
2: GEOMETRY, PROBABILITY, AND CARDINALITY

STEVEN HEILMAN

1. The Pythagorean Theorem

Suppose a right triangle has edges A,B,C with corresponding lengths a, b, c. Suppose
C is the hypotenuse. Let θ be the angle of the triangle formed by the edges A and C.
From the definitions of trigonometric functions that we used in high school, cos θ = a/c and
sin θ = b/c. Also, from an identity that we learned in high school, (cos θ)2 + (sin θ)2 = 1,
so (a/c)2 + (b/c)2 = 1, i.e. a2 + b2 = c2. However, if a2 + b2 = c2, then we can reverse
this reasoning to conclude that (cos θ)2 + (sin θ)2 = 1. So, it seems that the Pythagorean
Theorem is more or less equivalent to the identity (cos θ)2 + (sin θ)2 = 1.

To avoid circular reasoning, we would like to give a proof of the Pythagorean Theorem
from first principles. In some sense the first proof will be roundabout, since a simpler proof
could be given. However, the concepts that we introduce are actually extremely important,
though this may not be clear right now. Since the rigorous treatment of limits is not a
prerequisite of this course, we will not treat limits in a rigorous fashion. Try to find where
these details are avoided.

Let x ∈ R. We define sinx and cos x by the following formulas.

sinx =
∑
k≥0

x2k+1(−1)k

(2k + 1)!
, cosx =

∑
k≥0

x2k(−1)k

(2k)!

(Recall that 0! = 1. Also, the sum over k ≥ 0 is shorthand for k ≥ 0, k ∈ Z.) Denote i as
the complex number such that i =

√
−1. Recall that the complex numbers C are defined as

follows
C = {a+ bi : a, b ∈ R}

For a complex number z = a+bi with a, b ∈ R, recall that we define the complex conjugate
z of z by the formula z = a− bi. Recall also that we define the absolute value of a complex
number z by the formula

|z| =
√
zz =

√
(a+ bi)(a− bi) =

√
a2 + b2

We also define the exponential function via the following formula.

ez =
∑
k≥0

zk

k!

Our proof of the Pythagorean Theorem will result from a series of identities that involve
the exponential function and i.

Theorem 1.1. Let x ∈ R. Then
eix = cosx+ i sinx
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Proof.

eix =
∑
k≥0

(ix)k

k!
=

( ∑
k≥0: k even

(ix)k

k!

)
+

( ∑
k≥0: k odd

(ix)k

k!

)

=

(∑
j≥0

(ix)2j

(2j)!

)
+

(∑
`≥0

(ix)2`+1

(2`+ 1)!

)

=

(∑
j≥0

(−1)jx2j

(2j)!

)
+

(∑
`≥0

i(−1)`(x)2`+1

(2`+ 1)!

)
= cosx+ i sinx

�

Corollary 1.2. Let x ∈ R. Then the complex conjugate of eix is e−ix.

Proof.

eix = cosx+ i sinx = cosx− i sinx = cos(−x) + i sin(−x) = e−ix

�

Corollary 1.3. Let x ∈ R. Then

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i

Proof. Add and subtract the following two identities

eix = cosx+ i sinx, e−ix = cosx− i sinx

�

Theorem 1.4. Let w, z ∈ C. Then ew+z = ewez.

Proof. Let ` ≥ 0, ` ∈ Z. From the binomial theorem, (w + z)` =
∑`

k=0w
kz`−k `!

k!(`−k)!
. Then

ewez =

(
∞∑
k=0

wk

k!

)(
∞∑
j=0

zj

j!

)
=
∞∑
k=0

(
∞∑
j=0

wkzj

(k!)(j!)

)

=
∞∑
`=0

( ∑
j,k≥0: j+k=`

wkzj

(k!)(j!)

)
, re-indexing the summation

=
∞∑
`=0

∑̀
k=0

wkz`−k

k!(`− k)!
, re-indexing the summation

=
∞∑
`=0

(w + z)`

`!
, from the binomial theorem

= ew+z

�

We can now finish our proof of the Pythagorean Theorem
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Theorem 1.5. For θ ∈ R, (cos θ)2 + (sin θ)2 = 1.

