Let V be a finite-dimensional vector space over a field F. Let β, β′ be two

bases for V . Let T : V → V be a linear transformation. Define Q := [IV ]β
′

β . (From Theorem

2.6.11, Q is invertible.) Then [T ]ββ and [T ]β
′

β′ satisfy the following relation

[T ]β
′

β′ = Q[T ]ββQ
−1.
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Proof. We first write T = IV TIV . Taking the matrix representation of both sides and then
applying Theorem 2.5.14,

[T ]β
′

β′ = [IV TIV ]β
′

β′ = [IV ]β
′

β [TIV ]ββ′ = [IV ]β
′

β [T ]ββ[IV ]ββ′ .

From Theorem 2.6.11, [IV ]ββ′ = ([IV ]β
′

β )−1, completing the proof. �

Definition 2.7.4 (Similarity). Two n × n matrices A,B are said to be similar if there
exists an invertible n× n matrix Q such that A = QBQ−1.

Remark 2.7.5. In the context of Lemma 2.7.3, [T ]β
′

β′ is similar to [T ]ββ.

3. Row Operations, The Determinant

3.2. Row Operations. We begin our discussion of row operations on matrices with some
examples.

Example 3.2.1 (Type 1: Interchange two Rows). For example, we can swap the first
and third rows of the matrix 1 2

3 5
0 8


to get 0 8

3 5
1 2

 .

Define

E :=

0 0 1
0 1 0
1 0 0

 .

Note that

E

1 2
3 5
0 8

 =

0 0 1
0 1 0
1 0 0

1 2
3 5
0 8

 =

0 8
3 5
1 2

 .

Remark 3.2.2. E as defined above is invertible. In fact, E = E−1. In general, if E is the
n× n matrix that swaps two rows of an n× n matrix A, then EA is A with those two rows
swapped. So EEA = A for all n× n matrices A, so EE = In, i.e. E is invertible.

Example 3.2.3 (Type 2: Multiply a row by a nonzero scalar). For example, let’s
multiply the second row of the following matrix by 2.1 2

3 5
0 8

 .

We then get 1 2
6 10
0 8

 .
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Define

E :=

1 0 0
0 2 0
0 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 2 0
0 0 1

1 2
3 5
0 8

 =

1 2
6 10
0 8


Remark 3.2.4. E as defined above has inverse1 0 0

0 1/2 0
0 0 1

 .

In general, suppose E corresponds to multiplying the ith row of a given matrix by α ∈ F,
α 6= 0. Then E is a matrix with ones on the diagonal, except for the ith entry on the diagonal,
which is α. And all other entries of E are zero. Then, we see that E−1 exists and is a matrix
with ones on the diagonal, except for the ith entry on the diagonal, which is α−1. And all
other entries of E−1 are zero. In particular, E is invertible.

Example 3.2.5 (Adding one row to another). Let’s add two copies of the first row of
the following matrix to the third row. 1 2

3 5
0 8

 .

We then get 1 2
3 5
2 12

 .

Define

E :=

1 0 0
0 1 0
2 0 1

 .

Note that

E

1 2
3 5
0 8

 =

1 0 0
0 1 0
2 0 1

1 2
3 5
0 8

 =

1 2
3 5
2 12

 .

Remark 3.2.6. E as defined above has inverse 1 0 0
0 1 0
−2 0 1

 .

That is, adding 2 copies of row one to row three is inverted by adding −2 copies of row one
to row three. In a similar way, a general row addition operator is seen to be invertible.

Remark 3.2.7 (Summary of Row Operations). The three row operations (Type 1, Type
2, and Type 3) are all invertible.
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Remark 3.2.8 (Solving Systems of Linear Equations). Let A be an m× n matrix, let
x ∈ Rn be a variable vector, and let b ∈ Rm be a known vector. Consider the system of
linear equations

Ax = b.

Let E be any elementary row operation. Since E is invertible, finding a solution x to the
system Ax = b is equivalent to finding the solution x to the system EAx = Eb. By applying
many elementary row operations, you have seen in a previous course how to solve the system
Ax = b. That is, you continue to apply elementary row operations E1, . . . , Ek such that
E1 · · ·EkA in in row-echelon form, and you then solve E1 · · ·EkAx = E1 · · ·Ekb. A matrix
B is in row-echelon form if each row is either zero, or its left-most nonzero entry is 1, with
zeros below the 1.

Remark 3.2.9 (Inverting a Matrix). Let A be an invertible n × n matrix. You learned
in a previous course an algorithm for inverting A using elementary row operations. Below,
we will prove that this algorithm works.

Remark 3.2.10 (Column Operations). In the above discussion, we could have also used
column operations instead of row operations. Column operations would then correspond to
multiplying the matrices E on the right side, rather than the left side. The invertibility of
column operations would therefore still hold.

3.3. Rank of a Matrix. Let T : V → W be a linear transformation between two vector
spaces. Recall that the rank of T , denoted by rank(T ), is the dimension of R(T ), the range
of T .

Lemma 3.3.1. Let V,W be finite-dimensional vector spaces over a field F. Assume that
dim(V ) = dim(W ) = n. Let T : V → W be a linear transformation. Then T is invertible if
and only if T has rank n.

Proof. Suppose T is invertible. Then T is one-to-one. By the Dimension Theorem (Theorem
2.3.9), T has rank n.

Now, suppose T has rank n. Then, by the Dimension Theorem, N(T ) = {0}, so T is
one-to-one. Also, R(T ) is again a subspace of W of the same dimension as W , so we must
have R(T ) = W , so T is onto. Since T is both one-to-one and onto, T is invertible. �

Lemma 3.3.2. Let V,W be finite-dimensional vector spaces over a field F. Let T : V → W
be an invertible linear transformation. Let U ⊆ V be a subspace. Then dim(U) = dim(T (U)).

Proof. Since U ⊆ V is a subspace, U is a vector space. So, for each u ∈ U , define the map
TU : U → W by

TU(u) := T (u).

Since T is linear, TU is linear. Since T is one-to-one, TU is one-to-one, so N(TU) = {0}.
So, the Dimension Theorem (Theorem 2.3.9) implies that dimR(TU) = dim(U). Since
R(TU) = TU(U) = T (U), we are done. �

Lemma 3.3.3 (Isomorphisms Preserve Rank). Let U, V,W,X be vector spaces over a
field F. Let T : V → W be a linear transformation. Let S : U → V be an invertible linear
transformation, and let P : W → X be an invertible linear transformation. Then

rank(T ) = rank(PT ) = rank(TS) = rank(PTS).
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Proof. We begin with the first equality. By the definition of range, R(T ) = T (V ), and
R(PT ) = PT (V ). So,

R(PT ) = PT (V ) = P (T (V )) = P (R(T )).

So, rank(PT ) = dim(P (R(T ))). Since P is invertible, dim(P (R(T ))) = dim(R(T )) by
Lemma 3.3.2. So, rank(PT ) = rank(T).

We now prove that rank(T ) = rank(TS). Since S : U → V is invertible, S is onto. So,
S(U) = V . By the definition of range,

R(TS) = TS(U) = T (S(U) = T (V ).

So, R(TS) = T (V ) = R(T ), so rank(T ) = rank(TS).
Finally, the equality rank(PTS) = rank(TS) follows by applying the first equality to

T ′ := TS. �

Definition 3.3.4 (Rank of a Matrix). Let A be a matrix. Then the rank of A is defined
as rank(LA).

Lemma 3.3.5. The rank of a matrix A is equal to the dimension of the space spanned by
the columns of A.

Proof. Suppose A is an m × n matrix. Let (e1, . . . , en) be the standard basis of Fn. Since
this basis spans Fn, the vectors {LA(e1), . . . , LA(en)} span R(LA) by Theorem 2.4.1. But
for each i ∈ {1, . . . , n}, LA(ei) is the ith column of A. �

Remark 3.3.6. Suppose V and W are finite dimensional vector spaces. Let α, γ be ordered
bases for V and let β, δ be ordered bases for W . Let T : V → W be a linear transforma-
tion. Recall that any two matrix representations [T ]βα and [T ]δγ are related by the identity

[T ]δγ = [IW ]δβ[T ]βα[IV ]αγ . Also, two vector spaces of the same dimension are isomorphic. So,
to compute the rank of T , it suffices to find any matrix representation A of T , and then to
compute the rank of A. By Lemma 2.5.18, isomorphisms preserve rank, so any matrix repre-
sentation A suffices. And we can compute the rank of A by row-reducing it into row-echelon
form, and then applying the following lemma.

Lemma 3.3.7. Let A be a matrix in row-echelon form. Then the rank of A is equal to the
number of nonzero rows of A.

Proof. Since A is in row-echelon form, after permuting the rows of A, there exists a positive
integer k such that, each of the first k rows of A has one nonzero entry, while all subsequent
rows of A are zero. So, the span of the columns of A are contained in the k-dimensional
subspace

{



x1
...
xk
0
...
0


: x1, . . . , xk ∈ F}. (∗)

So, by Lemma 3.3.5, rank(A) ≤ k. We now show that in fact rank(A) = k, as desired.
By Lemma 3.3.5, it suffices to show that the span of the columns of A contains the

subspace (∗). To show this, let v be in the subspace (∗). Then, as a column vector, we
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have v = (v1, . . . , vk, 0, . . . , 0), vi ∈ F for all i ∈ {1, . . . , k}. Consider the ith row of A where
1 ≤ i ≤ k. Since A is in row-echelon form, the ith row first has several zeros, then a 1, then
other entries afterwards. So, for each i ∈ {1, . . . , k}, there exists j(i) such that the j(i)th

column of A has a 1 in the ith row, and then zeros below that. So, beginning with i = k, we
can subtract vk copies of the j(k)th column of A from v, giving a vector with only (k − 1)
nonzero entries. Then, setting i = k − 1, we can subtract copies of the j(k − 1)st column of
A to get a vector with only (k− 2) nonzero entries. We continue in this way, and eventually
we have eliminated all nonzero entries of v. That is, we have found an expression for v in
terms of the columns j(1), . . . , j(k) of A. So, rank(A) = k, as desired.

�

Theorem 3.3.8. Let A be an m× n matrix of rank r. Then, there exist a finite number of
elementary row and column operations which, when applied to A, produce the matrix(

Ir×r 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

)
.

Proof. We first use row reduction to put A into row-echelon form. So, after this row reduc-
tion, the first r rows of A have some zeros, and then a 1 with zeros below this 1. And the
remaining m − r rows are all zero. (In case r = 0, then we are done, so we may assume
that r > 0.) Now, the first row of A has some zeros, then a 1 with zeros below this 1. So,
by adding copies of the column that contains the entry 1 to each column to the right, the
remaining entries of the first row can be made to be zero. And we still keep our matrix in
row-echelon form. Now, the second row of A has some zeros, then a 1 with zeros above and
below this 1. So, by adding copies of the column that contains this entry 1 to each column
to the right, the remaining entries of the second row can be made to be zero. And once
again, our matrix is still in row-echelon form. We then continue this procedure. The first r
rows then each have exactly one entry of 1, and all remaining entries in the matrix are zero.
By swapping columns as needed, A is then put into the required form, as desired. �

Corollary 3.3.9 (A Factorization Theorem). Let A be an m×n matrix of rank r. Then,
there exists an m×m matrix B and an n×n matrix C such that B is the product of a finite
number of elementary row operations, C is the product of a finite number of elementary
column operations, and such that

A = B

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
C.

Proof. Let A be an m×n matrix of rank r. From Theorem 3.3.8, there exist a finite number
of elementary row operations E1, . . . , Ej and elementary column operations F1, . . . , Fk such
that

E1 · · ·EjAF1 · · ·Fk =

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
. (∗)

From Remarks 3.2.7 and 3.2.10, the matrices E1, . . . , Ej and F1, . . . , Fk are invertible, with
inverses that are also elementary row and column operations, respectively. So, multiplying
on the left of each side of (∗) by B := E−1j · · ·E−11 , and then multiplying on the right of each

side of (∗) by C := F−1k · · ·F
−1
1 , we deduce the theorem. �
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Lemma 3.3.10. Let A be an m× n matrix. Let B be an m×m invertible matrix, and let
C be an n× n invertible matrix. Then

rank(A) = rank(BA) = rank(AC) = rank(BAC).

Proof. Since B is invertible, LB is invertible with inverse LB−1 , by Corollary 2.6.12. So,
applying Remark 2.5.20 and Lemma 3.3.3,

rank(LA) = rank(LBA) = rank(LAC) = rank(LBAC).

