Linear Algebra Steven Heilman

Please provide complete and well-written solutions to the following exercises.

Due April 23, in the discussion section.

Assignment 3

Exercise 1. Which of the following mappings are linear transformations from \mathbb{R}^2 to \mathbb{R}^2 ?

- (a) $(x, y) \mapsto (3x y + 1, -x)$.
- (b) $(x,y) \mapsto (y,x)$.
- (c) $(x,y) \mapsto (2x,y)$.

Exercise 2. Section 2.2, Exercise 1(bcdf) in the textbook.

Exercise 3. Section 2.2, Exercise 2(aefg) in the textbook.

Exercise 4. Section 2.2, Exercise 7 in the textbook.

Exercise 5. Let V, W be finite-dimensional vector spaces over a field \mathbf{F} such that $\dim(V) = \dim(W)$. Let $T: V \to W$ be linear. Prove: if T is onto, then T is one-to-one.

Exercise 6. Let V be a (possibly infinite-dimensional) vector space over a field \mathbf{F} . Let $S \colon V \to \mathbf{F}$ and let $T \colon V \to \mathbf{F}$ be linear transformations. Assume that $N(S) \supseteq N(T)$. Show that there exists $\alpha \in \mathbf{F}$ such that $S = \alpha T$.

Exercise 7. Prove that the field \mathbf{R} of real numbers is infinite-dimensional, if we consider \mathbf{R} as a vector space over the field \mathbf{Q} .