Proof.

(cos θ)2 + (sin θ)2 = |eiθ|2 , by Theorem 1.1 and the definition of absolute value

= eiθ eiθ = eiθe−iθ , by Corollary 1.2

= eiθ−iθ , by Theorem 1.4

= 1

�

Theorem 1.6. (Pythagorean Theorem) Suppose we have a right triangle with edge
lengths a, b, c > 0 where c is the length of the hypotenuse. Then a2 + b2 = c2.

Proof. For θ ∈ (0, π/2) define a point f(θ) in the plane R2 = R× R by the formula

f(θ) = (cos θ, sin θ)

That is, cos θ is the x-coordinate, and sin θ is the y-coordinate. The distance in R2 from
f(θ) = (cos θ, sin θ) to the origin (0, 0) is given by

√
(cos θ)2 + (sin θ)2 = 1, using Theorem

1.5. So, f(θ) lies on the unit circle, centered at the origin. Let the given right triangle be
embedded in the plane R2 so that one of its edges lies in the x-axis {(x, y) ∈ R2 : y = 0}.
Also, let the the hypotenuse lie in the upper right quadrant {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, so
that the hypotenuse has one endpoint at the origin. By the definition of f(θ), there exists
θ ∈ (0, π/2) so that c · f(θ) = (c · cos θ, c · sin θ) is an endpoint of the hypotenuse. By the
definition of f(θ) and by Theorem 1.5

√
a2 + b2 =

√
(c · cos θ)2 + (c · sin θ)2 = c

Since a, b, c > 0, we conclude that a2 + b2 = c2 �

Remark 1.7. In this proof, we used a formula for distances in the plane. In truth, this
formula relies on the Pythagorean Theorem, so in some sense we may consider this proof to
use circular reasoning. For this reason, and to reinforce our geometric proofs from class, we
present below Euclid’s original proof of the Pythagorean Theorem. We will freely use some
facts from elementary geometry. As an exercise, try to find where these elementary facts are
used, and perhaps even try to prove them.

Remark 1.8. In the next set of notes we some surprising applications of the exponential
function. The above properties of the exponential function can be used to derive multiple
angle formulas for sine and cosine. For example,

(cos θ)2 − (sin θ)2 + 2i sin θ cos θ = (cos θ + i sin θ)2 = (eiθ)2 = e2iθ = cos 2θ + i sin 2θ

Equation the real and imaginary parts of this equation, we conclude that

cos 2θ = (cos θ)2 − (sin θ)2 and sin 2θ = 2 sin θ cos θ

This process can be continued.

(cos θ)3 − 3 cos θ(sin θ)2 + 3i sin θ(cos θ)2 − i(sin θ)3 = (eiθ)3 = e3iθ = cos 3θ + i sin 3θ

Therefore, cos 3θ = (cos θ)3 − 3 cos θ(sin θ)2 and sin 3θ = 3 sin θ(cos θ)2 − (sin θ)3.
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Theorem 1.9. (Pythagorean Theorem) Suppose we have a right triangle with edge
lengths a, b, c > 0 where c is the length of the hypotenuse. Then a2 + b2 = c2.

Proof. In counter-clockwise order, label the vertices of the triangle with labels A,B,C, such
that BC is the hypotenuse. When referring to planar figures, we will always refer to vertices
in counter-clockwise order. On each edge of the triangle, construct a square that does not
intersect the original triangle. So, on edge AC construct square ACKH. On edge BA
construct a square BAGF . And on the hypotenuse CB construct a square CBDE. We are
required to show that the area of square ACKH plus the area of square BAGF equals the
area of square CBDE. Draw lines BK, FC, AD and AE. Finally, let L be a point on DE
so that the segment AL is perpendicular to DE. We have the following figure.

A

G

F

H

K

C

ED L

B

Figure 1. Euclid’s windmill.

To prove the theorem, we will show that the rectangle with vertices B,L along its diagonal
has the same area as square BAGF . By a similar argument, the rectangle with vertices C,L
along its diagonal has the same area as square ACHK. Combining these two facts proves
that the area of square ACKH plus the area of square BAGF equals the area of square
CBDE, completing the theorem.