Definition 3.3.4 then completes the proof. �

Definition 3.3.11 (Transpose). Let A be an m × n matrix with entries Aij, 1 ≤ i ≤ m,
1 ≤ j ≤ n. Then the transpose At of A is defined to be the n × m matrix with entries
(At)ij := Aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Exercise 3.3.12. Let A be an m × n matrix. Let B be an ` × m matrix. Show that
(BA)t = AtBt.

Remark 3.3.13. If A is an n × n invertible matrix, then I tn = (AA−1)t = (A−1)tAt, so At

is also invertible.

Lemma 3.3.14. Let A be an m× n matrix with rank r. Then At also has rank r.

Proof. From Theorem 3.3.9, there exists an invertible m × m matrix B and an invertible
n× n matrix C such that

A = B

(
Ir×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
C.

Taking the transpose of both sides and applying Exercise 3.3.12,

At = Ct

(
Ir×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
Bt.

From Remark 3.3.13, Ct and Bt are invertible. So, Lemma 3.3.10 implies that At has rank
r. �

Corollary 3.3.15. The rank of a matrix is equal to the dimension of the span of its rows.

Proof. Apply Lemma 3.3.5 and Lemma 3.3.14. �

Lemma 3.3.16. Let V be an n-dimensional vector space, and let W be an m-dimensional
vector space. Let T : V → W be a linear transformation. Let α, β be finite bases for V,W
respectively. Then rank(T ) = rank([T ]βα).

Proof. Let v ∈ V,w ∈ W . The coordinate maps φα : V → Fn and φβ : W → Fm defined by
φα(v) := [v]α, φβ(w) := [w]β are isomorphisms. Also, the map L[T ]βα

: Fn → Fm is a linear

transformation. Beginning with the identity

[T (v)]β = [T ]βα[v]α,

we then rewrite this as
φβ(T (v)) = L[T ]βα

φα(v).

Since this equality holds for all v ∈ V , we therefore have

φβT = L[T ]βα
φα.
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Since φβ is invertible, we then get

T = φ−1β L[T ]βα
φα.

So, applying Lemma 3.3.10 and Definition 3.3.4,

rank(T ) = rank(φ−1β L[T ]βα
φα) = rank(L[T ]βα

) = rank([T ]βα).

�

Exercise 3.3.17. Show that an m× n matrix has rank at most min(m,n).

3.3.1. Inverting a Matrix.

Lemma 3.3.18. Let A be an n × n matrix. Then A is invertible if and only if it is the
product of elementary row and column operations.

Proof. Suppose A is a product of elementary row and column operation matrices. From
Remarks 3.2.7 and 3.2.10, A is a product of invertible matrices, so A is invertible.

Now, suppose A is invertible. Then LA : Fn → Fn is invertible (with inverse LA−1). In par-
ticular, LA is onto, so rank(LA) = n. By Definition 3.3.4, rank(A) = n. Applying our Factor-
ization Theorem (Theorem 3.3.9), there exists a finite number of elementary row operations
E1, . . . , Ej and elementary column operations F1, . . . , Fk such that A = E1 · · ·EjF1 · · ·Fk,
as desired. �

Remark 3.3.19. Suppose A is an invertible matrix, and we have elementary row operations
E1, . . . , Ej such that

E1 · · ·EjA = In.

Multiplying both sides by A−1 on the right,

E1 · · ·EjIn = A−1.

So, to compute A−1 from A, it suffices to find row operations that turn A into the identity.
And we then apply these operations to In to give A−1. This is the algorithm for computing
the inverse A−1 that you learned in a previous class.

3.4. The Determinant. There are a lot of nice things to say about the determinant, but
we do not have sufficient time to discuss these things. We will therefore just state some facts
about the determinant without proof, and then prove other things as consequences of these
preliminary facts.

Let A ∈ F. Then det(A) := A.
Let A be a 2× 2 matrix. That is, there exist a, b, c, d ∈ F such that

A =

(
a b
c d

)
.

We then define det(A) so that

det(A) := det

(
a b
c d

)
= ad− bc.

Let A be a 3× 3 matrix. That is, there exist a, b, c, d, e, f, g, h, i ∈ F such that

A = det

a b c
d e f
g h i

 .
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We now define det(A) inductively so that

det(A) := a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
.

Definition 3.4.1. More generally, if A is an n × n matrix, then for each i, j ∈ {1, . . . , n},
let Aij denote the (n− 1)× (n− 1) matrix formed by removing the ith row and jth column
from A. Then, for any i ∈ {1, . . . , n}, define

det(A) :=
n∑
j=1

(−1)i+jAij det(Aij)

If A has columns v1, . . . , vn, we write det(A) = det(v1, . . . , vn) to emphasize that the deter-
minant is a function of the columns of A.

Remark 3.4.2 (Properties of the Determinant). Let v1, . . . , vn ∈ Fn.

(a) For all α ∈ F, for all w ∈ Fn, for all i ∈ {1, . . . , n}
det(v1, . . . , vi−1, vi + αw, vi+1, . . . , vn)

= det(v1, . . . , vn) + α det(v1, . . . , vi−1, w, vi+1, . . . , vn). (Multilinear)

(b) For all i, j ∈ {1, . . . , n} with i 6= j,

det(v1, . . . , vi, . . . , vj, . . . , vn) = − det(v1, . . . , vj, . . . , vi, . . . , vn). (Alternating)

(c) det(In) = 1. (Normalized)
(d) For all n× n matrices A,B, we have det(AB) = det(A) det(B).
(e) For all n× n matrices A, we have det(A) = det(At).

Theorem 3.4.3. Suppose we have two functions F,G that map v1, . . . , vn ∈ Fn to F, both
satisfying properties (a), (b) and (c) above. Then F = G.

Proof. Define D(v1, . . . , vn) := F (v1, . . . , vn)−G(v1, . . . , vn). We will show that D = 0. Since
F,G both satisfy properties (a), (b), D satisfies properties (a), (b). Since F,G both satisfy
property (c), we have D(In) = 0. Since D satisfies property (b) and D(e1, . . . , en) = 0, if
(ej(1), . . . , ej(n)) is any permutation of the standard basis (e1, . . . , en), we have

D(ej(1), . . . , ej(n)) = 0. (∗)
Let vi ∈ Fn, and write vi =

∑n
j=1 αijej, αik ∈ F for all i, j ∈ {1, . . . , n}. Repeatedly applying

property (a),

D(v1, . . . , vn) = D(
n∑
j=1

α1jej, v2, . . . , vn) =
n∑
j=1

α1jD(ej, v2, . . . , vn)

=
n∑

j1=1

α1j1D(ej1 ,
n∑
j=1

α2jej, . . . , vn) =
n∑

j1=1

n∑
j2=1

α1j1α2j2D(ej1 , ej2 , . . . , vn)

= · · · =
n∑

j1=1

· · ·
n∑

jn=1

α1j1 · · ·αnjnD(ej1 , . . . , ejn).

And the final quantity is zero, by (∗), as desired. �
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Theorem 3.4.3 can be used to show that various different definitions of the determinant
all agree. Given some formula that should be equal to the determinant, it suffices to prove
that this formula satisfies properties (a), (b) and (c). For example, consider the following
determinant formula you learned in Calc 3, for vectors v1, v2, v3 ∈ R3:

det(v1, v2, v3) = v1 · (v2 × v3).
Here · denotes the dot product, and × denotes the cross product. You could write the right
side in coordinates to verify that it agrees with the left side. Or, you could verify that the
right side satisfies properties (a), (b) and (c), and then apply Theorem 3.4.3, instead giving
a coordinate-free proof of the desired identity.

As another application of Theorem 3.4.3, we can show that property (d) of Remark 3.4.2
holds.

Theorem 3.4.4. Assume that the determinant function satisfies properties (a), (b) and (c)
from Remark 3.4.2. Then the determinant function satisfies property (d). For all n × n
matrices A,B, we have det(AB) = det(A) det(B).

Proof. Suppose det(A) 6= 0. For v1, . . . , vn ∈ Fn, define

F (v1, . . . , vn) := det(Av1, . . . , Avn)/ det(A).

Note that F then satisfies properties (a), (b) and (c). So, we have by Theorem 3.4.3 that
F (B) = det(AB)/ det(A) = det(B). So, det(AB) = det(A) det(B), as desired.

In the case det(A) = 0, define

F (v1, . . . , vn) := det(v1, . . . , vn) + det(Av1, . . . , Avn).

Once again, F satisfies properties (a), (b) and (c), so F (B) = det(B) = det(B) + det(AB).
So, det(AB) = 0 = det(A) det(B). In any case, det(AB) = det(A) det(B), as desired. �

Theorem 3.4.5. Let A be an n× n matrix. Then A is invertible if and only if det(A) 6= 0.
If A is invertible, then det(A−1) = (det(A))−1.

Proof. Suppose A has rank r. From the Factorization Theorem (Theorem 3.3.9), A is the
product of elementary row and column operations, and also a diagonal matrix D with r ones
on the diagonal. If r < n, then det(D) = 0, so det(A) = 0 as well from property (d) of
Remark 3.4.2. We have shown that, if A has rank less than n, then det(A) = 0. Taking the
contrapositive, if det(A) 6= 0, then A has rank n. From Lemma 3.3.1, A is invertible if and
only if A has rank n. So, if det(A) 6= 0, then A is invertible.

We now prove the converse. Suppose A is invertible. From property (d) of Remark 3.4.2,
1 = det(In) = det(AA−1) = det(A) det(A−1). So, det(A) must be nonzero. �

Corollary 3.4.6. For any n× n matrix A, det(A) = det(At).

Proof. Suppose A has rank r. From the Factorization Theorem (Theorem 3.3.9), there exist
elementary row operations E1, . . . , Ej and elementary column operations F1, . . . , Fk, and
there exists a diagonal matrix D with r ones on the diagonal such that

A = E1 · · ·EjDF1 · · ·Fk (∗).
Taking the transpose of (∗),

At = F t
k · · ·F t

1DE
t
j · · ·Et

1. (∗∗)
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From Theorem 3.4.4 applied to (∗)
det(A) = det(E1) · · · det(Ej) det(D) det(F1) · · · det(Fk).

By checking Type 1, 2 and 3 matrices from Examples 3.2.1, 3.2.3 and 3.2.5 directly, we see
that det(E) = det(Et) for any elementary row or column operation E. So, applying Theorem
3.4.4 to (∗∗),

det(At) = det(F t
k) · · · det(F t

1) det(D) det(Et
j) · · · det(Et

1)

= det(E1) · · · det(Ej) det(D) det(F1) · · · det(Fk) = det(A).

�

4. Eigenvalues, Eigenvectors, Diagonalization

Exercise 4.0.1. Let A be an n × n matrix with entries Aij, i, j ∈ {1, . . . , n}, and let Sn
denote the set of all permutations on n elements. For σ ∈ Sn, let sign(σ) := (−1)N , where
σ can be written as a composition of N transpositions. Then

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i=1

Aiσ(i).

4.2. Diagonal Matrices. So far, we should have a reasonably good understanding of linear
transformations, matrices, rank and invertibility. However, given a matrix, we don’t yet have
a good understanding of how to “simplify” this matrix. In mathematics and science, the
general goal is to take some complicated and make it simpler. In the context of linear algebra,
this paradigm becomes: try to find a particular basis such that a linear transformation has
a diagonal matrix representation. (After all, diagonal matrices are among the simplest
matrices.) We now attempt to realize this goal within our discussion of eigenvectors and
diagonalization.

Definition 4.2.1 (Diagonal Matrix). An n×n matrix A with entries Aij, i, j ∈ {1, . . . , n}
is said to be diagonal if Aij = 0 whenever i 6= j, i, j ∈ {1, . . . , n}. If A is diagonal, we
denote the matrix A by diag(A11, A22, . . . , Ann).

Lemma 4.2.2. The rank of a diagonal matrix is equal to the number of its nonzero entries.

4.3. Eigenvectors and Eigenvalues.

Definition 4.3.1 (Eigenvector and Eigenvalue). Let V be a vector space over a field
F. Let T : V → V be a linear transformation. An eigenvector of T is a nonzero vector
v ∈ V such that, there exists λ ∈ F with T (v) = λv. The scalar λ is then referred to as the
eigenvalue of the eigenvector v.

Remark 4.3.2. The word “eigen” is German for “self.” The equation T (v) = λv is self-
referential in v, which explains the etymology here.

