Linear Algebra Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 9, in the discussion section.

Assignment 1

Exercise 1. Section 1.2, Exercise 1(abghk) in the textbook.

Exercise 2. Let V be a vector space over a field \mathbf{F} . Using the axiomatic definitions of fields and vector spaces, prove the following facts:

- $\forall v \in V, 0 \cdot v = 0.$
- $\forall v \in V, (-1) \cdot v = -v.$
- $\forall \alpha \in F$, and for $0 \in V$, $\alpha \cdot 0 = 0$.
- $\forall \alpha \in \mathbf{F}, \forall v \in V, \alpha \cdot (-v) = (-\alpha) \cdot v = -(\alpha \cdot v).$

Exercise 3. Section 1.3, Exercise 8(abf) in the textbook.

Exercise 4. Show that the intersection of two subspace is also a subspace.

Exercise 5. Section 1.4, Exercise 3(c) in the textbook.

Exercise 6. Section 1.5, Exercise 1(abdef) in the textbook.

Exercise 7. Let V be a vector space over a field \mathbf{F} . Let $\{u_1, \ldots, u_n\} \subseteq V$ satisfy the following property. For any $u \in V$, there exist unique scalars $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$ such that

$$u = \alpha_1 u_1 + \cdots + \alpha_n u_n$$
.

Prove that $\{u_1, \ldots, u_n\}$ is a basis of V.

Exercise 8. Give an example of a subset of \mathbb{R}^2 that is closed under vector addition, but which is not closed under multiplication by scalars.

Exercise 9. Give an example of a subset of \mathbb{R}^2 that is closed under scalar multiplication, but which is not closed under vector addition.

Exercise 10. Find three nonzero, distinct vectors $f, g, h \in \mathbf{R}^3$ satisfying the following properties: $\operatorname{span}(f,g) = \operatorname{span}(g,h) = \operatorname{span}(f,g,h)$, and $\operatorname{span}(f,h) \neq \operatorname{span}(f,g,h)$.

Exercise 11. Consider the subset of the integers $X = \{0, 1, 2, ..., 18, 19\}$. For any $x, y \in X$, define the addition operation $x + y := (x + y) \mod 20$, where (x + y) denotes addition in **Z**. For any $x, y \in X$, define the multiplication operation $x \cdot y := (xy) \mod 20$, where (xy) denotes multiplication in **Z**. Note that X is now closed under multiplication and addition with these definitions. (For example, $14 + 12 = 6 \mod 20$, $13 \cdot 7 = 11 \mod 20$.) Is X a field? Prove your assertion.

Exercise 12. Consider the set $F = \{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$. Prove that F is a field.