For an angle formed by three vertices A1, A2, A3, we denote this angle by ∠A1A2A3. We
denote the measure of ∠A1A2A3 with the notation m∠A1A2A3.

We prove the first fact. Note that ∠FBA and ∠CBD are both right angles. So,

m∠FBC = m∠FBA+m∠ABC = m∠CBD +m∠ABC = m∠ABD

Since BAGF and CBDE are squares, we conclude that edges BA and FB have the same
length, and edges CB and BD have the same length. So, by the side-angle-side criterion for
triangles ABD and FBC, we conclude that the area of triangle ABD is equal to the area
of triangle FBC.
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Observe that triangle ABD has half the area of the parallelogram with diagonal BL,
since they share the segment BD, and they are both bounded by the parallel lines BD, AL.
Similarly, triangle FBC has half the area of the parallelogram with diagonal AF , since they
share the segment FB, and they are both bounded by the parallel lines FB, AG.

Combining these observations, we conclude that the rectangle with diagonal BL has area
equal to that of square BAGF . By an analogous argument, the rectangle with diagonal
CL has area equal to that of the square ACKH. Combining these facts, the area of square
ACKH plus the area of square BAGF equals the area of square CBDE, as desired. �

2. An Aside: The Limit of Proofs

Within this course, we implicitly assume that: a mathematical proof is the ultimate
statement of mathematical truth. However, many facts or statements from the sciences or
from mathematics itself may never be expressed via a formal mathematical proof. Also,
many mathematical statements are often influenced by intuitive calculations, by analogies
from physics, etc. For example, consider the figure-eight trajectory of the NASA Apollo
missions. This trajectory is known as the free-return trajectory, circumlunar trajectory, or
lunar orbit rendezvous. In this trajectory, a spacecraft travels in a figure-eight motion by
leaving the earth, circling around the moon, and then returning to the earth. In the early
1900s, physicists Yuri Kondryatuk and Hermann Oberth had explored the possibility of such
a trajectory for travel to and from the moon. Around 1960, some independent research
teams, one of which included Clinton Brown and William Michael, further developed this
idea. Ultimately, John Houboult promoted this trajectory over other plans, and it was
implemented in the Apollo missions. Perhaps this trajectory even saved the Apollo 13
mission, since it allowed the spacecraft to return to earth with a minimal expense of energy.

The investigations into this trajectory used calculations on computers and on paper. So,
it took more than just mathematical proofs to achieve the goal at hand. However, rig-
orous thinking indeed played a great role in this endeavor. So, even though a proof of a
mathematical statement is an excellent achievement, it is only one piece of a larger body of
work.

3. Conditional Probability: False Positives in Medical Testing

Suppose I go to the doctor’s office, I have some medical test done, and the test says
that I have some disease. Do I actually have the disease? Can I quantify the certainty or
uncertainty in my diagnosis?

Consider the following example. If I do not have the disease, there is a 1% chance that
the test says that I do have the disease (i.e. a false positive occurs). If I do have the disease,
there is a 99% chance that the test says that I do have the disease. Suppose also that this
disease is rare, so that only .1% of the population has this disease.

If the test says that I have the disease, do I actually have this disease? Let us first
investigate with an artificial model of the population. Suppose there are only 100, 000 people
in the world. Then 100 of them have the disease, and 99, 900 of them do not. Of the 100
with the disease, the test will say that about 99 of them will have the disease. Of the 99, 900
that do not have the disease, the test will say that about 999 of them have the disease. So,
among the people that test positive for the disease, only 99/(999 + 99) or about 9% actually
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have the disease. Even though the test seemed accurate, it turns out that it does not tell us
very much.

We now turn this analysis into a theorem. Let A and B be sets in some universe. We think
of the sets A,B as events that can occur in the world, so that the universal set is the set of
all possible events. In the above example, I define A to be the event that I am sick with the
disease, and I define B to be the event that I test positive for the disease. We are interested
in the probability that A occurs, given that B has already occurred. We denote P (A) as the
probability that A occurs, so that 0 ≤ P (A) ≤ 1. Since P denotes the probability of two
events, if A and B satisfy A∩B = ∅, then P (A∪B) = P (A) +P (B). That is, if two events
are totally different, then their probabilities add.