Example 4.3.3. If A is diagonal with A = diag(A11, . . . , Ann), then LA has eigenvectors
(e1, . . . , en) with eigenvalues (A11, . . . , Ann).

Example 4.3.4. If T is the identity transformation, then every vector is an eigenvector with
eigenvalue 1.

39



Example 4.3.5. If T : V → V has v ∈ N(T ) with v 6= 0, then v is an eigenvector of T with
eigenvalue zero.

Example 4.3.6. Define T : C∞(R)→ C∞(R) by T (f) := −f ′′. For any y ∈ R, the function
f(x) := eixy satisfies Tf(x) = f ′′(x) = y2f(x). So, for any y ∈ R, eixy is an eigenfunction of
T with eigenvalue y2.

Definition 4.3.7 (Eigenspace). Let V be a vector space over a field F. Let T : V → V be
a linear transformation. Let λ ∈ F. The eigenspace of λ is the set of all v ∈ V (including
zero) such that T (v) = λv.

Remark 4.3.8. Given λ ∈ F, the set of v such that T (v) = λv is the same as N(T − λIV ).
In particular, an eigenspace is a subspace of V . And N(T − λIV ) is nonzero if and only if
T − λIV is not one-to-one.

Lemma 4.3.9 (An Eigenvector Basis Diagonalizes T ). Let V be an n-dimensional
vector space over a field F, and let T : V → V be a linear transformation. Suppose V has an
ordered basis β := (v1, . . . , vn). Then vi is an eigenvector of T with eigenvalue λi ∈ F, for

all i ∈ {1, . . . , n}, if and only if the matrix [T ]ββ is diagonal with [T ]ββ = diag(λ1, . . . , λn).

Proof. We begin with the forward implication. Let i ∈ {1, . . . , n}. Suppose T (vi) = λivi,

[T (vi)]
β is a column vector whose ith entry is λi, with all other entries zero. Since [T ]ββ =

([T (v1)]
β, . . . , [T (vn)]β), we conclude that [T ]ββ = diag(λ1, . . . , λn).

Conversely, suppose [T ]ββ = diag(λ1, . . . , λn). Since [T ]ββ = ([T (v1)]
β, . . . , [T (vn)]β), we

conclude that T (vi) = λivi for all i ∈ {1, . . . , n}, so that vi is an eigenvector of T with
eigenvalue λi, for all i ∈ {1, . . . , n}. �

Definition 4.3.10 (Diagonalizable). A linear transformation T : V → V is said to be

diagonalizable if there exists an ordered basis β of V such the matrix [T ]ββ is diagonal.

Remark 4.3.11. From Lemma 4.3.9, T is diagonalizable if and only if it has a basis con-
sisting of eigenvectors of T .

Example 4.3.12. Let T : R2 → R2 denote reflection across the line ` which passes through
the origin and (1, 2). Then T (1, 2) = (1, 2), and T (2,−1) = −(2,−1), so we have two
eigenvectors of T with eigenvalues 1 and −1 respectively. The vectors ((1, 2), (2,−1)) are
independent, so they form a basis of R2. From Lemma 4.3.9, T is diagonalizable. For
β := ((1, 2), (2,−1)), we have

[T ]ββ = diag(1,−1) =

(
1 0
0 −1

)
.

Note that [T 2]ββ = I2 = [IR2 ]ββ, so T 2 = IR2 . The point of this example is that, once we can
diagonalize T , taking powers of T becomes very easy.

Definition 4.3.13 (Diagonalizable Matrix). An n × n matrix A is diagonalizable if
the corresponding linear transformation LA is diagonalizable.

Lemma 4.3.14. A matrix A is diagonalizable if and only if there exists an invertible matrix
Q and a diagonal matrix D such that A = QDQ−1. That is, a matrix A is diagonalizable if
and only if it is similar to a diagonal matrix.
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Proof. Suppose A is an n × n diagonalizable matrix. Let β denote the standard basis of
Fn, so that A = [LA]ββ. Since A is diagonalizable, there exists an ordered basis β′ such that

D := [LA]β
′

β′ is diagonal. From Lemma 2.7.3, there exists an invertible matrix Q := [IFn ]ββ′
such that

A = [LA]ββ = Q[LA]β
′

β′Q
−1 = QDQ−1.

We now prove the converse. Suppose A = QDQ−1, where Q is invertible and D is diagonal.
Let λ1, . . . , λn such that D = diag(λ1, . . . , λn). Then Dei = λiei for all i ∈ {1, . . . , n}, so

A(Qei) = QDQ−1Qei = QDei = λiQei.

So, Qei is an eigenvector of A, for each i ∈ {1, . . . , n}. Since Q is invertible and (e1, . . . , en)
is a basis of Fn, we see that (Qe1, . . . , Qen) is also a basis of Fn. So, β′′ := (Qe1, . . . , Qen)
is a basis of Fn consisting of eigenvectors of A, so A is diagonalizable by Lemma 4.3.9, since

[LA]β
′′

β′′ is diagonal. �

Lemma 4.3.15. Let A be an n× n matrix. Suppose β′ = (v1, . . . , vn) is an ordered basis of
Fn such that vi is an eigenvector of A with eigenvalue λi for all i ∈ {1, . . . , n}. Let Q be the
matrix with columns v1, . . . , vn (where we write each vi in the standard basis). Then

A = Q diag(λ1, . . . , λn)Q−1.

Proof. Let β be the standard basis of Fn. Note that [IFn ]ββ′ = Q. So, by Lemma 2.7.3,

A = [LA]ββ = Q[LA]β
′

β′Q
−1.

Since LAvi = λivi for all i ∈ {1, . . . , n},

[LA]β
′

β′ = diag(λ1, . . . , λn).

The Lemma follows. �

4.4. Characteristic Polynomial.

Lemma 4.4.1. Let A be an n× n matrix. Then λ ∈ F is an eigenvalue of A if and only if
det(A− λIn) = 0.

Proof. Suppose λ is an eigenvalue of A. Then there exists v ∈ Fn such that Av = λv and
v 6= 0, so that (A− λIn)v = 0. So, (A− λIn) is not invertible, and det(A− λIn) = 0, from
the contrapositive of Theorem 3.4.5. Conversely, if det(A − λIn) = 0, then A − λIn is not
invertible, from the contrapositive of Theorem 3.4.5. In particular, A−λIn is not one-to-one.
So, there exists v ∈ Fn with v 6= 0 such that (A− λIn)v = 0, i.e. Av = λv. �

Definition 4.4.2 (Characteristic Polynomial). Let A be an n×n with entries in a field
F. Let λ ∈ F, and define the characteristic polynomial f(λ) of A, by

f(λ) := det(A− λIn).

Lemma 4.4.3. Let A,B be similar matrices. Then A,B have the same characteristic poly-
nomial.
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Proof. Let λ ∈ F. Since A,B are similar, there exists an invertible matrix Q such that
A = QBQ−1. So, using the multiplicative property of the determinant,

det(A− λI) = det(QBQ−1 − λI) = det(Q(B − λI)Q−1)

= det(Q) det(B − λI) det(Q−1) = det(Q) det(Q)−1 det(B − λI)

= det(B − λI).

�

Lemma 4.4.4. Let A be an n× n matrix all of whose entries lie in P1(F). Then det(A) ∈
Pn(F).

Proof. From Exercise 4.0.1 from the homework, det(A) is a sum of polynomials of degree at
most n. That is, det(A) itself is in Pn(R). �

Remark 4.4.5. From this Lemma, we see that the characteristic polynomial of A is a
polynomial of degree at most n.

Lemma 4.4.6. Let A be an n × n matrix with entries Aij, i, j ∈ {1, . . . , n}. Then there
exists g ∈ Pn−2(F) such that

f(λ) = det(A− λI) = (A11 − λ) · · · (Ann − λ) + g(λ)

Proof. Let B := A− λI. From Exercise 4.0.1 from the homework,

det(A− λI) =
n∏
i=1

(Aii − λ) +
∑

σ∈Sn : σ 6=In

sign(σ)
n∏
i=1

Biσ(i).

Note that each term in the sum on the right has a number of λ terms equal to the number
of i ∈ {1, . . . , n} such that i = σ(i). So, if σ ∈ Sn and σ 6= In, it suffices to show that
there exist at least two integers i, j ∈ {1, . . . , n} with i 6= j such that σ(i) 6= i and σ(j) 6= j.
We prove this assertion by contradiction. Suppose there exists σ ∈ Sn, σ 6= In with exactly
one i ∈ {1, . . . , n} with σ(i) 6= i. Then σ(k) = k for all k ∈ {1, . . . , n} r {i}. Since σ is a
permutation, σ is onto, so there exists i′ ∈ {1, . . . , n} such that σ(i′) = i. Since σ(k) = k
for all k ∈ {1, . . . , n}r {i}, we must therefore have i = i′, so that σ(i) = i, a contradiction.
We conclude that since σ 6= In, there exist at least two i, j ∈ {1, . . . , n} with i 6= j such that
σ(i) 6= i and σ(j) 6= j, as desired. �

Definition 4.4.7 (Trace). Let A be an n × n matrix with entries Aij, i, j ∈ {1, . . . , n}.
Then the trace of A, denoted by Tr(A), is defined as

Tr(A) :=
n∑
i=1

Aii.

Theorem 4.4.8. Let A be an n× n matrix. There exist scalars a1, . . . , an−2 ∈ F such that
the characteristic polynomial f(λ) of A satisfies

f(λ) = (−1)nλn + (−1)n−1Tr(A)λn−1 + an−2λ
n−2 + · · ·+ a1λ+ det(A).

Proof. From Lemma 4.4.6, there exists g ∈ Pn−2(F) such that

f(λ) = (A11 − λ) · · · (Ann − λ) + g(λ).
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Multiplying out the product terms, we therefore get the two highest order terms of f . That
is, there exists G ∈ Pn−2(F) such that

f(λ) = (−λ)n + Tr(A)(−λ)n−1 +G(λ).

Finally, to get the zeroth order term of the polynomial f , note that by definition of the
characteristic polynomial, f(0) = det(A). �

Example 4.4.9. Let a, b, c, d ∈ R. Then the characteristic polynomial of(
a b
c d

)
is

(a− λ)(d− λ)− bc = λ2 − λ(a+ d) + (ad− bc) = λ2 − λTr(A) + det(A).

Example 4.4.10. The characteristic polynomial of(
0 1
1 0

)
is λ2 − 1 = (λ+ 1)(λ− 1).

Example 4.4.11. Let i :=
√
−1. The characteristic polynomial of(

0 −1
1 0

)
is λ2 + 1 = (λ+ i)(λ− i). However, we cannot factor λ2 + 1 using only real numbers. So, as
we will see below, we can diagonalize this matrix over the complex numbers, but not over
the real numbers.

Theorem 4.4.12 (The Fundamental Theorem of Algebra). Let f(λ) be a real polyno-
mial of degree n. Then there exist λ0, λ1, . . . λn ∈ C such that

f(λ) = λ0

n∏
i=1

(λ− λi).

Remark 4.4.13. This theorem is one of the reasons that complex numbers are useful. If
we have complex numbers, then any real matrix has a characteristic polynomial that can be
factored into complex roots. Without complex numbers, we could not do this.

4.5. Diagonalizability. Recall that n linearly independent vectors in Fn form a basis of
Fn. So, from Lemma 4.3.9 or the proof of Lemma 4.3.14, we have

Lemma 4.5.1. Let A be an n × n matrix with elements in F. Then A is diagonalizable
(over F) if and only if there exists a set (v1, . . . , vn) of linearly independent vectors in Fn

such that vi is an eigenvector of A for all i ∈ {1, . . . , n}.

We now examine some ways of finding a set of linearly independent eigenvectors of A,
since this will allow us to diagonalize A.

Proposition 4.5.2. Let A be an n × n matrix. Let v1, . . . , vk be eigenvectors of A with
eigenvalues λ1, . . . , λk, respectively. If λ1, . . . , λk are all distinct, then the vectors v1, . . . , vk
are linearly independent.
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Proof. We argue by contradiction. Assume there exist α1, . . . , αk ∈ F not all zero such that
k∑
i=1

αivi = 0.

Without loss of generality, α1 6= 0. Applying (A− λkI) to both sides,

0 =
k−1∑
i=1

αi(A− λkI)vi =
k−1∑
i=1

αi(λi − λk)vi.

We now apply (A− λk−1I) to both sides, and so on. Continuing in this way, we eventually
get the equality

0 = α1(λ1 − λk)(λ1 − λk−1) · · · (λ1 − λ2)v1.
Since λ1, . . . , λk are all distinct, and α1 6= 0, and since v1 6= 0 (since it is an eigenvector), we
have arrived at a contradiction. We conclude that v1, . . . , vk are linearly independent. �

Corollary 4.5.3. Let A be an n× n matrix with elements in F. Suppose the characteristic
polynomial f(λ) of A can be written as f(λ) =

∏n
i=1(λi − λ), where λi ∈ F are distinct, for

all i ∈ {1, . . . , n}. Then A is diagonalizable.

Proof. For all i ∈ {1, . . . , n}, let vi ∈ Fn be the eigenvector corresponding to the eigenvalue
λi. Setting k = n in Proposition 4.5.2 shows that v1, . . . , vn are linearly independent. Lemma
4.5.1 therefore completes the proof. �

Example 4.5.4. Consider

A =

(
1 −2
1 4

)
.

The characteristic polynomial is then

f(λ) = (1− λ)(4− λ) + 2 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3).

So, f(λ) has two distinct real roots, and we can diagonalize A over R. Observe that v1 =
(2,−1) is an eigenvector with eigenvalue 2 and v2 = (1,−1) is an eigenvector with eigenvalue
3. So, if we think of the eigenvectors as column vectors, and use them to define Q,

Q :=

(
2 1
−1 −1

)
,

we then have the desired diagonalization(
1 −2
1 4

)
= Q

(
2 0
0 3

)
Q−1 =

(
2 1
−1 −1

)(
2 0
0 3

)(
1 1
−1 −2

)
.

Exercise 4.5.5. Using the matrix from Example 4.4.11, find its diagonalization over C.

In summary, ifA is an n×nmatrix with elements in F, and if we can write the characteristic
polynomial of A as a product of n distinct roots in F, then A is diagonalizable over F. On
the other hand, if we cannot write the characteristic polynomial as a product of n roots in
F, then A is not diagonalizable over F. (Combining Lemmas 4.3.14 and 4.4.3 shows that,
if A is diagonalizable, then it has the same characteristic polynomial as a diagonal matrix.
That is, the characteristic polynomial of A is the product of n roots.) (Recalling Example
4.4.11, the real matrix with characteristic polynomial λ2 + 1 can be diagonalized over C but
not over R.)
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The only remaining case to consider is when the characteristic polynomial of A can be
written as a product of n non-distinct roots of F. Unfortunately, this case is more compli-
cated. It can be dealt with, but we don’t have to time to cover the entire topic. The two
relevant concepts here would be the Jordan normal form and the minimal polynomial.

To see the difficulty, note that the matrix(
2 0
0 2

)
is diagonal, so it is diagonalizable. Also, the standard basis of R2 are eigenvectors, and the
characteristic polynomial is (2− λ)2.

On the other hand, consider the matrix

A =

(
2 1
0 2

)
.

This matrix also has characteristic polynomial (2− λ)2, but it is not diagonalizable. To see
this, we will observe that the eigenvectors of A do not form a basis of R2. Since 2 is the only
eigenvalue, all of the eigenvectors are in the null space of(

0 1
0 0

)
.

However, this matrix has only a one-dimensional null space, which is spanned by the column
vector (1, 0). Since the eigenvectors of A do not form a basis of R2, A is not diagonalizable
by Remark 4.3.11 (or Lemma 4.3.9).

5. Inner Products, Adjoints, Spectral Theorems, Self-Adjoint Operators

5.2. Inner Product Spaces. Up until this point, we have focused on the linear properties of
vector spaces. Our investigation now becomes much deeper when we consider more geometric
properties of vector spaces. That is we now start to consider the size of vectors, and how
close one vector can be to another. These notions are made rigorous by the introduction of
norms and inner products, respectively. Also, with this more geometric information, linear
algebra and analysis will start to relate much more with each other.

We first introduce the concept of a general norm, which measures the length of vectors.
We then introduce the more specific concept of an inner product, which measures the angle
between two vectors.

Definition 5.2.1 (Normed Linear Space). Let F denote either R or C. Let V be a
vector space over F. A normed linear space is a vector space V equipped with a norm.
A norm is a function V → R, denoted by ‖·‖, which satisfies the following properties.

(a) For all v ∈ V , for all α ∈ F, ‖αv‖ = |α| ‖v‖. (Homogeneity)
(b) For all v ∈ V with v 6= 0, ‖v‖ is a positive real number; ‖v‖ > 0. And v = 0 if and

only if ‖v‖ = 0. (Positive definiteness)
(c) For all v, w ∈ V , ‖v + w‖ ≤ ‖v‖+ ‖w‖. (Triangle Inequality)

Example 5.2.2. Let x = (x1, . . . , xn) ∈ Rn. Define the 2-norm on Rn by

‖x‖2 :=
√
x21 + · · ·+ x2n.
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So, for n = 1, we have ‖x‖2 = |x|. We will see below one way to show the triangle inequality
for the 2-norm.

Define the 1-norm on Rn by

‖x‖1 :=
n∑
i=1

|xi| .

Define the ∞-norm on Rn by

‖x‖∞ := max
i=1,...,n

|xi| .

Exercise 5.2.3. Let x, y ∈ R. Verify that |x+ y| ≤ |x| + |y|. Deduce that the triangle
inequality holds for the 1-norm and the ∞-norm.

Exercise 5.2.4. Let V be a normed linear space. Show that, for any v, w ∈ V , ‖v − w‖ ≥
|‖v‖ − ‖w‖|.

Definition 5.2.5 (Complex Conjugate). Let i :=
√
−1. Let x, y ∈ R, and let z = x+iy ∈

C. Define z := x− iy. Define |z| :=
√
x2 + y2. Note that |z|2 = zz.

Definition 5.2.6 (Inner Product). Let F denote either R or C. Let V be a vector space
over F. An inner product space is a vector space V equipped with an inner product.
An inner product is a function V × V → F, denoted by 〈·, ·〉, which satisfies the following
properties.

(a) For all v, v′, w ∈ V , 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉. (Linearity in the first argument).
(b) For all v, w ∈ V , for all α ∈ F, 〈αv, w〉 = α〈v, w〉. (Homogeneity in the first

argument)
(c) For all v ∈ V , if v 6= 0, then 〈v, v〉 is a positive real number; 〈v, v〉 > 0. (Positivity)

(d) For all v, w ∈ V , 〈v, w〉 = 〈w, v〉. (Conjugate symmetry)

Exercise 5.2.7. Using the above properties, show the following things.

(e) For all v, v′, w ∈ V , 〈w, v+ v′〉 = 〈w, v〉+ 〈w, v′〉. (Linearity in the second argument)
(f) For all v, w ∈ V , for all α ∈ F, 〈v, αw〉 = α〈v, w〉.
(g) For all v ∈ V , 〈v, 0〉 = 〈0, v〉 = 0.
(h) 〈v, v〉 = 0 if and only if v = 0.

Remark 5.2.8. If F = R, then property (d) says that 〈v, w〉 = 〈w, v〉.

Example 5.2.9. Let x = (x1, . . . , xn) ∈ Rn, and let y = (y1, . . . , yn) ∈ Rn. Define the
standard inner product (or dot product) on Rn by

〈x, y〉 :=
n∑
i=1

xiyi.

More generally, if α1, . . . , αn > 0, then the following definition also gives an inner product

〈x, y〉α :=
n∑
i=1

αixiyi.
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Example 5.2.10. Let w = (w1, . . . , wn) ∈ Cn, and let z = (z1, . . . , zn) ∈ Cn. Define the
standard inner product (or dot product) on Cn by

〈w, z〉 :=
n∑
i=1

wizi.

Example 5.2.11. Let A,B ∈ Mn×n(R) . Define the standard inner product on Mn×n(R)
by

〈A,B〉 := Tr(BtA).

Example 5.2.12. Let f, g ∈ C([0, 1],R). That is, f, g are continuous real valued functions
on [0, 1]. Define

〈f, g〉 :=

∫ 1

0

f(t)g(t)dt.

Definition 5.2.13 (Orthogonal Vectors). Let V be an inner product space, and let
v, w ∈ V . We say that v, w are orthogonal if 〈v, w〉 = 0.

Lemma 5.2.14 (The Cauchy-Schwarz Inequality). Let V be an inner product space.
Then, for any v, w ∈ V ,

|〈v, w〉| ≤
√
〈v, v〉

√
〈w,w〉.

Proof. If w = 0, then both sides of our inequality are zero, so the inequality holds, and we
may assume w 6= 0. So, 〈w,w〉 > 0. Define α := 〈v, w〉/〈w,w〉. Note that by conjugate-
symmetry of the inner product,

〈v, w〉〈w, v〉 = 〈v, w〉〈v, w〉 = |〈v, w〉|2 .
Also, by positivity of the inner product, 〈v − αw, v − αw〉 ≥ 0. That is,

〈v, v〉 − α〈w, v〉 − α〈v, w〉+ |α|2 〈w,w〉 ≥ 0

Substituting in the definition of α,

〈v, v〉 − |〈v, w〉|2 /〈w,w〉 − |〈v, w〉|2 /〈w,w〉+ |〈v, w〉|2 /〈w,w〉 ≥ 0.

Simplifying, we get 〈v, v〉 − |〈v, w〉|2 /〈w,w〉 ≥ 0, as desired. �

Remark 5.2.15. If the choice of α looks a bit mysterious, note that if v = βw for some
β ∈ R, then the Cauchy-Schwarz inequality becomes an equality. And if 〈v, w〉 = 0, then
the Cauchy-Schwarz inequality has zero on the left side and a possibly large number on the
right. So, the positive number

√
〈v, v〉

√
〈w,w〉−|〈v, w〉| somehow measures how close v and

w are to being parallel. Also, in the proof of the Cauchy-Schwarz inequality, αw is parallel
to w and v − αw is orthogonal to w, so writing

v = (v − αw) + αw,

we see that the size of v − αw also measures how close v and w are to being parallel.

We now show that an inner product space is a normed linear space, with norm ‖v‖ :=√
〈v, v〉.

Lemma 5.2.16. Let 〈, 〉 be an inner product on a vector space V . Then the function

‖·‖ : V → R defined by ‖v‖ :=
√
〈v, v〉 is a norm on V .
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Proof. Homogeneity and positive definiteness follow readily from the definition of the inner
product, and from Exercise 5.2.7(h). It therefore suffices to show that the triangle inequality
holds. Let v, w ∈ V . We need to show that ‖v + w‖ ≤ ‖v‖ + ‖w‖. In order to show this
inequality, it suffices to show that its square holds.

‖v + w‖2 = |〈v + w, v + w〉| = |〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉|
≤ |〈v, v〉|+ |〈w,w〉|+ |〈v, w〉|+ |〈w, v〉| , by Exercise 5.2.3

≤ ‖v‖2 + ‖w‖2 + 2 ‖v‖ ‖w‖ , by Lemma 5.2.14

= (‖v‖+ ‖w‖)2.
�

Consequently, the triangle inequality holds for the norm ‖·‖2 on Rn, for any n ≥ 1.

5.3. Orthogonality. Let V be an inner product space with inner product 〈 , 〉. Recall that
v, w ∈ V are said to be orthogonal if 〈v, w〉 = 0. If v, w are orthogonal, we also sometimes
say that v, w are perpendicular, and we write v ⊥ w.

Lemma 5.3.1. Let V be an inner product space. Suppose v ∈ V is orthogonal to each of
the vectors v1, . . . , vn ∈ V . Then v is orthogonal to any linear combination of v1, . . . , vn.

Proof. Since 〈v, vi〉 = 0 for all i ∈ {1, . . . , n}, if α1, . . . , αn ∈ F, we have

〈v,
n∑
i=1

αivi〉 =
n∑
i=1

αi〈v, vi〉 = 0.

�

Theorem 5.3.2 (Pythagorean Theorem). Let V be an inner product space, and let v, w ∈
V be orthogonal. Then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof.

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉 = ‖v‖2 + ‖w‖2 .
�

Theorem 5.3.3 (Generalized Pythagorean Theorem). Let V be an inner product space,
and let v1, . . . , vn ∈ V be orthogonal to each other. That is, 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n}
with i 6= j. Then ∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥
2

=
n∑
i=1

‖vi‖2

Proof. We induct on n. The base case has been proven, so we only need to prove the inductive
step. Suppose the assertion is true for a fixed n. Then, let v1, . . . , vn+1 be orthogonal to
each other. From Lemma 5.3.1, vn+1 is orthogonal to

∑n
i=1 vi. So, applying the Pythagorean

Theorem to vn+1 and
∑n

i=1 vi, and then using the inductive hypothesis,∥∥∥∥∥vn+1 +
n∑
i=1

vi

∥∥∥∥∥
2

= ‖vn+1‖2 +

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥
2

= ‖vn+1‖2 +
n∑
i=1

‖vi‖2 .