We define

P (A|B) =
P (A ∩B)

P (B)

Here P (A|B) is the probability that A occurs, given that B has occurred already. In order
to compute the probability P (A|B), we will use the following formula.

Theorem 3.1. (Bayes’ formula)

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

Proof.

P (A|B) =
P (A ∩B)

P (B)
, by the definition of P (A|B)

=
P (A ∩B)P (A)

P (B)P (A)
=
P (B|A)P (A)

P (B)
, by the definition of P (B|A)

=
P (B|A)P (A)

P ((B ∩ A) ∪ (B ∩ Ac))

=
P (B|A)P (A)

P (B ∩ A) + P (B ∩ Ac)
, since (B ∩ A) ∩ (B ∩ Ac) = ∅

=
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

�

We can now give a solution to our problem in medical diagnosis. Define A to be the event
that I am sick with the disease, and define B to be the event that I test positive for the
disease. It is given that P (B|A) = .99, P (A) = .001, P (B|Ac) = .01, and P (Ac) = .99.
Therefore,

P (A|B) =
.99(.001)

.99(.001) + .01(.99)
=

1

11

To reiterate, it turns out that this test does not tell us very much. Even if the test result is
positive, there is only a 1/11 chance that I am sick with the disease. It seems that we need
to create a new test that is more accurate.

Exercise 3.2. To test your understanding of the concept of conditional probability, we
present the Monty Hall problem. Suppose you are on a game show, and the host presents
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three doors before you. One of the doors has a prize behind it, and the other two doors have
no prize. The host knows exactly what is behind each of the three doors, and the prize is
equally likely to be hidden behind each of the doors. You are first asked to select the door
that hides the prize. Then, among the two doors that you did not select, the host reveals
one of them to have no prize behind it. Now, you can have what lies behind the door you
originally selected, or you can switch and take what is behind the other unopened door.
Using conditional probability, which door has the better chance of containing the prize?

Hint 1: Although the problem may appear symmetric at first, one of the two unopened doors will always have a higher

probability of containing the prize.

Hint 2: You should switch to the other unopened door. Why? Try to consider all different possibilities.

4. Benford’s Law and Voter Fraud

Suppose I make a list of the lengths of all rivers in the world, in feet. The list may include:
12, 502, 120, 206, and so on. Now, suppose I look at all of the first digits of these numbers.
So I have 1, 5, 1, 2, and so on. How often will I observe each digit among 1, 2, 3, . . . , 9?
Intuition may suggest that, since there are 9 possible digit numbers, a given river length will
have a given digit roughly one ninth of the time. However, this intuition is incorrect. The
river length will begin with the digit 1 about 30% of the time, 2 about 17% of the time, and
9 only about 4.5% of the time. Moreover, a similar effect occurs even if we change units to
meters, or inches. And a similar effect occurs if we use base 2 numbers or base 3 numbers
instead of base 10 numbers (though the exact percentages will change).

How can this be true? The intuition that we described above is incorrect. This intuition
probably arose since we expected some number n ∈ N of the rivers to have length between
10 and 20, and we expect about n rivers to have length between 20 and 30, and we expect
about n rivers to have length between 30 and 40, etc. However, the more accurate statement
is: there are about n rivers with length between 4 and 8, there are about n rivers with length
between 8 and 16, there are about n rivers with length between 16 and 32, and so on. So,
the randomness occurs at an “exponential scale” rather than a “linear scale.” By changing
our intuition in this way, one can show (using techniques beyond this course), that in the
above example, the first digit k with 1 ≤ k ≤ 9, k ∈ N occurs with probability

log10

(
k + 1

k

)
This effect is known as Benford’s Law.

Though it may seem a strange observation, Benford’s law actually has some applications.
For example, if we consider the number of votes that each candidate gets in some election in
each separate voting district, then the first digits of these numbers should roughly resemble
those predicted by Benford’s law. So, (taking the contrapositive) if the first digits of the
numbers are drastically different from Benford’s law, then there is evidence of fraud in the
election.