�
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Corollary 5.3.4. Let V be an inner product space, and let v1, . . . , vn ∈ V be orthogonal to
each other. That is, 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n} with i 6= j. Let α1, . . . , αn ∈ F.
Then ∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 ‖vi‖2 .

Proof. If 〈vi, vj〉 = 0, then 〈αivi, αjvj〉 = 0. So, apply Theorem 5.3.3 to the set of vectors
α1v1, . . . , αnvn. �

Definition 5.3.5 (Orthogonal Set, Orthonormal Set). Let V be an inner product space
and let (v1, . . . , vn) be a collection of vectors in V . The set of vectors (v1, . . . , vn) is said to
be orthogonal if 〈vi, vj〉 = 0 for all i, j ∈ {1, . . . , n} with i 6= j. If additionally 〈vi, vi〉 = 1
for all i ∈ {1, . . . , n}, the set of vectors (v1, . . . , vn) is called orthonormal.

Corollary 5.3.6. Let V be an inner product space, and let v1, . . . , vn ∈ V be an orthonormal
set of vectors. Then ∥∥∥∥∥

n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 .

Corollary 5.3.7. Any set of orthonormal vectors is linearly independent.

5.3.1. Orthonormal Bases.

Definition 5.3.8 (Orthonormal Basis). Let V be an inner product space. An orthonor-
mal basis of V is a collection (v1, . . . , vn) of orthonormal vectors that is also a basis for
V .

Corollary 5.3.9. Let V be an n-dimensional inner product space. Let (v1, . . . , vn) be an
orthonormal set in V . Then (v1, . . . , vn) is an orthonormal basis of V .

Proof. By Corollary 5.3.7, (v1, . . . , vn) is linearly independent. By Corollary 1.6.14(e), If we
have n linearly independent vectors in an n-dimensional space, then these vectors form a
basis of V . �

Theorem 5.3.10. Let V be an inner product space. Let (v1, . . . , vn) be an orthonormal basis
of V . Then, for any v ∈ V , we have

v =
n∑
i=1

〈v, vi〉vi.

Proof. Let v ∈ V . Since (v1, . . . , vn) is a basis of V , there exist α1, . . . , αn ∈ F such that

v =
n∑
i=1

αivi. (∗)

So, we need to show that αi = 〈v, vi〉 for all i ∈ {1, . . . , n}. Let j ∈ {1, . . . , n}. Taking the
inner product of both sides of (∗) with vj, and then applying orthonormality,

〈v, vj〉 =

〈
n∑
i=1

αivi, vj

〉
=

n∑
i=1

αi〈vi, vj〉 = αi〈vj, vj〉 = αj.

�
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Corollary 5.3.11. Let V be an inner product space. Let β = (v1, . . . , vn) be an orthonormal
basis of V . Then, the coordinate vector [v]β has the form

[v]β =

〈v, v1〉...
〈v, vn〉

 .

Remark 5.3.12. Let V,W be finite-dimensional inner product spaces. Let β = (v1, . . . , vn)
be an orthonormal basis of V and let γ be an orthonormal basis of W . Let T : V → W be
a linear transformation. Then we can compute [T ]γβ using inner products, since its columns
are [T (v1)]

γ, . . . , [T (vn)]γ.

Example 5.3.13. Consider C([0, 1],C). As usual, let i :=
√
−1. Let f, g ∈ C([0, 1],C),

and consider the standard inner product

〈f, g〉 :=

∫ 1

0

f(t)g(t)dt.

Let k ∈ Z, t ∈ [0, 1]. Define vk(t) := e2πikt. We claim that the set {vk}k∈Z is an orthonormal
set. (In a suitable sense, it is also an orthonormal basis, but we cannot cover this topic here;
for more, look into Fourier analysis.) Let j, k ∈ Z and observe

〈vj, vk〉 =

∫ 1

0

vj(t)vk(t)dt =

∫ 1

0

e2πijte−2πiktdt =

∫ 1

0

e2πi(j−k)tdt

So, if j = k, we get 〈vj, vk〉 =
∫ 1

0
dt = 1. And if j 6= k, we have j − k ∈ Z, so

〈vj, vk〉 =
1

2πi(j − k)
(e2πi(j−k) − 1) =

1

2πi(j − k)
(1− 1) = 0.

Let Tn denote the set of trigonometric polynomials of the form a0 +a1e
2πit+ · · ·+ane

2πint,
a1, . . . , an ∈ C. Then Tn is a subspace of C([0, 1],C), so Tn is also an inner product space.
So from Theorem 5.3.10, if f ∈ Tn, we have

f(t) =
n∑
j=0

(

∫ 1

0

f(s)e−2πijsds)e2πijt,

and from Corollary 5.3.6, we have Plancherel’s formula∫ 1

0

|f(t)|2 dt =
n∑
j=0

∣∣∣∣∫ 1

0

f(s)e−2πijsds

∣∣∣∣2 .
The scalars

∫ 1

0
f(s)e−2πijsds, j ∈ {0, . . . , n} are called the Fourier coefficients of f .

5.4. Gram-Schmidt Orthogonalization.

Definition 5.4.1 (Unit Vector). Let V be a normed linear space, and let v ∈ V . If
‖v‖ = 1, we say that v is a unit vector.

Remark 5.4.2. Let v 6= 0. Then v/ ‖v‖ is a unit vector.
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Definition 5.4.3 (Projection onto a vector). Let v, w be vectors in an inner product
space, with w 6= 0. Define the orthogonal projection of v onto w by

Pw(v) :=
〈v, w〉
〈w,w〉

w =

〈
v,

w

‖w‖

〉
w

‖w‖
.

Note that Pw is a linear transformation.

As we saw in the proof of the Cauchy-Schwarz inequality, if v, w ∈ V and w 6= 0, we can
write

v = (v − Pw(v)) + Pw(v).

And v − Pw(v) is orthogonal to w, while Pw(v) is parallel to w. Therefore, v − Pw(v) is
orthogonal to Pw(v).

Definition 5.4.4 (Projection onto a subspace). Let V be an inner product space. Let
W ⊆ V be an n-dimensional subspace of V . Let w1, . . . , wn be an orthogonal set of nonzero
vectors in W . Let v ∈ V . Define the orthogonal projection of v onto W by

PW (v) :=
n∑
i=1

〈
v,

wi
‖wi‖

〉
wi
‖wi‖

.

Note that PW : V → V is a linear transformation, and R(PW ) ⊆ W .

Remark 5.4.5. PW (v) = v if and only if v ∈ W by Theorem 5.3.10. Also, the definition of
PW (v) does not depend on the orthogonal set of nonzero vectors w1, . . . , wn. This follows by
applying Theorem 5.3.10 to the orthonormal set (w1/ ‖w1‖ , . . . , wn/ ‖wn‖).

Remark 5.4.6. Let w1, . . . , wn be an orthogonal set of nonzero vectors in W . As before,
given v ∈ V and W an n-dimensional subspace of V , we can write

v = (v − PW (v)) + PW (v).

Note that PW (v) ∈ W , and (v − PW (v)) is orthogonal to wi for each i ∈ {1, . . . , n}. So, by
Lemma 5.3.1, (v − PW (v)) is orthogonal to any vector in W .

Given a set of linearly independent vectors, we can create an orthonormal set of vectors
from the linearly independent set by using projections and Remark 5.4.6. The procedure for
creating these orthonormal sets is known as Gram-Schmidt orthogonalization.

Theorem 5.4.7 (Gram-Schmidt Orthogonalization). Let v1, . . . , vn be a linearly inde-
pendent set of vectors in an inner product space V . Then we can create an orthogonal set of
vectors in V as follows. Define

w1 := v1.

w2 := v2 − Pw1(v2).

w3 := v3 − Pspan(w1,w2)(v3).

And so on. In general, for k ∈ {2, . . . , n}, define

wk := vk − Pspan(w1,...,wk−1)(vk).

Then for each k ∈ {1, . . . , n}, (w1, . . . , wk) is an orthogonal set of nonzero vectors in V .
Also, span(w1, . . . , wk) = span(v1, . . . , vk) for each k ∈ {1, . . . , n}. Finally, note that the
set (w1/ ‖w1‖ , . . . , wn/ ‖wn‖) is an orthonormal set of vectors in V with the same span as
v1, . . . , vn.
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Proof. Note that w2 ⊥ w1 from Remark 5.4.6. We will show that {w1, . . . , wk} is an or-
thogonal set of nonzero vectors, and span(w1, . . . , wk) = span(v1, . . . , vk) by induction on
k. Assume {w1, . . . , wk} is an orthogonal set of nonzero vectors, and span(w1, . . . , wk) =
span(v1, . . . , vk) for some k. Consider wk+1. Using the definition of wk+1, the inductive
hypothesis, and Remark 5.4.5,

wk+1 = vk+1 − Pspan(w1,...,wk)(vk+1) = vk+1 − Pspan(v1,...,vk)(vk+1). (∗)

By Remark 5.4.6, wk+1 is orthogonal to any vector in span(v1, . . . , vk) = span(w1, . . . , wk).
Also, wk+1 6= 0, since vk+1 /∈ span(v1, . . . , vk), by linear independence. That is, vk+1 6=
Pspan(v1,...,vk)(vk+1) by Remark 5.4.5. Therefore, {w1, . . . , wk+1} is an orthogonal set of nonzero
vectors. We now show the spanning property. From (∗) and the definition of the projection,
wk+1 ∈ span(v1, . . . , vk+1). So,

span(w1, . . . , wk+1) ⊆ span(v1, . . . , vk+1).

Now, note that the span on the right is (k+1)-dimensional by Corollary 5.3.7, as is the span
on the left. So we must have equality. The induction step is complete, and we are done. �

Example 5.4.8. Consider P2([−1, 1]), the set of real polynomials of degree at most 2 on
the interval [−1, 1]. Let f, g ∈ P2([−1, 1]). We use the inner product

〈f, g〉 :=

∫ 1

−1
f(t)g(t)dt.

Let’s start with the standard basis (1, t, t2) where t is a real variable, and let’s create an
orthonormal basis from the standard one. Define v1 := 1, v2 := t, and v3 := t2. Define

w1 := v1 = 1.

Note that 〈w1, w1〉 = 2, so w1 has norm
√

2. Then, define

w2 := v2 − 〈v2, w1〉w1/2 = t.

We can verify that 〈t, 1〉 = 0. Note also that 〈t, t〉 =
∫ 1

−1 t
2dt = 2/3, so (

√
3/2)w2 has norm

1. So, define

w3 := v3 − 〈v3, w2〉w2/ ‖w2‖2 − 〈v3, w1〉w1/ ‖w1‖2

= t2 − (

∫ 1

−1
x3dx)t(3/2)− (1/2)(

∫ 1

−1
x2dx)

= t2 − 1/3.

We can verify that 〈t2 − 1/3, 1〉 = 0 and 〈t2 − 1/3, t〉 = 0. Also,
∫ 1

−1(t
2 − 1/3)2dt = 8/45, so

t2 − 1/3 has norm
√

8/45.
In conclusion, an orthonormal basis for P2([−1, 1]), is{√

1

2
,

√
3

2
t,

√
45

8

(
t2 − 1

3

)}
.

Corollary 5.4.9. Every finite dimensional inner product space has an orthonormal basis.
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Proof. Recall from Definition 1.6.15 that every finite-dimensional vector space has a basis.
Given this basis v1, . . . , vn, apply the Gram-Schmidt Orthogonalization (Theorem 5.4.7) to
get an orthonormal set w1/ ‖w1‖ , . . . , wn/ ‖wn‖. By Corollary 5.3.9, the vectors produced
from the Gram-Schmidt process are an orthonormal basis. �

Corollary 5.4.10. Let V be an inner product space, and let W ⊆ V be a finite-dimensional
subspace. Then there exists a linear transformation P : V → V such that P 2 = P , R(P ) ⊆
W , and P (w) = w for any w ∈ W . That is, P is a projection onto W .

Proof. From Corollary 5.4.9, let w1, . . . , wn be an orthonormal basis for W . As in Definition
5.4.4, define

P (v) = PW (v) :=
n∑
i=1

〈v, wi〉wi.

�

5.4.1. Orthogonal Complements.

Definition 5.4.11 (Orthogonal Subspaces). Let V1, V2 be two subspaces of an inner
product space V . If v1 ⊥ v2 for all v1 ∈ V1, v2 ∈ V2, we say that V1 is orthogonal to V2, and
we write V1 ⊥ V2.

Lemma 5.4.12. Let V1, V2 be two subspaces of an inner product space V . If V1 ⊥ V2, then
V1 ∩ V2 = {0}.

Proof. Since V1, V2 are subspaces, 0 ∈ V1 and 0 ∈ V2, so 0 ∈ V1 ∩ V2. Now, let v ∈ V1 ∩ V2.
We will show that v = 0. Then v ∈ V2. But since v ∈ V2 and V2 ⊥ V1, we have 〈v, v1〉 = 0
for all v1 ∈ V1. In particular, since v ∈ V1, we have 〈v, v〉 = 0. By the positive definiteness
property of the inner product, we conclude that v = 0. That is, V1 ∩ V2 = {0}. �

Definition 5.4.13 (Orthogonal Complement). Let V1 be a subspace of an inner product
space V . Define the orthogonal complement of V1 in V by

V ⊥1 := {v ∈ V : 〈v, v1〉 = 0, ∀ v1 ∈ V1}.

Exercise 5.4.14. Show that {0}⊥ = V and V ⊥ = {0}.

Exercise 5.4.15. Let V1 be a subspace of an inner product space V . Show that V ⊥1 is a
subspace of V .

The following Theorem gives an algorithm for computing orthogonal complements.

Theorem 5.4.16. Let V be an n-dimensional inner product space, and let W ⊆ V be a
k-dimensional subspace. Let v1, . . . , vk be a basis of W , and let v1, . . . , vn be an extension of
that basis to V . (We proved that this extension exists in Corollary 1.6.14(f)). Let w1, . . . , wn
be the orthonormal vectors produced by Gram-Schmidt orthogonalization. Then w1, . . . , wk
is an orthonormal basis of W , and wk+1, . . . , wn is an orthonormal basis of W⊥.

Proof. From Theorem 5.4.7, span(w1, . . . , wk) = span(v1, . . . , vk). Since W is k-dimensional,
we conclude that w1, . . . , wk is a basis for W . Since w1, . . . , wk is also orthonormal, it is
therefore an orthonormal basis of W .

Also, the vectors wk+1, . . . , wn are orthonormal, and therefore they are linearly independent
by Corollary 5.3.7. So, it remains to show that wk+1, . . . , wn spans W⊥. Let j ∈ {k +
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1, . . . , n}. By the Gram-Schmidt process, wj is orthogonal to each of the vectors w1, . . . , wk.
By Lemma 5.3.1, wj is then orthogonal to all of W . So, wj ∈ W⊥. So, span(wk+1, . . . , wn) ⊆
W⊥. It remains to show that every w ∈ W⊥ is in span(wk+1, . . . , wn).

Let w ∈ W⊥. Since w ∈ V and (w1, . . . , wn) is an orthonormal basis of V , we have by
Theorem 5.3.10,

w =
n∑
i=1

〈w,wi〉wi.

Since w ∈ W⊥, 〈w,wi〉 = 0 for each i ∈ {1, . . . , k}. That is,

w =
n∑

i=k+1

〈w,wi〉wi.

So, w ∈ span(wk+1, . . . , wn), as desired. �

Example 5.4.17. We continue the definitions and notation from Example 5.4.8. Consider
W ⊆ P2([−1, 1]), where W is the span of 1 and t. Let’s compute W⊥. To do this, we
complete the set (1, t) to a basis (1, t, t2). From Example 5.4.8, we then used Gram-Schmidt
orthogonalization using v1 = 1, v2 = t and v3 = t2. We found that the resulting orthonormal
basis for P2([−1, 1]) is {√

1

2
,

√
3

2
t,

√
45

8

(
t2 − 1

3

)}
.

So,
√

1/2 and
√

(3/2)t are an orthonormal basis of W . And therefore, W⊥ is a one-
dimensional space described as

W⊥ = {α(t2 − 1/3) : α ∈ R}.

Corollary 5.4.18 (Dimension Theorem for orthogonal complements). Let W be a
subspace of a finite-dimensional inner product space V . Then

dim(W ) + dim(W⊥) = dim(V ).

Corollary 5.4.19. Let W be a subspace of a finite-dimensional inner product space V . Then
every v ∈ V can be written uniquely as v = w + n where w ∈ W and n ∈ W⊥.

Proof. By Theorem 5.4.16, ∃ an orthonormal basis w1, . . . , wm of V such that w1, . . . , wk is
an orthonormal basis of W , and wk+1, . . . , wm is an orthonormal basis of W⊥. Let v ∈ V .
by Theorem 5.3.10,

v =
m∑
i=1

〈v, wi〉wi =
k∑
i=1

〈v, wi〉wi +
m∑

i=k+1

〈v, wi〉wi.

Define

w :=
k∑
i=1

〈v, wi〉wi, n :=
m∑

i=k+1

〈v, wi〉wi.

Then v = w+n, w ∈ W , n ∈ W⊥. (As an aside, note that w = PW (v), and n = v−PW (v).)
We now show the desired uniqueness statement. Suppose v = w′ + n′ with w′ ∈ W and
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n′ ∈ W⊥. We will be done once we show that w = w′ and n = n′. Since w+ n = w′+ n′, we
have

w − w′ = n− n′. (∗)
The vector on the left of (∗) is in W , and the vector on the right of (∗) is in W⊥. By Lemma
5.4.12, W ∩W⊥ = {0}. So, both sides of (∗) must be zero. That is, w = w′ and n = n′, as
desired. �

Theorem 5.4.20 (Orthogonal projections minimize length). Let W be a subspace of
a finite-dimensional inner product space V . Let v ∈ V , and let w = PW (v) be the orthogonal
projection of v onto W . Then, for any w′ ∈ W with w′ 6= w, we have ‖v − w‖ < ‖v − w′‖.

Proof. From Corollary 5.4.19, write v = w + n, where w := PW (v) ∈ W , and n := v − w ∈
W⊥. Then ‖v − w‖ = ‖n‖. Now, write

v − w′ = (v − w) + (w − w′).
Since w,w′ ∈ W , w − w′ ∈ W . Since v − w = n ∈ W⊥, 〈v − w,w − w′〉 = 0. So, by the
Pythagorean Theorem (Theorem 5.3.2),

‖v − w′‖2 = ‖v − w‖2 + ‖w − w′‖2 .

So, ‖v − w′‖2 > ‖v − w‖2 since w 6= w′, as desired. �

5.5. Adjoints.

5.5.1. Linear Functionals.

Definition 5.5.1 (Linear Functional). Let V be a vector space over a field F. A linear
functional is a linear transformation T : V → F.

Linear functionals are also known as dual vectors, covectors, or 1-forms. In order to
understand some vector space V , it is often of interest to understand the set of all linear
functionals on V . Such a classification becomes quite subtle especially for infinite dimensional
spaces. However, as we show below, the case of finite-dimensional inner product spaces is
fairly tame.

Example 5.5.2. Define T : R3 → R by T (a, b, c) := a+2b+3c. Then T is a linear functional.

Example 5.5.3. Define T : C([0, 1],R) → R by T (f) :=
∫ 1

0
f(t)dt. Then T is a linear

functional.

Example 5.5.4. Define T : C([0, 1],R) → R by T (f) := f(1/3). Then T is a linear func-
tional.

Example 5.5.5. Let V be a finite-dimensional inner product space over R. Let w ∈ V , and
define T : V → R by T (v) := 〈v, w〉. Then T is a linear functional.

As we now show, the previous example essentially classifies all linear functionals on a
finite-dimensional inner product space.

Theorem 5.5.6 (Riesz Representation Theorem). Let V be a finite-dimensional inner
product space over a field F. Let T : V → F be a linear functional. Then there exists a
unique vector w ∈ V such that, for all v ∈ V , T (v) = 〈v, w〉.
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Proof. From Corollary 5.4.9, V has an orthonormal basis v1, . . . , vn. Define

w :=
n∑
j=1

vjT (vj).

Let v ∈ V . From Theorem 5.3.10,

v =
n∑
i=1

〈v, vi〉vi.

Since T is linear, we get

T (v) =
n∑
i=1

〈v, vi〉T (vi)

Since v1, . . . , vn is an orthonormal basis,

〈v, w〉 =

〈
n∑
i=1

〈v, vi〉vi,
n∑
j=1

vjT (vj)

〉
=

n∑
i=1

n∑
j=1

〈v, vi〉T (vj)〈vi, vj〉 =
n∑
i=1

〈v, vi〉T (vi) = T (v).

This completes the existence part of the proof. We now prove uniqueness.
Suppose there exists w′ ∈ V such that T (v) = 〈v, w′〉. We will show that w = w′. For all

v ∈ V , T (v) = 〈v, w〉 = 〈v, w′〉. That is,

∀ v ∈ V 〈v, w − w′〉 = 0. (∗)
Choosing v = w − w′ shows that 〈w − w′, w − w′〉 = 0 = ‖w − w′‖2. Therefore, w − w′ = 0,
as desired. �

5.5.2. Adjoints. Let F denote R or C. Let V be a finite-dimensional inner product space
over F with inner product 〈 , 〉V , and let W be a finite-dimensional inner product space over
F with inner product 〈 , 〉W . Let T : V → W be a linear transformation. Given any w ∈ W ,
define a linear functional Tw : V → F by

Tw(v) := 〈T (v), w〉W .
Note that Tw is actually a linear function. To see this, let v, v′ ∈ V and let α ∈ F. Then

Tw(v + v′) = 〈T (v + v′), w〉W = 〈T (v), w〉W + 〈T (v′), w〉W = Tw(v) + Tw(v′).

Tw(αv) = 〈T (αv), w〉W = α〈T (v), w〉W = αTw(v).

Definition 5.5.7 (Adjoint). Since Tw : V → F is a linear functional, we can apply Theorem
5.5.6 to get a unique vector in V , which we denote by T ∗(w), such that for all v ∈ V ,

Tw(v) = 〈v, T ∗(w)〉V .
As we will see shortly, T ∗ is a linear transformation from W to V , which we call the adjoint
of T . Also, recalling the definition of Tw, we have

〈T (v), w〉W = 〈v, T ∗(w)〉V .

Remark 5.5.8. Note that T : V → W , whereas T ∗ : W → V .

Remark 5.5.9. We have added subscripts to the above inner products to emphasize that
the inner product in W could be different from the inner product in V . From now on, we
will drop these subscripts.
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Lemma 5.5.10. Let T : V → W be a linear transformation between finite-dimensional inner
product spaces. Then T ∗ : W → V is a linear transformation

Proof. Let w,w′ ∈ W and let α ∈ F. We will first show that T ∗(w + w′) = T ∗(w) + T ∗(w′).
By the definition of T ∗, for all v ∈ V ,

〈T (v), w + w′〉 = 〈v, T ∗(w + w′)〉.
So, rearranging things and applying the definition of T ∗ again,

〈v, T ∗(w + w′)〉 = 〈T (v), w〉+ 〈T (v), w′〉 = 〈v, T ∗(w)〉+ 〈v, T ∗(w′)〉 = 〈v, T ∗(w) + T ∗(w′)〉.
By the uniqueness part of the Riesz Representation Theorem (Theorem 5.5.6), we therefore
have T ∗(w + w′) = T ∗(w) + T ∗(w′).

We now show that T ∗(αw) = αT ∗(w).

〈v, T ∗(αw)〉 = 〈T (v), αw〉 = α〈T (v), w〉 = α〈v, T ∗(w)〉 = 〈v, αT ∗(w)〉
By the uniqueness part of the Riesz Representation Theorem (Theorem 5.5.6), we therefore
have T ∗(αw) = αT ∗(w). �

Definition 5.5.11 (Adjoint of a Matrix). Let A be an m × n matrix with Ajk ∈ C,
1 ≤ j ≤ m, 1 ≤ k ≤ n. The adjoint of A, denoted by A†, is an n ×m matrix with entries
(A†)jk := Akj, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Theorem 5.5.12. Let T : V → W be a linear transformation between inner product spaces
V,W . Let β = (v1, . . . , vn) be an orthonormal basis of V and let γ = (w1, . . . , wm) be an
orthonormal basis of W . Then

[T ∗]βγ = ([T ]γβ)†.

Proof. Let w ∈ W . From Corollary 5.3.11, recall that

[w]γ =

 〈w,w1〉
...