5. Cardinality of Sets

We are going to prove the following classic theorem, dating from the work of Cantor in
the late 1800s.

Theorem 5.1. There are more real numbers than rational numbers.

7



We will begin by explaining the meaning of this statement. Let n,m ∈ N and consider
two sets A = {1, . . . , n} and B = {1, . . . ,m}. How can we compare the number of elements
of A and B? If n > m then certainly A has more elements than B, but how do we really
know this? We can try to match up the elements of A and B in a one to one correspondence.
When we fail, we will see that A has more elements. Specifically, we associate 1 ∈ A to
1 ∈ B, we associate 2 ∈ A to 2 ∈ B, and so on, until we finally associate m ∈ A to m ∈ B.
At this point, each element of B has been associated to a distinct element of A. If we try to
continue the process, we see that we have run out of elements of B to match to elements of
A. However, there are still elements of A left over, since n > m. We conclude that A has a
larger number of elements than B.

We now proceed more rigorously. Let A and B be sets in some universe. We define the
notion of a function. A function f from A to B is a set of ordered pairs (a, b) such that
b ∈ B, a ∈ A, and such that every element of A appears exactly once in this set of ordered
pairs. We write f : A→ B. If (a, b) is an ordered pair for the function f , we write f(a) = b.
We say that f is injective if: ∀ a ∈ A, ∃ a unique b ∈ B such that f(a) = b. So, negating
the definition of injectivity, if f is injective, it cannot happen that ∃ a1, a2 ∈ A, a1 6= a2 such
that f(a1) = f(a2). We say that f is surjective if: ∀ b ∈ B, ∃ a ∈ A such that f(a) = b.

We say that f is a one to one correspondence if f is injective and surjective. We say
that the sets A and B have the same cardinality if there exists a one to one correspondence
from A to B. We say that the set A has greater cardinality than B if there exists an injective
function f : B → A, but there does not exist a one to one correspondence from B to A.

For n,m ∈ N with n > m, A = {1, . . . , n} and B = {1, . . . ,m}, we showed ∃ f : B → A
such that f is injective. By slightly modifying the argument above, we can see that there
does not exist f : B → A that is surjective. So, the cardinality of A is greater than the
cardinality of B. Moreover, the injectivity and surjectivity properties of maps f : B → A
tell us something about the relative sizes of the sets A and B.

Consider the identity map f : Q → R defined so that, for q ∈ Q, f(q) = q. (Note that
Q is contained in R.) Let us check that f is injective. Let q1, q2 ∈ Q with q1 6= q2. Then
f(q1) = q1 6= q2 = f(q2). So, f is injective. Therefore, the cardinality of R is greater than or
equal to the cardinality of Q. To prove Theorem 5.1, we will now show that the cardinality
of R is strictly greater than the cardinality of Q. As a preliminary result, we show that the
cardinality of N is equal to the cardinality of Q.

Theorem 5.2. The cardinality of Q is equal to the cardinality of N.
Proof. We construct an explicit one to one correspondence f : N→ Q. Arrange (a redundant
list of) the elements of Q in the following doubly infinite array.

1 1/2 1/3 1/4 · · ·
2 2/2 2/3 2/4 · · ·
3 3/2 3/3 3/4 · · ·
4 4/2 4/3 4/4 · · ·
...

...
...

...
. . .

The first row of this array (1, 1/2, 1/3, 1/4, . . .) is given the label 1, the second row of this
array (2, 2/2, 2/3, 2/4, . . .) is given the label 2, and so on. The first column is this array
(1, 2, 3, 4, . . .) is given the label 1, the second column of this array (1/2, 2/2, 3/2, 4/2, . . .) is
given the label 2 and so on. An entry aij of the array is labelled by its row (index i ∈ N)
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and its column (index j ∈ N). Let k ∈ N. The kth diagonal of the array is a set of the form
{aij : i + j = k}. For example, the first diagonal is just the top left corner, a11 = 1. The
second diagonal consists of a12, a21, i.e 1/2, 2.