〈w,wm〉

 .

Also, from Remark 5.3.12, [T ]γβ has columns [T (v1)]
γ, . . . , [T (vn)]γ. That is,

[T ]γβ =


〈T (v1), w1〉 〈T (v2), w1〉 · · · 〈T (vn), w1〉
〈T (v1), w2〉 〈T (v2), w2〉 · · · 〈T (vn), w2〉

...
... · · · ...

〈T (v1), wm〉 〈T (v2), wm〉 · · · 〈T (vn), wm〉

 .

Similarly, [T ∗]βγ is an n×m matrix with (i, j) entry 〈T ∗(wj), vi〉. And

〈T ∗(wj), vi〉 = 〈vi, T ∗(wj)〉 = 〈T (vi), wj〉.
That is,

[T ∗]βγ =


〈T (v1), w1〉 〈T (v1), w2〉 · · · 〈T (v1), wm〉
〈T (v2), w1〉 〈T (v2), w2〉 · · · 〈T (v2), wm〉

...
... · · · ...

〈T (vn), w1〉 〈T (vn), w2〉 · · · 〈T (vn), wm〉

 .

In conclusion [T ∗]βγ = ([T ]γβ)†. �
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Corollary 5.5.13. Let F denote R or C. Let A be an m × n matrix with elements in F.
Let Fn and Fm respectively denote the usual vector spaces Fn and Fm with their standard
inner products. Then the adjoint of LA : Fn → Fm is LA†.

Proof. Note that LA : Fm → Fn and LA† : Fn → Fm. Let β be the standard basis of Fm and
let γ be the standard basis of Fn. From Theorem 5.5.12,

[L∗A]βγ = ([LA]γβ)† = A† = [LA† ]
β
γ .

So, L∗A = LA† , as desired. �

Remark 5.5.14. Let F denote R or C. Let A be an m × n matrix with elements in F.
Then for any v ∈ Fn and for any w ∈ Fm,

〈Av,w〉 = 〈v,A†w〉.
In this equality, the inner product on the left is the standard inner product on Fm, and the
inner product on the right is the standard inner product on Fn. Note that if we change the
inner product, then the adjoint could possibly change as well. For example, suppose n = 2
and we use the inner product

〈(v1, v2), (w1, w2)〉′ := (v1, v2)

(
1 1/2

1/2 1

)
(w1, w2)

t, (v1, v2), (w1, w2) ∈ R2.

Then it is not true that 〈Av,w〉′ = 〈v,A†w〉′. For example, choose v = (1, 0), w = (1, 0),

A =

(
1 1
0 1

)
. Then 〈Av,w〉′ = 〈(1, 0), (1, 0)〉′ = (1, 0)(1, 1/2)t = 1, while 〈v, A†w〉′ =

〈(1, 0), (1, 1)〉′ = (1, 0)(3/2, 3/2)t = 3/2.

Exercise 5.5.15. Find the adjoint of LA : R2 → R2 in the above example, where R2 is
equipped with the inner product 〈 , 〉′.

Exercise 5.5.16. Let F denote R or C. Let T : V → W , S : V → W and let R : U → V
be linear transformations between inner product spaces U, V,W over F. Verify the following
facts

(a) (T + S)∗ = T ∗ + S∗.
(b) For all α ∈ F, (αT )∗ = αT ∗.
(c) (T ∗)∗ = T .
(d) (TR)∗ = R∗T ∗.
(e) If T is invertible, then (T−1)∗ = (T ∗)−1.

Exercise 5.5.17. Let A be an m× n matrix. Show that rank(A) = rank(A†).

Exercise 5.5.18. Let A be an n× n matrix with elements in C. Then det(A†) = det(A).

5.6. Normal Operators. One of the ultimate goals of this course is to take an arbitrary
linear transformation and either diagonalize it, or show that it cannot be diagonalized. Such
a result provides the starting point for many further investigations. We cannot fully realize
this goal in this course. However, we will identity a large class of linear transformations
(i.e. operators) that can be diagonalized, and that appear often in practice. Two such
classes of operators are normal and self-adjoint operators. This course will conclude by
showing that these two classes of operators can be diagonalized. Such a diagonalization
result is referred to as a spectral theorem. The spectrum of a linear operator is its set of
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eigenvalues. This terminology may seem a bit strange, since we usually refer to the spectrum
of an electromagnetic wave. However, this conflation of terminology is no coincidence. For
example, the spectral theorem for infinite-dimensional vector spaces (which is outside the
scope of this course) demonstrates mathematically the discreteness of the energy emissions of
the hydrogen atom. In particular, there is a self-adjoint operator whose set of eigenvalues is
the energy emission spectrum of the hydrogen atom. And the eigenvectors give the (infinite
set of) atomic orbitals that you learned in chemistry class, the first of which you called
s,p,d and f orbitals. (Beware: in infinite-dimensional spaces, self-adjointness becomes more
complicated than in the finite-dimensional case.)

Definition 5.6.1 (Normal Operator). Let V be a finite-dimensional inner product space.
Let T : V → V be a linear transformation. Recall that T ∗ : V → V is also a linear transfor-
mation. We say that T is a normal operator if TT ∗ = T ∗T .

Example 5.6.2. Define T : R2 → R2 by T (x, y) = (y,−x) for all x, y ∈ R. Then T ∗(x, y) =
(−y, x), by the definition of T ∗. Observe,

TT ∗(x, y) = T (−y, x) = (x, y).

T ∗T (x, y) = T ∗(y,−x) = (x, y).

So, T ∗T = TT ∗, so T is normal.

Definition 5.6.3 (Normal Matrix). Let A be an n×n matrix. We say that A is normal
if AA† = A†A.

Example 5.6.4. Every diagonal matrix is normal.

Proposition 5.6.5. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Let β be an orthonormal basis of V . Then T : V → V is normal if and
only if [T ]ββ is normal.

Proof. Suppose T is normal. Then TT ∗ = T ∗T . Taking the matrix representation of this
identity,

[T ]ββ[T ∗]ββ = [TT ∗]ββ = [T ∗T ]ββ = [T ∗]ββ[T ]ββ.

From Theorem 5.5.12, [T ∗]ββ is the adjoint of [T ]ββ. So, [T ]ββ is normal.
So, we proved the forward implication. To prove the reverse implication, note that the

above steps can be reversed. �

Lemma 5.6.6. Let F denote R or C. Let V be a finite-dimensional inner product space
over F. Let T : V → V be a normal operator. Assume that there exists v ∈ V and λ ∈ F
such that Tv = λv. Then T ∗v = λv.

Proof. It suffices to show that ‖T ∗(v)− λv‖2 = 0. That is, we verify that

〈T ∗(v)− λv, T ∗(v)− λv〉 = 0.

Expanding both sides, we equivalently want

〈T ∗(v), T ∗(v)〉 − λ〈v, T ∗(v)〉 − λ〈T ∗(v), v〉+ |λ|2 〈v, v〉 = 0.

Using the definition of adjoint and that T is normal, the left-most term is 〈TT ∗v, v〉 =
〈T ∗Tv, v〉. Using the adjoint definition some more, we equivalently want

〈T ∗T (v), v〉 − λ〈T (v), v〉 − λ〈v, T (v)〉+ |λ|2 〈v, v〉 = 0.
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Using T (v) = λv, we equivalently want

λ〈T ∗(v), v〉 − |λ|2 〈v, v〉 − |λ|2 〈v, v〉+ |λ|2 〈v, v〉 = 0.

Applying the adjoint definition again and simplifying, we want

λ〈v, T (v)〉 − |λ|2 〈v, v〉 = 0.

Finally, using T (v) = λv, we have λ〈v, T (v)〉 = |λ|2 〈v, v〉, completing the proof. �

The following Lemma shows that Proposition 4.5.2 becomes strengthened when T is nor-
mal.

Lemma 5.6.7. Let T : V → V be a normal operator on a finite-dimensional inner product
space V . Let v1, v2 be two eigenvectors of T with distinct eigenvalues λ1, λ2, respectively.
Then v1 is orthogonal to v2.

Proof. Since T (v1) = λ1v1 and T (v2) = λ2v2, we have T ∗(v1) = λ1v1 and T ∗(v2) = λ2v2 by
Lemma 5.6.6. So,

λ1〈v1, v2〉 = 〈T (v1), v2〉 = 〈v1, T ∗(v2)〉 = λ2〈v1, v2〉.
Since λ1 6= λ2, we must have 〈v1, v2〉 = 0, as desired. �

Remark 5.6.8. Most linear transformations will not be normal, since they will typically
have non-orthogonal eigenvectors.

We now prove a converse to Lemma 5.6.7, which is also a variation on Lemma 4.3.9 for
normal T .

Lemma 5.6.9. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Suppose β is an orthonormal basis of V consisting of eigenvectors of T .
Then T is normal.

Proof. From Lemma 4.3.9, [T ]ββ is diagonal. In particular, [T ]ββ is normal. So, from Proposi-
tion 5.6.5, T is normal. �

Theorem 5.6.10 (The Spectral Theorem for Normal Operators). Let T : V → V be a
normal operator on a finite-dimensional inner product space V over C. Then there exists an
orthonormal basis β of V consisting of eigenvectors of T . In particular, T is diagonalizable.

Proof. We will prove the theorem by induction on the dimension n of V . Consider first
the case n = 1. Let β consist of exactly one nonzero unit vector v ∈ V . Since V is one
dimensional, for any w ∈ V , there exists α ∈ C such that w = αv. So, if T (v) = w for some
w ∈ V , we have T (v) = αv, so that v is an eigenvector of T . In conclusion, the theorem
holds for n = 1.

Now, suppose the theorem holds for a fixed n ≥ 1, and consider the case dim(V ) = n+ 1.
Let f(λ) be the characteristic polynomial of some matrix representation of T . (Recall that
any two matrix representations of T are similar by Lemma 2.7.3, and two similar matrices
have the same characteristic polynomial by Lemma 4.4.3. So, the matrix representation
that we use for T does not affect f .) From the Fundamental Theorem of Algebra (Theorem
4.4.12), f has n + 1 zeros. In particular, f has one zero. So, T has at least one eigenvalue
λ1 ∈ C, and at least one eigenvector v1 ∈ V , v1 6= 0 with T (v1) = λ1v1. Replacing v1 with
v1/ ‖v1‖ if necessary, we may assume that ‖v1‖ = 1.
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Since T (v1) = λ1v1, Lemma 5.6.6 shows that T ∗(v1) = λ1v1. Let W := {av1 : a ∈ C}
denote the span of v1. Observe that W ⊆ V is a one-dimensional subspace. Let W⊥ := {v ∈
V : 〈v, v1〉 = 0} denote the orthogonal complement of W . Recall that W⊥ is a subspace of
V by Exercise 5.4.15, and dim(W⊥) = n+ 1− 1 = n by Corollary 5.4.18.

We would like to apply the inductive hypothesis to T , where we restrict the domain of T
to the subspace W⊥. In order for the inductive hypothesis to apply, we need to show that
the restriction of T to W⊥ satisfies the hypotheses of the theorem. That is, we need to show:

(a) T (W⊥) ⊆ W⊥, i.e. that W⊥ is invariant under T .
(b) T ∗(W⊥) ⊆ W⊥.
(c) T and T ∗ are adjoints of each other when we consider them as operators on W⊥.

Proof of (a). Let w ∈ W⊥, so that 〈w, v1〉 = 0. Then

0 = λ1〈w, v1〉 = 〈w, T ∗(v1)〉 = 〈T (w), v1〉.
So, T (w) ∈ W⊥, as desired.

Proof of (b). Let w ∈ W⊥, so that 〈w, v1〉 = 0. Then

0 = λ1〈w, v1〉 = 〈w, T (v1)〉 = 〈T ∗(w), v1〉.
So, T ∗(w) ∈ W⊥, as desired.

Proof of (c). Let v, w ∈ W⊥. We need to show that there exists x ∈ W⊥ such that

〈T (v), w〉 = 〈v, x〉. (∗)
Since T ∗ is the adjoint of T , we know that x := T ∗(w) is the unique vector in V such that
(∗) holds, by the Riesz Representation Theorem (Theorem 5.5.6). So, we need to show that
T ∗(w) ∈ W⊥. But this follows from part (b).