We now describe how to “traverse” this array. We begin with entry 1 = a11. We then
move down to the number 2, and then up the second diagonal to 1/2. We then move right
from 1/2 to 1/3, and then down the third diagonal (moving one entry at a time) to 3. We
then move from 3 down to 4, and then up the fourth diagonal. The general procedure is:
we traverse a diagonal, and then move to an adjacent endpoint of the next highest diagonal,
and so on. Define g : N → Q so that g(1) = 1, g(2) = 2, g(3) = 1/2, g(4) = 1/3, g(5) = 3,
and so on. For n ∈ N, g(n) is defined as the nth position of our traversal of this array. (If
we encounter a number that has already appeared in the array, we skip this number and
move on.) By the construction of this array, every positive rational number appears in this
array. Now, define f : N→ Q so that f(1) = 0, and for n ∈ N, n > 1, f(2n− 2) = g(n− 1),
f(2n− 1) = −g(n− 1).

Since every positive rational number appears in the infinite array, f is surjective. Since
g was selected to map onto distinct rational numbers, f is injective. Therefore, f is our
desired one to one correspondence.

�

We showed above that the cardinality of R is greater than or equal to the cardinality of Q.
The following theorem shows that the cardinalities of Q and R are not equal. Therefore, the
cardinality of R is strictly greater than the cardinality of Q. That is, Theorem 5.1 follows
from Theorem 5.3.

Theorem 5.3. There does not exist a one to one correspondence between Q and R.

Proof. Before we begin, let us fix a definition of the real numbers R. It suffices to define R as
the set of infinite decimals of the form r = s · bnbn−1 · · · b0.a1a2a3a4 · · · , where n ∈ Z, n ≥ 0,
s ∈ {−1, 1}, for all i ∈ Z, ai ∈ Z, 0 ≤ ai ≤ 9, for all i ∈ {1, 2, . . . , n}, bi ∈ Z, 1 ≤ bi ≤ 9,
b0 ∈ Z, 0 ≤ b0 ≤ 9, and such that the following does not occur: there exists N ∈ N, N > 0
such that, for all j > N , aj = 9. That is, we do not allow a constant, infinite sequence of
9’s. Since we want the real numbers to be uniquely represented as infinite decimals, the fact
that 0.9999999 . . . and 1 represent the same number is not desirable, so we eliminate one of
these two representatives.

We now argue by contradiction. Suppose there exists a one to one correspondence g : Q→
R. From Theorem 5.2, there exists a one to one correspondence h : N→ Q. Define f : N→ R
so that f(n) = g(h(n)). Then f is a one to one correspondence. Suppose we enumerate the
elements of f . For example, we have

f(1) = 2348.234203549 . . .

f(2) = −123.849300000002343200 . . .

f(3) = 1

f(4) = 3.14159265358979323846264 . . .

f(5) = −1.000234938989328 . . .

. . .
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Let us fix labels to the digits, so that

f(1) = b3,1b2,1b1,1b0,1.a1,1a2,1a3,1a4,1a5,1a6,1 . . .

f(2) = −b2,2b1,2b0,2.a1,2a2,2a3,2a4,2a5,2a6,2 . . .

f(3) = b0,3.a1,3a2,3a3,3a4,3a5,3a6,3 . . .

f(4) = b0,4.a1,4a2,4a3,4a4,4a5,4a6,4 . . .

f(5) = −b0,5.a1,5a2,5a3,5a4,5a5,5a6,5 . . .

. . .

In particular, for i, j ∈ Z, i, j ≥ 0, 0 ≤ bi,j, ai,j ≤ 9, bi,j, ai,j ∈ Z. We now construct a
real number y such that, for all n ∈ N, f(n) 6= y. The existence of such a y violates the
surjectivity of f .

Let y = b.a1a2a3a4 · · · , so that b = 1, a1 6= a1,1, a2 6= a2,2, a3 6= a3,3, a4 6= a4,4, and so on.
In general, for n ∈ N, choose an 6= an,n and such that 1 ≤ an ≤ 8. Then y is a real number,
and by the definition of y, y cannot be equal to any number f(n), n ∈ N. The surjectivity
of f is therefore violated. Since we have achieved a contradiction, we conclude that no such
g exists. That is, there is no one to one correspondence g : Q→ R. �
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