Having proven parts (a),(b) and (c), we can finally apply the inductive hypothesis to
T , where we restrict the domain of T to W⊥. That is, there exists an orthonormal basis
(v2, . . . , vn+1) of W⊥ consisting of eigenvectors of T . Since v1 ∈ W , v1 is orthogonal to
the vectors v2, . . . , vn+1. So, the set of vectors v1, . . . , vn+1 is an orthonormal set (recalling
‖v1‖ = 1). Since dim(V ) = n + 1, Corollary 5.3.9 says v1, . . . , vn+1 is a basis of V , as
desired. �

5.7. Self-Adjoint Operators.

Definition 5.7.1 (Self-Adjoint Operator). Let F denote R or C. Let V be a finite-
dimensional inner product space over F. Let T : V → V be a linear transformation. Then T
is called a self-adjoint operator if T ∗ = T . A square matrix A is said to be self-adjoint
if A = A†.

Remark 5.7.2. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . If T is self-adjoint, then T is normal. But if T is normal, then T is not
necessarily self-adjoint.

Example 5.7.3. The linear transformation T : R2 → R2 defined by T (x, y) = (y,−x) is
normal but not self-adjoint, since it has adjoint T ∗(x, y) = (−y, x). However, the linear
transformation T : R2 → R2 defined by T (x, y) = (y, x) is self-adjoint.

Remark 5.7.4. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V over F. If T is self-adjoint and if F = C, then T is sometimes called
Hermitian. If T is self-adjoint and if F = R, then T is symmetric. A square complex
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matrix A with A = A† is also called Hermitian. And a square real matrix with A = A† is
called symmetric, since A = A† becomes A = At.

Theorem 5.7.5. Let F denote R or C. Let V be a finite-dimensional inner product space
over F. Let T : V → V be a self-adjoint linear transformation. Then all eigenvalues of T
are real.

Proof. Let λ ∈ C be any eigenvalue of T . So, there exists v ∈ V with v 6= 0 such that
T (v) = λv. Lemma 5.6.6 shows that T ∗(v) = λv. Since T = T ∗, we conclude that λ = λ, so
that λ ∈ R, as desired. �

Remark 5.7.6. Similarly, all eigenvalues of a Hermitian matrix are real.

Proposition 5.7.7. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Let β be an orthonormal basis of V . Then T : V → V is self-adjoint if and
only if [T ]ββ is self-adjoint.

Proof. Suppose T is self-adjoint. Then T = T ∗. From Theorem 5.5.12, [T ∗]ββ is the adjoint

of [T ]ββ. So, [T ]ββ is self-adjoint. We proved the forward implication. To prove the reverse
implication, note that the above steps can be reversed. �

Corollary 5.7.8. Let A be an n×n complex Hermitian matrix, and let f(λ) := det(A−λI)
be the characteristic polynomial of A. Then there exist λ1, . . . , λn ∈ R such that f(λ) =∏n

i=1(λi − λ).

Proof. From the Fundamental Theorem of Algebra (Theorem 4.4.12), there exist λ0, . . . , λn ∈
C such that f(λ) = λ0

∏n
i=1(λi − λ). Recall that coefficient of the degree n term of f(λ) is

(−1)n by Theorem 4.4.8. So, λ0 = 1. From Remark 5.7.6, λi ∈ R for all i ∈ {1, . . . , n}. �

Lemma 5.7.9. Let F denote either R or C. Let T : V → V be a linear transformation on a
finite-dimensional inner product space V over F. Suppose there exists an orthonormal basis
β of V consisting of eigenvectors of T with real eigenvalues. Then T is self-adjoint.

Proof. From Lemma 4.3.9, [T ]ββ is diagonal with real entries. In particular, [T ]ββ is self-adjoint
So, from Proposition 5.7.7, T is self-adjoint. �

Theorem 5.7.10 (The Spectral Theorem for Self-Adjoint Operators). Let F denote
either R or C. Let T : V → V be a self-adjoint operator on a finite-dimensional inner product
space V over F. Then there exists an orthonormal basis β of V consisting of eigenvectors of
T . In particular, T is diagonalizable. Moreover, all eigenvalues of T are real.

Proof. Since T is self-adjoint, T is normal. So, if F = C, the result follows directly from the
Spectral Theorem for normal operators (Theorem 5.6.10). Then we apply Theorem 5.7.5 to
finish. If F = R, we repeat the proof of Theorem 5.6.10, replacing C everywhere by R. The
crucial new ingredient in the proof is that, in the inductive step and in the base case of the
induction, T has some real eigenvalue λ1 ∈ R by Theorem 5.7.5. �

Remark 5.7.11. Note that Theorem 5.6.10 requires V to be a vector space over C. But
Theorem 5.7.10 requires V to be a vector space over R or C. So, every symmetric operator
on a real inner product space is diagonalizable.

Remark 5.7.12. In conclusion, self-adjoint operators are really nice, since they have an
orthonormal basis of eigenvectors (so they can be diagonalized), and all of their eigenvalues
are real.
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5.8. Orthogonal and Unitary Operators (Bonus Section).

Definition 5.8.1 (Unitary Operators). Let F denote R or C. Let V be a finite-
dimensional inner product space over F. Let T : V → V be a linear transformation. Then
T is called a unitary operator if TT ∗ = T ∗T = IV . A square matrix A is called unitary
if AA† = A†A = I.

Remark 5.8.2. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . If T is unitary, then T is normal.

Remark 5.8.3. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V over F. If T is unitary and F = R, then T is called orthogonal. A
square real matrix A with AA† = A†A = I is also called orthogonal, since we then have
AAt = AtA = I.

Theorem 5.8.4. Let F denote R or C. Let V be a finite-dimensional inner product space
over F. Let T : V → V be a unitary operator. Then all eigenvalues of T have absolute value
1.

Proof. Let λ ∈ C be any eigenvalue of T . So, there exists v ∈ V with v 6= 0 such that
T (v) = λv. Lemma 5.6.6 shows that T ∗(v) = λv. So, using T ∗T = IV ,

|λ|2 〈v, v〉 = 〈λv, λv〉 = 〈T (v), T (v)〉 = 〈T ∗T (v), v〉 = 〈v, v〉.
Since v 6= 0, we conclude that |λ|2 = 1, as desired. �

Remark 5.8.5. Similarly, all eigenvalues of a unitary matrix have absolute value 1.

Proposition 5.8.6. Let T : V → V be a linear transformation on a finite-dimensional inner
product space V . Let β be an orthonormal basis of V . Then T : V → V is unitary if and
only if [T ]ββ is unitary.

Proof. Suppose T is unitary. Then TT ∗ = T ∗T = IV . Taking the matrix representation,

[T ]ββ[T ∗]ββ = [TT ∗]ββ = [T ∗T ]ββ = [T ∗]ββ[T ]ββ = [IV ]ββ = I.

From Theorem 5.5.12, [T ∗]ββ is the adjoint of [T ]ββ. So, [T ]ββ is unitary. We proved the forward
implication. To prove the reverse implication, note that the above steps can be reversed. �

Corollary 5.8.7. Let A be an n × n unitary matrix, and let f(λ) := det(A − λI) be the
characteristic polynomial of A. Then there exist λ1, . . . , λn ∈ C with |λi| = 1 for all i ∈
{1, . . . , n} such that f(λ) =

∏n
i=1(λi − λ).

Proof. From the Fundamental Theorem of Algebra (Theorem 4.4.12), there exist λ0, . . . , λn ∈
C such that f(λ) = λ0

∏n
i=1(λi − λ). Recall that coefficient of the degree n term of f(λ) is

(−1)n by Theorem 4.4.8. So, λ0 = 1. From Remark 5.8.5, |λi| = 1 for all i ∈ {1, . . . , n}. �

Lemma 5.8.8. Let F denote either R or C. Let T : V → V be a linear transformation
on a finite-dimensional inner product space V over F. Suppose there exists an orthonormal
basis β of V consisting of eigenvectors of T with eigenvalues of absolute value 1. Then T is
unitary.

Proof. From Lemma 4.3.9, [T ]ββ is diagonal with entries of absolute value 1. In particular,

[T ]ββ is unitary. So, from Proposition 5.8.6, T is unitary. �
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Theorem 5.8.9 (The Spectral Theorem for Unitary Operators). Let T : V → V be a
unitary operator on a finite-dimensional inner product space V over C. Then there exists an
orthonormal basis β of V consisting of eigenvectors of T . In particular, T is diagonalizable.
Moreover, all eigenvalues of T have absolute value 1.

Proof. Since T is unitary, T is normal. So, the result follows directly from the Spectral
Theorem for normal operators (Theorem 5.6.10). Then we apply Theorem 5.8.4 to finish. �

Remark 5.8.10. Note that Theorem 5.8.9 requires V to be a vector space over C. In the
case that V is a vector space over R, the corresponding spectral theorem becomes very
restricted, since the only real numbers with absolute value one are 1 and −1. So, if we
want to diagonalize an orthogonal operator over R, T must have all eigenvalues 1 or −1.
Even though we can diagonalize an orthogonal operator over C by Theorem 5.8.9, we can
essentially never diagonalize an orthogonal operator over R. Nevertheless, let’s present the
result for diagonalization over R.

If F = R, and if T is both self-adjoint and unitary, then the Spectral Theorem for
self-adjoint operators (Theorem 5.7.10) together with Theorem 5.8.4 show: there exists an
orthonormal basis β of V consisting of eigenvectors of T . So, T is diagonalizable, and all
eigenvalues of T are 1 or −1. Conversely, suppose T is a linear operator on an inner product
space V over R, and suppose there exists a basis β of V consisting of eigenvectors of T with
eigenvalues 1 or −1. Then [T ]ββ is orthogonal. So T is orthogonal by Proposition 5.8.6. By
Lemma 5.7.9, T is also self-adjoint.
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6. Appendix: Notation

Let A,B be sets in a space X. Let m,n be a nonnegative integers. Let F be a field.

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers

N := {0, 1, 2, 3, 4, 5, . . .}, the natural numbers

Q := {m/n : m,n ∈ Z, n 6= 0}, the rationals

R denotes the set of real numbers

C := {x+ y
√
−1 : x, y ∈ R}, the complex numbers

x+ y
√
−1 := x− y

√
−1, x, y ∈ R , the complex conjugate

∅ denotes the empty set, the set consisting of zero elements

∈ means “is an element of.” For example, 2 ∈ Z is read as “2 is an element of Z.”

∀ means “for all”

∃ means “there exists”

Fn := {(x1, . . . , xn) : xi ∈ F, ∀ i ∈ {1, . . . , n}}
A ⊆ B means ∀ a ∈ A, we have a ∈ B, so A is contained in B

ArB := {x ∈ A : x /∈ B}
Ac := X r A, the complement of A

A ∩B denotes the intersection of A and B

A ∪B denotes the union of A and B

C(R) denotes the set of all continuous functions from R to R

Pn(R) denotes the set of all real polynomials in one real variable of degree at most n

P (R) denotes the set of all real polynomials in one real variable

Mm×n(F) denotes the vector space of m× n matrices over the field F

In denotes the n× n identity matrix

det denotes the determinant function

Sn denotes the set of permutations on {1, . . . , n}
sign(σ) := (−1)N where σ ∈ Sn can be written as the composition of N transpositions

Tr denotes the trace function

6.0.1. Set Theory. Let V,W be sets, and let f : V → W be a function. Let X ⊆ V , Y ⊆ W .

f(X) := {f(v) : v ∈ V }.
f−1(Y ) := {v ∈ V : f(v) ∈ Y }.

The function f : V → W is said to be injective (or one-to-one) if: for every v, v′ ∈ V , if
f(v) = f(v′), then v = v′.

The function f : V → W is said to be surjective (or onto) if: for every w ∈ W , there
exists v ∈ V such that f(v) = w.
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The function f : V → W is said to be bijective (or a one-to-one correspondence) if:
for every w ∈ W , there exists exactly one v ∈ V such that f(v) = w. A function f : V → W
is bijective if and only if it is both injective and surjective.

Two sets X, Y are said to have the same cardinality if there exists a bijection from V
onto W .

The identity map I : X → X is defined by I(x) = x for all x ∈ X. To emphasize that
the domain and range are both X, we sometimes write IX for the identity map on X. Let
f : X → X. We write f 2 to denote f composed with itself: f ◦ f . More generally, for any
n ∈ N, we write fn to denote f composed with itself n times: f ◦ f ◦ · · · ◦ f .

Let V,W be vector spaces over a field F. Then L(V,W ) denotes the set of linear trans-
formations from V to W , and L(V ) denotes the set of linear transformations from V to V .
Let T : V → W be a linear transformation between inner product spaces. Then T ∗ : W → V
denotes the adjoint of T .
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